
E·XFL

Intel - 1SX280LH3F55E1VG Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active		
Architecture	MCU, FPGA		
Core Processor	Quad ARM® Cortex®-A53 MPCore™ with CoreSight™		
Flash Size	-		
RAM Size	256КВ		
Peripherals	DMA, WDT		
Connectivity	EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG		
Speed	1.5GHz		
Primary Attributes	FPGA - 2800K Logic Elements		
Operating Temperature	0°C ~ 100°C (TJ)		
Package / Case	2912-BBGA, FCBGA		
Supplier Device Package	2912-FBGA, FC (55x55)		
Purchase URL	https://www.e-xfl.com/product-detail/intel/1sx280lh3f55e1vg		

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1.	Intel [®] Stratix [®] 10 GX/SX Device Overview	3
	1.1. Intel Stratix 10 Family Variants	4
	1.1.1. Available Options	6
	1.2. Innovations in Intel Stratix 10 FPGAs and SoCs	6
	1.3. FPGA and SoC Features Summary	8
	1.4. Intel Stratix 10 Block Diagram	11
	1.5. Intel Stratix 10 FPGA and SoC Family Plan	11
	1.6. HyperFlex Core Architecture	
	1.7. Heterogeneous 3D SiP Transceiver Tiles	
	1.8. Intel Stratix 10 Transceivers	
	1.8.1. PMA Features	18
	1.8.2. PCS Features	
	1.9. PCI Express Gen1/Gen2/Gen3 Hard IP	
	1.10. Interlaken PCS Hard IP	
	1.11. 10G Ethernet Hard IP	
	1.12. External Memory and General Purpose I/O	
	1.13. Adaptive Logic Module (ALM)	
	1.14. Core Clocking	
	1.15. Fractional Synthesis PLLs and I/O PLLs	
	1.16. Internal Embedded Memory	
	1.17. Variable Precision DSP Block	-
	1.18. Hard Processor System (HPS)	
	1.18.1. Key Features of the Intel Stratix 10 HPS	
	1.19. Power Management	
	1.20. Device Configuration and Secure Device Manager (SDM)	
	1.21. Device Security	
	1.22. Configuration via Protocol Using PCI Express	
	1.23. Partial and Dynamic Reconfiguration	
	1.24. Fast Forward Compile	
	1.25. Single Event Upset (SEU) Error Detection and Correction	
	1.26. Document Revision History for the Intel Stratix 10 GX/SX Device Overview	36

- Dedicated secure device manager (SDM) for:
 - Enhanced device configuration and security
 - AES-256, SHA-256/384 and ECDSA-256/384 encrypt/decrypt accelerators and authentication
 - Multi-factor authentication
 - Physically Unclonable Function (PUF) service and software programmable device configuration capability
- Comprehensive set of advanced power saving features delivering up to 70% lower power compared to previous generation high-performance FPGAs
- Non-destructive register state readback and writeback, to support ASIC prototyping and other applications

With these capabilities, Intel Stratix 10 FPGAs and SoCs are ideally suited for the most demanding applications in diverse markets such as:

- Compute and Storage—for custom servers, cloud computing and data center acceleration
- **Networking**—for Terabit, 400G and multi-100G bridging, aggregation, packet processing and traffic management
- Optical Transport Networks—for OTU4, 2xOTU4, 4xOTU4
- **Broadcast**—for high-end studio distribution, headend encoding/decoding, edge quadrature amplitude modulation (QAM)
- Military—for radar, electronic warfare, and secure communications
- Medical—for diagnostic scanners and diagnostic imaging
- Test and Measurement—for protocol and application testers
- Wireless—for next-generation 5G networks
- **ASIC Prototyping**—for designs that require the largest monolithic FPGA fabric with the highest I/O count

1.1. Intel Stratix 10 Family Variants

Intel Stratix 10 devices are available in FPGA (GX) and SoC (SX) variants.

- Intel Stratix 10 GX devices deliver up to 1 GHz core fabric performance and contain up to 5.5 million LEs in a monolithic fabric. They also feature up to 96 general purpose transceivers on separate transceiver tiles, and 2666 Mbps DDR4 external memory interface performance. The transceivers are capable of up to 28.3 Gbps short reach and across the backplane. These devices are optimized for FPGA applications that require the highest transceiver bandwidth and core fabric performance, with the power efficiency of Intel's industry-leading 14-nm Tri-Gate process technology.
- Intel Stratix 10 SX devices have a feature set that is identical to Intel Stratix 10 GX devices, with the addition of an embedded quad-core 64-bit ARM Cortex A53 hard processor system.

Feature	Stratix V FPGAs	Intel Stratix 10 FPGAs and SoCs
Logic density	952 KLE (monolithic)	5,500 KLE (monolithic)
Embedded memory (M20K)	52 Mbits	229 Mbits
18x19 multipliers	3,926 <i>Note:</i> Multiplier is 18x18 in Stratix V devices.	11,520 Note: Multiplier is 18x19 in Intel Stratix 10 devices.
Floating point DSP capability	Up to 1 TFLOP, requires soft floating point adder and multiplier	Up to 10 TFLOPS, hard IEEE 754 compliant single precision floating point adder and multiplier
Maximum transceivers	66	96
Maximum transceiver data rate (chip-to- chip)	28.05 Gbps	28.3 Gbps L-Tile 28.3 Gbps H-Tile
Maximum transceiver data rate (backplane)	12.5 Gbps	12.5 Gbps L-Tile 28.3 Gbps H-Tile
Hard memory controller	None	DDR4 @ 1333 MHz/2666 Mbps DDR3 @ 1067 MHz/2133 Mbps
Hard protocol IP	PCIe Gen3 x8 (up to 4 instances)	PCIe Gen3 x16 (up to 4 instances) SR-IOV (4 physical functions / 2k virtual functions) on H-Tile devices 10GBASE-KR/40GBASE-KR4 FEC
Core clocking and PLLs	Global, quadrant and regional clocks supported by fractional- synthesis fPLLs	Programmable clock tree synthesis supported by fractional synthesis fPLLs and integer IO PLLs
Register state readback and writeback	Not available	Non-destructive register state readback and writeback for ASIC prototyping and other applications

These innovations result in the following improvements:

- **Improved Core Logic Performance**: The HyperFlex core architecture combined with Intel's 14-nm Tri-Gate technology allows Intel Stratix 10 devices to achieve 2X the core performance compared to the previous generation
- **Lower Power**: Intel Stratix 10 devices use up to 70% lower power compared to the previous generation, enabled by 14-nm Intel Tri-Gate technology, the HyperFlex core architecture, and optional power saving features built into the architecture
- Higher Density: Intel Stratix 10 devices offer over five times the level of integration, with up to 5,500K logic elements (LEs) in a monolithic fabric, over 229 Mbits of embedded memory blocks (M20K), and 11,520 18x19 multipliers
- **Embedded Processing**: Intel Stratix 10 SoCs feature a Quad-Core 64-bit ARM Cortex-A53 processor optimized for power efficiency and software compatible with previous generation Arria and Cyclone SoC devices
- **Improved Transceiver Performance**: With up to 96 transceiver channels implemented in heterogeneous 3D SiP transceiver tiles, Intel Stratix 10 GX and SX devices support data rates up to 28.3 Gbps chip-to-chip and 28.3 Gbps across the backplane with signal conditioning circuits capable of equalizing over 30 dB of system loss
- **Improved DSP Performance**: The variable precision DSP block in Intel Stratix 10 devices features hard fixed and floating point capability, with up to 10 TeraFLOPS IEEE754 single-precision floating point performance

1. Intel[®] Stratix[®] 10 GX/SX Device Overview S10-OVERVIEW | 2018.08.08

Feature	Description		
Power management	 SmartVID controlled core voltage, standard power devices 0.85-V fixed core voltage, low static power devices available Intel Quartus[®] Prime Pro Edition integrated power analysis 		
High performance monolithic core fabric	 HyperFlex core architecture with Hyper-Registers throughout the interconnect routing and at the inputs of all functional blocks Monolithic fabric minimizes compile times and increases logic utilization Enhanced adaptive logic module (ALM) Improved multi-track routing architecture reduces congestion and improves compile times Hierarchical core clocking architecture with programmable clock tree synthesis Fine-grained partial reconfiguration 		
Internal memory blocks	 M20K—20-Kbit with hard ECC support MLAB—640-bit distributed LUTRAM 		
Variable precision DSP blocks	 IEEE 754-compliant hard single-precision floating point capability Supports signal processing with precision ranging from 18x19 up to 54x54 Native 27x27 and 18x19 multiply modes 64-bit accumulator and cascade for systolic FIRs Internal coefficient memory banks Pre-adder/subtractor improves efficiency Additional pipeline register increases performance and reduces power 		
Phase locked loops (PLL)	 Fractional synthesis PLLs (fPLL) support both fractional and integer modes Fractional mode with third-order delta-sigma modulation Precision frequency synthesis Integer PLLs adjacent to general purpose I/Os, support external memory, and LVDS interfaces, clock delay compensation, zero delay buffering 		
Core clock networks	 1 GHz fabric clocking 667 MHz external memory interface clocking, supports 2666 Mbps DDR4 interface 800 MHz LVDS interface clocking, supports 1600 Mbps LVDS interface Programmable clock tree synthesis, backwards compatible with global, regional and peripheral clock networks Clocks only synthesized where needed, to minimize dynamic power 		

Feature	Description
Configuration	 Dedicated Secure Device Manager Software programmable device configuration Serial and parallel flash interface Configuration via protocol (CvP) using PCI Express Gen1/Gen2/Gen3 Fine-grained partial reconfiguration of core fabric Dynamic reconfiguration of transceivers and PLLs Comprehensive set of security features including AES-256, SHA-256/384, and ECDSA-256/384 accelerators, and multi-factor authentication Physically Unclonable Function (PUF) service
Packaging	 Intel Embedded Multi-die Interconnect Bridge (EMIB) packaging technology Multiple devices with identical package footprints allows seamless migration across different device densities 1.0 mm ball-pitch FBGA packaging Lead and lead-free package options
Software and tools	 Intel Quartus Prime Pro Edition design suite with new compiler and Hyper-Aware design flow Fast Forward compiler to allow HyperFlex architecture performance exploration Transceiver toolkit Platform designer integration tool DSP Builder advanced blockset OpenCL[™] support SoC Embedded Design Suite (EDS)

Table 3. Intel Stratix 10 SoC Specific Device Features

SoC Subsystem	Feature	Description
Hard Processor System	Multi-processor unit (MPU) core	 Quad-core ARM Cortex-A53 MPCore processor with ARM CoreSight debug and trace technology Scalar floating-point unit supporting single and double precision ARM NEON media processing engine for each processor
	System Controllers	System Memory Management Unit (SMMU)Cache Coherency Unit (CCU)
	Layer 1 Cache	 32 KB L1 instruction cache with parity 32 KB L1 data cache with ECC
	Layer 2 Cache	• 1 MB Shared L2 Cache with ECC
	On-Chip Memory	• 256 KB On-Chip RAM
	Direct memory access (DMA) controller	8-Channel DMA
	Ethernet media access controller (EMAC)	Three 10/100/1000 EMAC with integrated DMA
	USB On-The-Go controller (OTG)	• 2 USB OTG with integrated DMA
	UART controller	2 UART 16550 compatible
	Serial Peripheral Interface (SPI) controller	• 4 SPI
	I ² C controller	• 5 I ² C controllers
	SD/SDIO/MMC controller	 1 eMMC version 4.5 with DMA and CE-ATA support SD, including eSD, version 3.0 SDIO, including eSDIO, version 3.0 CE-ATA - version 1.1
		continued

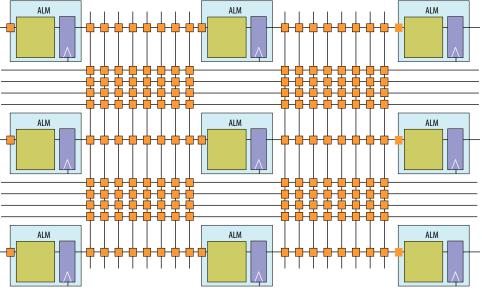
Intel Stratix 10 GX/SX Device Name	Logic Elements (KLE)	M20K Blocks	M20K Mbits	MLAB Counts	MLAB Mbits	18x19 Multi- pliers ⁽¹⁾
GX 400/ SX 400	378	1,537	30	3,204	2	1,296
GX 650/ SX 650	612	2,489	49	5,184	3	2,304
GX 850/ SX 850	841	3,477	68	7,124	4	4,032
GX 1100/ SX 1100	1,092	4,401	86	9,540	6	5,040
GX 1650/ SX 1650	1,624	5,851	114	13,764	8	6,290
GX 2100/ SX 2100	2,005	6,501	127	17,316	11	7,488
GX 2500/ SX 2500	2,422	9,963	195	20,529	13	10,022
GX 2800/ SX 2800	2,753	11,721	229	23,796	15	11,520
GX 4500/ SX 4500	4,463	7,033	137	37,821	23	3,960
GX 5500/ SX 5500	5,510	7,033	137	47,700	29	3,960

Table 4. Intel Stratix 10 GX/SX FPGA and SoC Family Plan—FPGA Core (part 1)

Table 5.Intel Stratix 10 GX/SX FPGA and SoC Family Plan—Interconnects, PLLs and
Hard IP (part 2)

Intel Stratix 10	Interco	Interconnects		PLLs	
GX/SX Device Name	Maximum GPIOs	Maximum XCVR	fPLLs	I/O PLLs	PCIe Hard IP Blocks
GX 400/ SX 400	392	24	8	8	1
GX 650/ SX 650	400	48	16	8	2
GX 850/ SX 850	736	48	16	15	2
GX 1100/ SX 1100	736	48	16	15	2
GX 1650/ SX 1650	704	96	32	14	4
GX 2100/ SX 2100	704	96	32	14	4
GX 2500/ SX 2500	1160	96	32	24	4
					continued

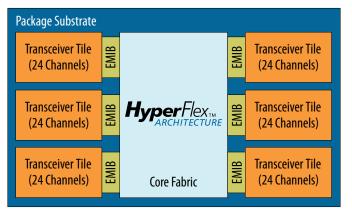
Intel Stratix 10 GX/SX Device Name	F1152 HF35 (35x35 mm ²)	F1760 NF43 (42.5x42.5 mm ²)	F1760 NF43 (42.5x42.5 mm ²)
SX 2800			
GX 4500/ SX 4500			
GX 5500/ SX 5500			


Table 7. Intel Stratix 10 GX/SX FPGA and SoC Family Package Plan, part 2

Cell legend: General Purpose I/Os, High-Voltage I/Os, LVDS Pairs, Transceivers (2) (3) (4) (5) (6) (7)

Intel Stratix 10 GX/SX Device Name	F2112 NF48 (47.5x47.5 mm ²)	F2397 UF50 (50x50 mm ²)	F2912 HF55 (55x55 mm ²)
GX 400/ SX 400			
GX 650/ SX 650			
GX 850/ SX 850	736, 16, 360, 48		
GX 1100/ SX 1100	736, 16, 360, 48		
GX 1650/ SX 1650		704, 32, 336, 96	
GX 2100/ SX 2100		704, 32, 336, 96	
GX 2500/ SX 2500		704, 32, 336, 96	1160, 8, 576, 24
GX 2800/ SX 2800		704, 32, 336, 96	1160, 8, 576, 24
GX 4500/ SX 4500			1640, 8, 816, 24
GX 5500/ SX 5500			1640, 8, 816, 24

Figure 4. HyperFlex Core Architecture



New Hyper-Registers throughout the core fabric

1.7. Heterogeneous 3D SiP Transceiver Tiles

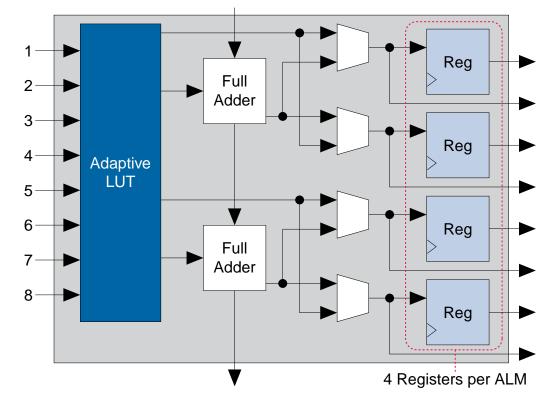
Intel Stratix 10 FPGAs and SoCs feature power efficient, high bandwidth, low latency transceivers. The transceivers are implemented on heterogeneous 3D System-in-Package (SiP) transceiver tiles, each containing 24 full-duplex transceiver channels. In addition to providing a high-performance transceiver solution to meet current connectivity needs, this allows for future flexibility and scalability as data rates, modulation schemes, and protocol IPs evolve.

Figure 5. Monolithic Core Fabric and Heterogeneous 3D SiP Transceiver Tiles

Within each transceiver tile, the transceivers are arranged in four banks of six PMA-PCS groups. A wide variety of bonded and non-bonded data rate configurations are possible within each bank, and within each tile, using a highly configurable clock distribution network.

1.8.1. PMA Features

PMA channels are comprised of transmitter (TX), receiver (RX), and high speed clocking resources.


Intel Stratix 10 device features provide exceptional signal integrity at data rates up to 28.3 Gbps. Clocking options include ultra-low jitter LC tank-based (ATX) PLLs with optional fractional synthesis capability, channel PLLs operating as clock multiplier units (CMUs), and fractional synthesis PLLs (fPLLs).

- ATX PLL—can be configured in integer mode, or optionally, in a new fractional synthesis mode. Each ATX PLL spans the full frequency range of the supported data rate range providing a stable, flexible clock source with the lowest jitter.
- **CMU PLL**—when not being used as a transceiver, select PMA channels can be configured as channel PLLs operating as CMUs to provide an additional master clock source within the transceiver bank.
- **fPLL**—In addition, dedicated fPLLs are available with precision frequency synthesis capabilities. fPLLs can be used to synthesize multiple clock frequencies from a single reference clock source and replace multiple reference oscillators for multiprotocol and multi-rate applications.

On the receiver side, each PMA has an independent channel PLL that allows analog tracking for clock-data recovery. Each PMA also has advanced equalization circuits that compensate for transmission losses across a wide frequency spectrum.

- Variable Gain Amplifier (VGA)—to optimize the receiver's dynamic range
- **Continuous Time Linear Equalizer (CTLE)**—to compensate for channel losses with lowest power dissipation
- Decision Feedback Equalizer (DFE)—to provide additional equalization capability on backplanes even in the presence of crosstalk and reflections
- On-Die Instrumentation (ODI)—to provide on-chip eye monitoring capabilities (Eye Viewer). This capability helps to optimize link equalization parameters during board bring-up and supports in-system link diagnostics and equalization margin testing

Figure 9. Intel Stratix 10 FPGA and SoC ALM Block Diagram

Key features and capabilities of the ALM include:

- High register count with 4 registers per 8-input fracturable LUT, operating in conjunction with the new HyperFlex architecture, enables Intel Stratix 10 devices to maximize core performance at very high core logic utilization
- Implements select 7-input logic functions, all 6-input logic functions, and two independent functions consisting of smaller LUT sizes (such as two independent 4-input LUTs) to optimize core logic utilization

The Intel Quartus Prime software leverages the ALM logic structure to deliver the highest performance, optimal logic utilization, and lowest compile times. The Intel Quartus Prime software simplifies design reuse as it automatically maps legacy designs into the Intel Stratix 10 ALM architecture.

1.14. Core Clocking

Core clocking in Intel Stratix 10 devices makes use of programmable clock tree synthesis.

This technique uses dedicated clock tree routing and switching circuits, and allows the Intel Quartus Prime software to create the exact clock trees required for your design. Clock tree synthesis minimizes clock tree insertion delay, reduces dynamic power dissipation in the clock tree and allows greater clocking flexibility in the core while still maintaining backwards compatibility with legacy global and regional clocking schemes.

The core clock network in Intel Stratix 10 devices supports the new HyperFlex core architecture at clock rates up to 1 GHz. It also supports the hard memory controllers up to 2666 Mbps with a quarter rate transfer to the core. The core clock network is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs.

1.15. Fractional Synthesis PLLs and I/O PLLs

Intel Stratix 10 devices have up to 32 fractional synthesis PLLs (fPLL) available for use with transceivers or in the core fabric.

The fPLLs are located in the 3D SiP transceiver H-tiles, eight per tile, adjacent to the transceiver channels. The fPLLs can be used to reduce both the number of oscillators required on the board and the number of clock pins required, by synthesizing multiple clock frequencies from a single reference clock source. In addition to synthesizing reference clock frequencies for the transceiver transmit PLLs, the fPLLs can also be used directly for transmit clocking. Each fPLL can be independently configured for conventional integer mode, or enhanced fractional synthesis mode with third-order delta-sigma modulation.

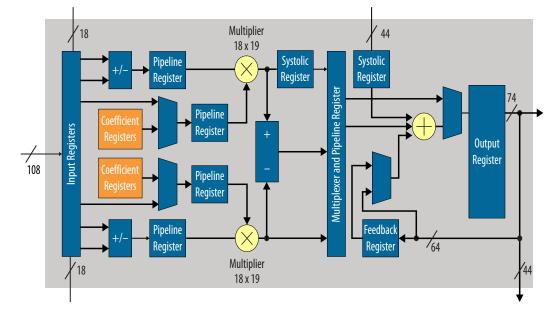
In addition to the fPLLs, Intel Stratix 10 devices contain up to 34 integer I/O PLLs (IOPLLs) available for general purpose use in the core fabric and for simplifying the design of external memory interfaces and high-speed LVDS interfaces. The IOPLLs are located in each bank of 48 general purpose I/O, 1 per I/O bank, adjacent to the hard memory controllers and LVDS SerDes in each I/O bank. This makes it easier to close timing because the IOPLLs are tightly coupled with the I/Os that need to use them. The IOPLLs can be used for general purpose applications in the core such as clock network delay compensation and zero-delay clock buffering.

1.16. Internal Embedded Memory

Intel Stratix 10 devices contain two types of embedded memory blocks: M20K (20-Kbit) and MLAB (640-bit).

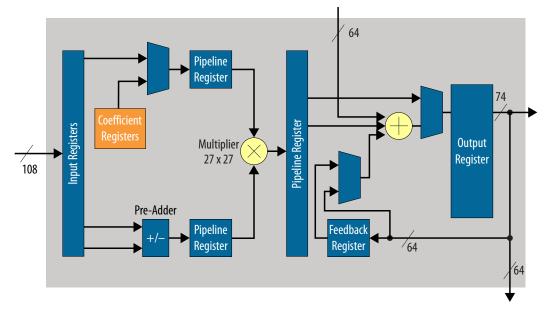
The M20K and MLAB blocks are familiar block sizes carried over from previous Intel device families. The MLAB blocks are ideal for wide and shallow memories, while the M20K blocks are intended to support larger memory configurations and include hard ECC. Both M20K and MLAB embedded memory blocks can be configured as a single-port or dual-port RAM, FIFO, ROM, or shift register. These memory blocks are highly flexible and support a number of memory configurations as shown in Table 11 on page 25.

Table 11. Internal Embedded Memory Block Configurations


(bits)
- x8) x16) · x32)
•

1.17. Variable Precision DSP Block

The Intel Stratix 10 DSP blocks are based upon the Variable Precision DSP Architecture used in Intel's previous generation devices. They feature hard fixed point and IEEE-754 compliant floating point capability.



The DSP blocks can be configured to support signal processing with precision ranging from 18x19 up to 54x54. A pipeline register has been added to increase the maximum operating frequency of the DSP block and reduce power consumption.

Figure 10. DSP Block: Standard Precision Fixed Point Mode

Figure 11. DSP Block: High Precision Fixed Point Mode

Complex multiplication is very common in DSP algorithms. One of the most popular applications of complex multipliers is the FFT algorithm. This algorithm has the characteristic of increasing precision requirements on only one side of the multiplier. The Variable Precision DSP block supports the FFT algorithm with proportional increase in DSP resources as the precision grows.

Table 13. Complex Multiplication With Variable Precision DSP Block

Complex Multiplier Size	DSP Block Resources	FFT Usage
18x19 bits	2 Variable Precision DSP Blocks	Resource optimized FFT
27x27 bits	4 Variable Precision DSP Blocks	Highest precision FFT

For FFT applications with high dynamic range requirements, the Intel FFT IP Core offers an option of single precision floating point implementation with resource usage and performance similar to high precision fixed point implementations.

Other features of the DSP block include:

- Hard 18-bit and 25-bit pre-adders
- Hard floating point multipliers and adders
- 64-bit dual accumulator (for separate I, Q product accumulations)
- Cascaded output adder chains for 18- and 27-bit FIR filters
- Embedded coefficient registers for 18- and 27-bit coefficients
- Fully independent multiplier outputs
- Inferability using HDL templates supplied by the Intel Quartus Prime software for most modes

The Variable Precision DSP block is ideal to support the growing trend towards higher bit precision in high performance DSP applications. At the same time, it can efficiently support the many existing 18-bit DSP applications, such as high definition video processing and remote radio heads. With the Variable Precision DSP block architecture and hard floating point multipliers and adders, Intel Stratix 10 devices can efficiently support many different precision levels up to and including floating point implementations. This flexibility can result in increased system performance, reduced power consumption, and reduce architecture constraints on system algorithm designers.

1.18. Hard Processor System (HPS)

The Intel Stratix 10 SoC Hard Processor System (HPS) is Intel's industry leading third generation HPS. Leveraging the performance of Intel's 14-nm Tri-Gate technology, Intel Stratix 10 SoC devices more than double the performance of previous generation SoCs with an integrated quad-core 64-bit ARM Cortex-A53. The HPS also enables system-wide hardware virtualization capabilities by adding a system memory management unit. These architecture improvements ensure that Intel Stratix 10 SoCs will meet the requirements of current and future embedded markets, including wireless and wireline communications, data center acceleration, and numerous military applications.

	Quad ARM Cortex-A53-Based Hard Processor System						
ARM Cortex -A53		ARM Cortex -A53				SD/SDIO/	
NEON	FPU	NEON		FPU	USB OTG (x2) ^{1,2}	MMC ^{1,2}	
32 KB I-Cache with Parity	32 KB D-Cache with ECC	32 KB I-Cache with Parity		32 KB D -Cache with ECC		DMA	
ARM Cort	ARM Cortex -A53		M Cor	tex -A53	UART (x2)	(8 Channel) ²	
NEON	FPU	NEON		FPU			
32 KB I-Cache with Parity	32 KB D-Cache with ECC	32 KB I-Cache with Parity		32 KB D-Cache with ECC	l²C (x5)	HPS IO	
System	1 MB L2 Cache with System MMU Cach			erency Unit	EMAC (x3) ^{1,2}	NAND Flash ^{1, 2}	
JTAG Debug or Trace		5 KB Am²	Timers (x8)			SPI (x4)	
Lightweight HPS FPGA BRIDGE		o-FPGA DGE		FPGA-to-HPS BRIDGE	HPS-to-SDM SDM-to-HPS	SDRAM Scheduler ³	
FPGA Fabric					SDM	Hard Memory Controller	

Figure 13. HPS Block Diagram

Notes:

1. Integrated direct memory access (DMA)

2. Integrated error correction code (ECC)

3. Multiport front-end interface to hard memory controller

1.18.1. Key Features of the Intel Stratix 10 HPS

Table 14. Key Features of the Intel Stratix 10 GX/SX HPS

Feature	Description
Quad-core ARM Cortex-A53 MPCore processor unit	 2.3 MIPS/MHz instruction efficiency CPU frequency up to 1.5 GHz At 1.5 GHz total performance of 13,800 MIPS ARMv8-A architecture Runs 64-bit and 32-bit ARM instructions 16-bit and 32-bit Thumb instructions for 30% reduction in memory footprint Jazelle[®] RCT execution architecture with 8-bit Java bytecodes
	continued

Feature	Description			
	 Superscalar, variable length, out-of-order pipeline with dynamic branch prediction Improved ARM NEON[™] media processing engine Single- and double-precision floating-point unit CoreSight[™] debug and trace technology 			
System Memory Management Unit	Enables a unified memory model and extends hardware virtualization into peripherals implemented in the FPGA fabric			
Cache Coherency unit	Changes in shared data stored in cache are propagated throughout the system providing bi-directional coherency for co-processing elements.			
Cache	 L1 Cache 32 KB of instruction cache w/ parity check 32 KB of L1 data cache w /ECC Parity checking L2 Cache 1MB shared 8-way set associative SEU Protection with parity on TAG ram and ECC on data RAM Cache lockdown support 			
On-Chip Memory	256 KB of scratch on-chip RAM			
External SDRAM and Flash Memory Interfaces for HPS	 Hard memory controller with support for DDR4, DDR3, LPDDR3 40-bit (32-bit + 8-bit ECC) with select packages supporting 72-bit (64-bit + 8-bit ECC) Support for up to 2666 Mbps DDR4 and 2166 Mbps DDR3 frequencies Error correction code (ECC) support including calculation, error correction, writeback correction, and error counters Software Configurable Priority Scheduling on individual SDRAM bursts Fully programmable timing parameter support for all JEDEC-specified timing parameters Multiport front-end (MPFE) scheduler interface to the hard memory controller, which supports the AXI® Quality of Service (QoS) for interface to the FPGA fabric NAND flash controller ONFI 1.0 Integrated descriptor based with DMA Programmable hardware ECC support Support for 8- and 16-bit Flash devices Secure Digital SD/SDIO/MMC controller eMMC 4.5 Integrated descriptor based DMA CE-ATA digital commands supported 50 MHz operating frequency Direct memory access (DMA) controller 8-channel Supports up to 32 peripheral handshake interface 			

1. Intel[®] Stratix[®] 10 GX/SX Device Overview S10-OVERVIEW | 2018.08.08

Feature	Description
Communication Interface Controllers	 Three 10/100/1000 Ethernet media access controls (MAC) with integrated DMA Supports RGMII and RMII external PHY Interfaces Option to support other PHY interfaces through FPGA logic GMII MII RMII (requires GMII to RMII adapter) RGMII (requires GMII to RGMII adapter) SGMII (requires GMII to SGMII adapter) SUpports IEEE 1588-2002 and IEEE 1588-2008 standards for precision networked clock synchronization Supports IEEE 802.1Q VLAN tag detection for reception frames Supports IEEE 802.1Q VLAN tag detection for reception frames Supports Ethernet AVB standard Two USB On-the-Go (OTG) controllers with DMA Dual-Role Device (device and host functions) High-speed (12 Mbps) Low-speed (1.5 Mbps) Supports IDS 1.1 (full-speed and low-speed) Integrated descriptor-based scatter-gather DMA Support for external ULPI PHY Up to 16 bidirectional endpoints, including control endpoint Up to 16 host channels Supports to TG 1.3 and OTG 2.0 modes Five I²C controllers (three can be used by EMAC for MIO to external PHY) Support both 100Kbps and 400Kbps modes Support Master and Slave operating mode Two UART 16550 compatible Programmable baud rate up to 115.2Kbaud Four serial peripheral interfaces (SPI) (2 Master, 2 Slaves) Full and Half duplex
Timers and I/O	 Timers 4 general-purpose timers 4 watchdog timers 48 HPS direct I/O allow HPS peripherals to connect directly to I/O Up to three IO48 banks may be assigned to HPS for HPS DDR access
Interconnect to Logic Core	 FPGA-to-HPS Bridge Allows IP bus masters in the FPGA fabric to access to HPS bus slaves Configurable 32-, 64-, or 128-bit AMBA AXI interface HPS-to-FPGA Bridge Allows HPS bus masters to access bus slaves in FPGA fabric Configurable 32-, 64-, or 128-bit AMBA AXI interface allows high-bandwidth HPS master transactions to FPGA fabric HPS-to-SDM and SDM-to-HPS Bridges

1.19. Power Management

Intel Stratix 10 devices leverage the advanced Intel 14-nm Tri-Gate process technology, the all new HyperFlex core architecture to enable Hyper-Folding, power gating, and several optional power reduction techniques to reduce total power consumption by as much as 70% compared to previous generation high-performance Stratix V devices.

Intel Stratix 10 standard power devices (-V) are SmartVID devices. The core voltage supplies (VCC and VCCP) for each SmartVID device must be driven by a PMBus voltage regulator dedicated to that Intel Stratix 10 device. Use of a PMBus voltage regulator for each SmartVID (-V) device is mandatory; it is not an option. A code is programmed into each SmartVID device during manufacturing that allows the PMBus voltage regulator to operate at the optimum core voltage to meet the device performance specifications.

With the new HyperFlex core architecture, designs can run 2X faster than previous generation FPGAs. With 2X performance and same required throughput, architects can cut the data path width in half to save power. This optimization is called Hyper-Folding. Additionally, power gating reduces static power of unused resources in the FPGA by powering them down. The Intel Quartus Prime software automatically powers down specific unused resource blocks such as DSP and M20K blocks, at configuration time.

The optional power reduction techniques in Intel Stratix 10 devices include:

• Available Low Static Power Devices—Intel Stratix 10 devices are available with a fixed core voltage that provides lower static power than the SmartVID standard power devices, while maintaining device performance

Furthermore, Intel Stratix 10 devices feature Intel's industry-leading low power transceivers and include a number of hard IP blocks that not only reduce logic resources but also deliver substantial power savings compared to soft implementations. In general, hard IP blocks consume up to 50% less power than the equivalent soft logic implementations.

1.20. Device Configuration and Secure Device Manager (SDM)

All Intel Stratix 10 devices contain a Secure Device Manager (SDM), which is a dedicated triple-redundant processor that serves as the point of entry into the device for all JTAG and configuration commands. The SDM also bootstraps the HPS in SoC devices ensuring that the HPS can boot using the same security features that the FPGA devices have.

The SDM enables robust, secure, fully-authenticated device configuration. It also allows for customization of the configuration scheme, which can enhance device security. For configuration and reconfiguration, this approach offers a variety of advantages:

- Dedicated secure configuration manager
- Reduced device configuration time, because sectors are configured in parallel
- Updateable configuration process
- Reconfiguration of one or more sectors independent of all other sectors
- Zeroization of individual sectors or the complete device

The SDM also provides additional capabilities such as register state readback and writeback to support ASIC prototyping and other applications.

1.21. Device Security

Building on top of the robust security features present in the previous generation devices, Intel Stratix 10 FPGAs and SoCs include a number of new and innovative security enhancements. These features are also managed by the SDM, tightly coupling device configuration and reconfiguration with encryption, authentication, key storage and anti-tamper services.

Security services provided by the SDM include:

- Bitstream encryption
- Multi-factor authentication
- Hard encryption and authentication acceleration; AES-256, SHA-256/384, ECDSA-256/384
- Volatile and non-volatile encryption key storage and management
- Boot code authentication for the HPS
- Physically Unclonable Function (PUF) service
- Updateable configuration process
- Secure device maintenance and upgrade functions
- Side channel attack protection
- Scripted response to sensor inputs and security attacks, including selective sector zeroization
- Readback, JTAG and test mode disable
- Enhanced response to single-event upsets (SEU)

The SDM and associated security services provide a robust, multi-layered security solution for your Intel Stratix 10 design.

1.22. Configuration via Protocol Using PCI Express

Configuration via protocol using PCI Express allows the FPGA to be configured across the PCI Express bus, simplifying the board layout and increasing system integration. Making use of the embedded PCI Express hard IP operating in autonomous mode before the FPGA is configured, this technique allows the PCI Express bus to be

powered up and active within the 100 ms time allowed by the PCI Express specification. Intel Stratix 10 devices also support partial reconfiguration across the PCI Express bus which reduces system down time by keeping the PCI Express link active while the device is being reconfigured.

1.23. Partial and Dynamic Reconfiguration

Partial reconfiguration allows you to reconfigure part of the FPGA while other sections continue running. This capability is required in systems where uptime is critical, because it allows you to make updates or adjust functionality without disrupting services.

In addition to lowering power and cost, partial reconfiguration also increases the effective logic density by removing the necessity to place in the FPGA those functions that do not operate simultaneously. Instead, these functions can be stored in external memory and loaded as needed. This reduces the size of the required FPGA by allowing multiple applications on a single FPGA, saving board space and reducing power. The partial reconfiguration process is built on top of the proven incremental compile design flow in the Intel Quartus Prime design software

Dynamic reconfiguration in Intel Stratix 10 devices allows transceiver data rates, protocols and analog settings to be changed dynamically on a channel-by-channel basis while maintaining data transfer on adjacent transceiver channels. Dynamic reconfiguration is ideal for applications that require on-the-fly multiprotocol or multi-rate support. Both the PMA and PCS blocks within the transceiver can be reconfigured using this technique. Dynamic reconfiguration of the transceivers can be used in conjunction with partial reconfiguration of the FPGA to enable partial reconfiguration of both core and transceivers simultaneously.

1.24. Fast Forward Compile

The innovative Fast Forward Compile feature in the Intel Quartus Prime software identifies performance bottlenecks in your design and provides detailed, step-by-step performance improvement recommendations that you can then implement. The Compiler reports estimates of the maximum operating frequency that can be achieved by applying the recommendations. As part of the new Hyper-Aware design flow, Fast Forward Compile maximizes the performance of your Intel Stratix 10 design and achieves rapid timing closure.

Previously, this type of optimization required multiple time-consuming design iterations, including full design re-compilation to determine the effectiveness of the changes. Fast Forward Compile enables you to make better decisions about where to focus your optimization efforts, and how to increase your design performance and throughput. This technique removes much of the guesswork of performance exploration, resulting in fewer design iterations and as much as 2X core performance gains for Intel Stratix 10 designs.

1.25. Single Event Upset (SEU) Error Detection and Correction

Intel Stratix 10 FPGAs and SoCs offer robust SEU error detection and correction circuitry. The detection and correction circuitry includes protection for Configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running parity checker circuit with integrated ECC that automatically corrects one or two bit errors and detects higher order multibit errors.

Document Version	Changes				
	Changed the features listed in the "Key Features of Stratix 10 Devices Compared to Stratix V Devices" table.				
	Changed the descriptions of the following areas of the "Stratix 10 FPGA and SoC Common Device Features" table:				
	- Transceiver hard IP				
	 — Internal memory blocks 				
	- Core clock networks				
	– Packaging				
	• Reorganized and updated all tables in the "Stratix 10 FPGA and SoC Family Plan" section.				
	Removed the "Migration Between Arria 10 FPGAs and Stratix 10 FPGAs" section.				
	Removed footnotes from the "Transceiver PCS Features" table.				
	Changed the HMC description in the "External Memory and General Purpose I/O" section.				
	Changed the number of fPLLs in the "Fractional Synthesis PLLs and I/O PLLs" section.				
	Clarified HMC data width support in the "Key Features of the Stratix 10 HPS" table.				
	Changed the description in the "Internal Embedded Memory" section.				
	Changed the datarate for the Standard PCS and SDI PCS features in the "Transceiver PCS Features" table.				
	Added a note to the "PCI Express Gen1/Gen2/Gen3 Hard IP" section.				
	Updated the "Key Features of the Stratix 10 HPS" table.				
	Changed the description for the Cache coherency unit in the "Key Features of the Stratix 10 HPS" table.				
	Changed the description for the external SDRAM and Flash memory interfaces for HPS in the "Key Features of the Stratix 10 HPS" table.				
2015.12.04	Initial release.				