
Microchip Technology - AT91M63200-25AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM7®

Core Size 16/32-Bit

Speed 25MHz

Connectivity EBI/EMI, SPI, UART/USART

Peripherals POR, WDT

Number of I/O 58

Program Memory Size -

Program Memory Type ROMless

EEPROM Size -

RAM Size 2K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 176-LQFP

Supplier Device Package 176-TQFP (24x24)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at91m63200-25au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at91m63200-25au-4430614
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

AT91M63200
Pin Description
Table 2. AT91M63200 Pin Description

Module Name Function Type
Active
Level Comments

EBI

A0 - A23 Address Bus Output – All valid after reset

D0 - D15 Data Bus I/O –

CS4 - CS7 Chip Select Output High A23 - A20 after reset

NCS0 - NCS3 Chip Select Output Low

NWR0 Lower Byte 0 Write Signal Output Low Used in Byte Write option

NWR1 Lower Byte 1 Write Signal Output Low Used in Byte Write option

NRD Read Signal Output Low Used in Byte Write option

NWE Write Enable Output Low Used in Byte Select option

NOE Output Enable Output Low Used in Byte Select option

NUB Upper Byte Select (16-bit SRAM) Output Low Used in Byte Select option

NLB Lower Byte Select (16-bit SRAM) Output Low Used in Byte Write option

NWAIT Wait Input Input Low

BMS Boot Mode Select Input – Sampled during reset

MPI

MPI_NCS Chip Select Input Low

MPI_RNW Read Not Write Signal Input –

MPI_BR Bus Request from External Processor Input High

MPI_BG Bus Grant to External Processor Output High

MPI_NOE Output Enable Input Low

MPI_NLB Lower Byte Select Input Low

MPI_NUB Upper Byte Select Input Low

MPI_A1 - MPI_A9 Address Bus Input –

MPI_D0 - MPI_D15 Data Bus I/O –

AIC
IRQ0 - IRQ3 External Interrupt Request Input – PIO-controlled after reset

FIQ Fast External Interrupt Request Input – PIO-controlled after reset

Timer

TCLK0 - TCLK5 Timer External Clock Input – PIO-controlled after reset

TIOA0 - TIOA5 Multi-purpose Timer I/O Pin A I/O – PIO-controlled after reset

TIOB0 - TIOB5 Multi-purpose Timer I/O Pin B I/O – PIO-controlled after reset

USART

SCK0 - SCK2 External Serial Clock I/O – PIO-controlled after reset

TXD0 - TXD2 Transmit Data Output Output – PIO-controlled after reset

RXD0 - RXD2 Receive Data Input Input – PIO-controlled after reset

SPI

SPCK SPI Clock I/O – PIO-controlled after reset

MISO Master In Slave Out I/O – PIO-controlled after reset

MOSI Master Out Slave In I/O – PIO-controlled after reset

NSS Slave Select Input Low PIO-controlled after reset

NPCS0 - NPCS3 Peripheral Chip Select Output Low PIO-controlled after reset

PIO
PA0 - PA29 Programmable I/O Port A I/O – Input after reset

PB0 - PB27 Programmable I/O Port B I/O – Input after reset

WD NWDOVF Watchdog Timer Overflow Output Low Open drain

Clock
MCKI Master Clock Input Input – Schmitt trigger

MCKO Master Clock Output Output –

Reset NRST Hardware Reset Input Input Low Schmitt trigger, internal pull-up
3

AT91M63200
Memory Map

Figure 3. AT91M63200 Memory Map

0xFFFFFFFF

0xFFD00000

0xXXX00000

0xXXXFFFFF

0xXXX00000

0xXXXFFFFF

0xXXX00000

0xXXXFFFFF

0xXXX00000

0x003FFFFF

0x00300000
0x002FFFFF

0x00200000
0x001FFFFF

0x00100000

0x000FFFFF

0x00000000

0xXXXFFFFF

External Memory [7]

External Memory [6]

External Memory [5]

External Memory [4]

On-chip RAM (during BOOT)

Reserved On-chip Device

Reserved On-chip Device

On-chip RAM (normal)
 or BOOT Memory (during BOOT)

3M bytes

1M byte

1M byte

1M byte

1M byte

Programmable Page Size
1, 4, 16 or 64 M bytes

Programmable Page Size
1, 4, 16 or 64 M bytes

Programmable Page Size
1, 4, 16 or 64 M bytes

Programmable Page Size
1, 4, 16 or 64 M bytes

Programmable
Base Address
and Page Size

Fixed
Internal Area

Fixed Internal
Area

Remapping during
BOOT

External Memory [3]

External Memory [2]

External Memory [1]

External Memory [0]

0xXXXFFFFF

0xXXX00000

Programmable Page Size
1, 4, 16 or 64 M bytes

0xXXXFFFFF

0xXXX00000

Programmable Page Size
1, 4, 16 or 64 M bytes

0xXXX00000

0xXXXFFFFF Programmable Page Size
1, 4, 16 or 64 M bytes

0xXXX00000

0xXXXFFFFF Programmable Page Size
1, 4, 16 or 64 M bytes

On-chip
Peripherals

MPI
0x004FFFFF

1M byte
0x00400000
7

AT91M63200
Figure 28. 0 Wait States, 8-bit Bus Width, Word Transfer

ADDR ADDR+1

 X B1

X B3 B2 B1

MCKI

A0-A23

NCS

NRD

D0-D15

Internal Bus

ADDR+2 ADDR+3

X X B2 B1

 X B2

X X X B1

 X B3 X B4

B4 B3 B2 B1

READ ACCESS

• Standard Protocol

• Early Protocol

NRD

X B1D0-D15 X B2 X B3 X B4

WRITE ACCESS

NWR0

NWR1

X B1D0-D15 X B2 X B3 X B4
27

AT91M63200
Hardware Interrupt Vectoring
The hardware interrupt vectoring reduces the number of
instructions to reach the interrupt handler to only one. By
storing the following instruction at address 0x00000018,
the processor loads the program counter with the interrupt
handler address stored in the AIC_IVR register. Execution
is then vectored to the interrupt handler corresponding to
the current interrupt.

ldrPC,[PC,# -&F20]

The current interrupt is the interrupt with the highest priority
when the Interrupt Vector Register (AIC_IVR) is read. The
value read in the AIC_IVR corresponds to the address
stored in the Source Vector Register (AIC_SVR) of the cur-
rent interrupt. Each interrupt source has its corresponding
AIC_SVR. In order to take advantage of the hardware inter-
rupt vectoring, it is necessary to store the address of each
interrupt handler in the corresponding AIC_SVR at system
initialization.

Priority Controller
The NIRQ line is controlled by an 8-level priority encoder.
Each source has a programmable priority level of 7 to 0.
Level 7 is the highest priority and level 0 the lowest.

When the AIC receives more than one unmasked interrupt
at a time, the interrupt with the highest priority is serviced
first. If both interrupts have equal priority, the interrupt with
the lowest interrupt source number (see Table 7) is ser-
viced first.

The current priority level is defined as the priority level of
the current interrupt at the time the register AIC_IVR is
read (the interrupt which will be serviced).

In the case when a higher priority unmasked interrupt
occurs while an interrupt already exists, there are two pos-
sible outcomes depending on whether the AIC_IVR has
been read.

• If the NIRQ line has been asserted but the AIC_IVR has
not been read, then the processor will read the new
higher priority interrupt handler address in the AIC_IVR
register and the current interrupt level is updated.

• If the processor has already read the AIC_IVR, then the
NIRQ line is reasserted. When the processor has
authorized nested interrupts to occur and reads the
AIC_IVR again, it reads the new, higher priority interrupt
handler address. At the same time, the current priority
value is pushed onto a first-in last-out stack and the
current priority is updated to the higher priority.

When the End o f I n te r rup t Command Reg is te r
(AIC_EOICR) is written, the current interrupt level is
updated with the last stored interrupt level from the stack (if
any). Hence, at the end of a higher priority interrupt, the
AIC returns to the previous state corresponding to the pre-
ceding lower priority interrupt which had been interrupted.

Interrupt Handling
The interrupt handler must read the AIC_IVR as soon as
possible. This de-asserts the NIRQ request to the proces-
sor and clears the interrupt in case it is programmed to be
edge triggered. This permits the AIC to assert the NIRQ
line again when a higher priority unmasked interrupt
occurs.

At the end of the interrupt service routine, the End of Inter-
rupt Command Register (AIC_EOICR) must be written.
This allows pending interrupts to be serviced.

Interrupt Masking
Each interrupt source, including FIQ, can be enabled or
disabled using the command registers AIC_IECR and
AIC_IDCR. The interrupt mask can be read in the read-only
register AIC_IMR. A disabled interrupt does not affect the
servicing of other interrupts.

Interrupt Clearing and Setting
All interrupt sources which are programmed to be edge trig-
gered (including FIQ) can be individually set or cleared by
respectively writ ing to the registers AIC_ISCR and
AIC_ICCR. This function of the interrupt controller is avail-
able for auto-test or software debug purposes.

Fast Interrupt Request
The external FIQ line is the only source which can raise a
fast interrupt request to the processor. Therefore, it has no
priority controller.

The external FIQ line can be programmed to be positive- or
negative-edge triggered or high- or low-level sensitive in
the AIC_SMR0 register.

The fast interrupt handler address can be stored in the
AIC_SVR0 register. The value written into this register is
available by reading the AIC_FVR register when an FIQ
interrupt is raised. By storing the following instruction at
address 0x0000001C, the processor will load the program
counter with the interrupt handler address stored in the
AIC_FVR register.

ldrPC,[PC,# -&F20]

Alternatively, the interrupt handler can be stored starting
from address 0x0000001C as described in the ARM7TDMI
datasheet.

Software Interrupt
Interrupt source 1 of the advanced interrupt controller is a
software interrupt. It must be programmed to be edge trig-
gered in order to set or clear it by writing to the AIC_ISCR
and AIC_ICCR.

This is totally independent of the SWI instruction of the
ARM7TDMI processor.
41

AIC Interrupt Enable Command Register
Register Name: AIC_IECR
Access Type: Write only

• Interrupt Enable
0 = No effect.
1 = Enables corresponding interrupt.

AIC Interrupt Disable Command Register
Register Name: AIC_IDCR
Access Type: Write only

• Interrupt Disable
0 = No effect.
1 = Disables corresponding interrupt.

31 30 29 28 27 26 25 24

IRQ0 IRQ1 IRQ2 IRQ3 --- --- --- ---

23 22 21 20 19 18 17 16

--- --- --- --- --- --- --- ---

15 14 13 12 11 10 9 8

--- PIOBIRQ PIOAIRQ WDIRQ TC5IRQ TC4IRQ TC3IRQ TC2IRQ

7 6 5 4 3 2 1 0

TC1IRQ TC0IRQ SPIRQ US2IRQ US1IRQ US0IRQ SWIRQ FIQ

31 30 29 28 27 26 25 24

IRQ0 IRQ1 IRQ2 IRQ3 --- --- --- ---

23 22 21 20 19 18 17 16

--- --- --- --- --- --- --- ---

15 14 13 12 11 10 9 8

--- PIOBIRQ PIOAIRQ WDIRQ TC5IRQ TC4IRQ TC3IRQ TC2IRQ

7 6 5 4 3 2 1 0

TC1IRQ TC0IRQ SPIRQ US2IRQ US1IRQ US0IRQ SWIRQ FIQ
AT91M6320050

Fast Interrupt Sequence
It is assumed that:

• The Advanced Interrupt Controller has been
programmed, AIC_SVR[0] is loaded with fast interrupt
service routine address and the fast interrupt is enabled.

• The instruction at address 0x1C (FIQ exception vector
address) is:
ldr pc, [pc, #-&F20]

• Nested fast interrupts are not needed by the user
When NFIQ is asserted, if bit F of CPSR is 0, the sequence
is:

1. The CPSR is stored in SPSR_fiq, the current value
of the Program Counter is loaded in the FIQ link
register (r14_fiq) and the Program Counter (r15) is
loaded with 0x1C. In the following cycle, during
fetch at address 0x20, the ARM core adjusts
r14_fiq, decrementing it by 4.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is
executed, the Program Counter is loaded with the
value read in AIC_FVR. Reading the AIC_FVR has
the effect of automatically clearing the fast interrupt
(source 0 connected to the FIQ line), if it has been
programmed to be edge triggered. In this case only,
it de-asserts the NFIQ line on the processor.

4. The previous step has the effect of branching to the
corresponding interrupt service routine. It is not

necessary to save the Link Register (r14_fiq) and
the SPSR (SPSR_fiq) if nested fast interrupts are
not needed.

5. The Interrupt Handler can then proceed as
required. It is not necessary to save registers r8 to
r13 because FIQ mode has its own dedicated regis-
ters and the user r8 to r13 are banked. The other
registers, r0 to r7, must be saved before being used,
and restored at the end (before the next step). Note
that if the fast interrupt is programmed to be level
sensitive, the source of the interrupt must be
cleared during this phase in order to de-assert the
NFIQ line.

6. Finally, the Link Register (r14_fiq) is restored into
the PC after decrementing it by 4 (with instruction
sub pc, lr, #4, for example). This has the effect of
returning from the interrupt to whatever was being
executed before, and of loading the CPSR with the
SPSR, masking or unmasking the fast interrupt
depending on the state saved in the SPSR.

Note: The F-bit in the SPSR is significant. If it is set, it indi-
cates that the ARM core was just about to mask FIQ inter-
rupts when the mask instruction was interrupted. Hence,
when the SPSR is restored, the interrupted instruction is
completed (FIQ is masked).
AT91M6320054

Figure 38. Parallel I/O Multiplexed with a Bi-directional Signal

Pad

PIO_OSR

1

0

1

0

PIO_PSR

PIO_ODSR

1

0

Filter

0

1

PIO_IFSR

PIO_PSR

Event
Detection

PIO_PDSR

PIO_ISR

PIO_IMR

0

1

PIO_MDSR

Peripheral
Output
Enable

Peripheral
Output

Peripheral
Input

PIOIRQ

Pad Output Enable

Pad Output

Pad Input
AT91M6320056

AT91M63200
PIO Status Register
Register Name: PIO_PSR
Access Type: Read only
Reset Value: 0x3FFFFFFF (A)

0x0FFFFFFF (B)

This register indicates which pins are enabled for PIO control. This register is updated when PIO lines are enabled or dis-
abled.

1 = PIO is active on the corresponding line (peripheral is inactive).
0 = PIO is inactive on the corresponding line (peripheral is active).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
61

USART: Universal Synchronous/Asynchronous Receiver/Transmitter
The AT91M63200 provides three identical, full-duplex, uni-
versal synchronous/asynchronous receiver/transmitters
that interface to the APB and are connected to the Periph-
eral Data Controller.

The main features are:

• Programmable baud rate generator
• Parity, framing and overrun error detection

• Line break generation and detection
• Automatic echo, local loopback and remote loopback

channel modes
• Multi-drop mode: address detection and generation
• Interrupt generation
• Two dedicated peripheral data controller channels
• 5-, 6-, 7-, 8- and 9-bit character length

Figure 39. USART Block Diagram

Pin Description
Each USART channel has the following external signals:

Note: After a hardware reset, the USART clock is disabled
by default (see “PMC: Power Management Controller” on
page 139). The user must configure the Power Manage-
ment Controller before any access to the user interface of
the USART.

Note: After a hardware reset, the USART pins are dese-
lected by default (see “PIO: Parallel I/O Controller” on
page 55). The user must configure the PIO Controller
before enabling the transmitter or receiver.

If the user selects one of the internal clocks, SCK can be
configured as a PIO.

Peripheral Data Controller

Receiver
Channel

Transmitter
Channel

Control Logic

Interrupt Control

Baud Rate Generator

Receiver

Transmitter

AMBA

ASB

APB

USxIRQ

MCKI

MCKI/8

RXD

TXD

SCK

USART Channel

Baud Rate Clock

PIO:
Parallel

I/O
Controller

Name Description

SCK
USART serial clock can be configured as input or output:
SCK is configured as input if an external clock is selected (USCLKS[1] = 1)
SCK is driven as output if the external clock is disabled (USCLKS[1] = 0) and clock output is enabled (CLKO = 1)

TXD Transmit Serial Data is an output

RXD Receive Serial Data is an input
AT91M6320072

AT91M63200
Break
A break condition is a low signal level which has a duration
of at least one character (including start/stop bits and par-
ity).

Transmit Break
The transmitter generates a break condition on the TXD
line when STTBRK is set in US_CR (Control Register). In
this case, the character present in the Transmit Shift Regis-
ter is completed before the line is held low.

To cancel a break condition on the TXD line, the STPBRK
command in US_CR must be set. The USART completes a
minimum break duration of one character length. The TXD
line then returns to high level (idle state) for at least 12 bit
periods to ensure that the end of break is correctly
detected. Then the transmitter resumes normal operation.

The BREAK is managed like a character:

• The STTBRK and the STPBRK commands are
performed only if the transmitter is ready (bit TXRDY = 1
in US_CSR).

• The STTBRK command blocks the transmitter holding
register (bit TXRDY is cleared in US_CSR) until the
break has started.

• A break is started when the Shift Register is empty (any
previous character is fully transmitted).
US_CSR.TXEMPTY is cleared. The break blocks the
transmitter shift register until it is completed (high level
for at least 12 bit periods after the STPBRK command is
requested).

In order to avoid unpredictable states:

• STTBRK and STPBRK commands must not be
requested at the same time.

• Once an STTBRK command is requested, further
STTBRK commands are ignored until the BREAK is
ended (high level for at least 12 bit periods).

• All STPBRK commands requested without a previous
STTBRK command are ignored.

• A byte written into the Transmit Holding Register while a
break is pending but not started (bit TXRDY = 0 in
US_CSR) is ignored.

• It is not permitted to write new data in the Transmit
Holding Register while a break is in progress (STPBRK
has not been requested), even though TXRDY = 1 in
US_CSR.

• A new STTBRK command must not be issued until an
existing break has ended (TXEMPTY = 1 in US_CSR).

The standard break transmission sequence is:

1. Wait for the transmitter ready
(US_CSR.TXRDY = 1).

2. Send the STTBRK command
(write 0x0200 to US_CR).

3. Wait for the transmitter ready
(bit TXRDY = 1 in US_CSR).

4. Send the STPBRK command
(write 0x0400 to US_CR).

The next byte can then be sent:

5. Wait for the transmitter ready
(bit TXRDY = 1 in US_CSR).

6. Send the next byte
(write byte to US_THR).

Each of these steps can be scheduled by using the inter-
rupt if the bit TXRDY in US_IMR is set.

For character transmission, the USART channel must be
enabled before sending a break.

Receive Break
The receiver detects a break condition when all data, parity
and stop bits are low. When the low stop bit is detected, the
receiver asserts the RXBRK bit in US_CSR. An end-of-
receive break is detected by a high level for at least 2/16 of
a bit period in asynchronous operating mode or at least one
sample in synchronous operating mode. RXBRK is also
asserted when an end-of-break is detected.

Both the beginning and the end of a break can be detected
by interrupt if the bit US_IMR.RXBRK is set.

Peripheral Data Controller
Each USART channel is closely connected to a corre-
sponding Peripheral Data Controller channel. One is dedi-
cated to the receiver. The other is dedicated to the trans-
mitter.

Note: The PDC is disabled if 9-bit character length is
selected (MODE9 = 1) in US_MR.

The PDC channel is programmed using US_TPR (Transmit
Pointer) and US_TCR (Transmit Counter) for the transmit-
ter and US_RPR (Receive Pointer) and US_RCR (Receive
Counter) for the receiver. The status of the PDC is given in
US_CSR by the ENDTX bit for the transmitter and by the
ENDRX bit for the receiver.

The pointer registers (US_TPR and US_RPR) are used to
store the address of the transmit or receive buffers. The
counter registers (US_TCR and US_RCR) are used to
store the size of these buffers.

The receiver data transfer is triggered by the RXRDY bit
and the transmitter data transfer is triggered by TXRDY.
When a transfer is performed, the counter is decremented
and the pointer is incremented. When the counter reaches
0, the status bit is set (ENDRX for the receiver, ENDTX for
the transmitter in US_CSR) and can be programmed to
generate an interrupt. Transfers are then disabled until a
new non-zero counter value is programmed.
77

USART Control Register
Name: US_CR
Access Type: Write only

• RSTRX: Reset Receiver
0 = No effect.
1 = The receiver logic is reset.

• RSTTX: Reset Transmitter
0 = No effect.
1 = The transmitter logic is reset.

• RXEN: Receiver Enable
0 = No effect.
1 = The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable
0 = No effect.
1 = The receiver is disabled.

• TXEN: Transmitter Enable
0 = No effect.
1 = The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable
0 = No effect.
1 = The transmitter is disabled.

• RSTSTA: Reset Status Bits
0 = No effect.
1 = Resets the status bits PARE, FRAME, OVRE and RXBRK in the US_CSR.

• STTBRK: Start Break
0 = No effect.
1 = If break is not being transmitted, start transmission of a break after the characters present in US_THR and the
Transmit Shift Register have been transmitted.

• STPBRK: Stop Break
0 = No effect.
1 = If a break is being transmitted, stop transmission of the break after a minimum of one character length and transmit
a high level during 12 bit periods.

• STTTO: Start Time-out
0 = No effect.
1 = Start waiting for a character before clocking the time-out counter.

• SENDA: Send Address
0 = No effect.
1 = In multi-drop mode only, the next character written to the US_THR is sent with the address bit set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
AT91M6320080

USART Interrupt Disable Register
Name: US_IDR
Access Type: Write only

• RXRDY: Disable RXRDY Interrupt
0 = No effect.
1 = Disables RXRDY Interrupt.

• TXRDY: Disable TXRDY Interrupt
0 = No effect.
1 = Disables TXRDY Interrupt.

• RXBRK: Disable Receiver Break Interrupt
0 = No effect.
1 = Disables Receiver Break Interrupt.

• ENDRX: Disable End of Receive Transfer Interrupt
0 = No effect.
1 = Disables End of Receive Transfer Interrupt.

• ENDTX: Disable End of Transmit Transfer Interrupt
0 = No effect.
1 = Disables End of Transmit Transfer Interrupt.

• OVRE: Disable Overrun Error Interrupt
0 = No effect.
1 = Disables Overrun Error Interrupt.

• FRAME: Disable Framing Error Interrupt
0 = No effect.
1 = Disables Framing Error Interrupt.

• PARE: Disable Parity Error Interrupt
0 = No effect.
1 = Disables Parity Error Interrupt.

• TIMEOUT: Disable Time-out Interrupt
0 = No effect.
1 = Disables Receiver Time-out Interrupt.

• TXEMPTY: Disable TXEMPTY Interrupt
0 = No effect.
1 = Disables TXEMPTY Interrupt.

• COMMTX: Disable ARM7TDMI ICE Debug Communication Channel Transmit Interrupt
This bit is implemented for USART0 only.
0 = No effect.
1 = Disables COMMTX Interrupt.

• COMMRX: Disable ARM7TDMI ICE Debug Communication Channel Receive Interrupt
This bit is implemented for USART0 only.
0 = No effect.
1 = Disables COMMRX Interrupt.

31 30 29 28 27 26 25 24

COMMRX COMMTX – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
AT91M6320084

USART Receive Pointer Register
Name: US_RPR
Access Type: Read/Write

• RXPTR: Receive Pointer
RXPTR must be loaded with the address of the receive buffer.

USART Receive Counter Register
Name: US_RCR
Access Type: Read/Write

• RXCTR: Receive Counter
RXCTR must be loaded with the size of the receive buffer.
0: Stop peripheral data transfer dedicated to the receiver.
1-65535: Start peripheral data transfer if RXRDY is active.

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8

RXPTR

7 6 5 4 3 2 1 0

RXPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXCTR

7 6 5 4 3 2 1 0

RXCTR
AT91M6320090

AT91M63200
Master Mode
In master mode, the SPI controls data transfers to and from
the slave(s) connected to the SPI bus. The SPI drives the
chip select(s) to the slave(s) and the serial clock (SPCK).
After enabling the SPI, a data transfer begins when the
ARM core writes to the SP_TDR (Transmit Data Register).
See Table 13.

Transmit and receive buffers maintain the data flow at a
constant rate with a reduced requirement for high-priority
interrupt servicing. When new data is available in the
SP_TDR (Transmit Data Register) the SPI continues to
transfer data. If the SP_RDR (Receive Data Register) has
not been read before new data is received, the Overrun
Error (OVRES) flag is set.

The delay between the activation of the chip select and the
start of the data transfer (DLYBS), as well as the delay
between each data transfer (DLYBCT), can be pro-
grammed for each of the four external chip selects. All data
transfer characteristics including the two timing values are
programmed in registers SP_CSR0 to SP_CSR3 (Chip
Select Registers). See Table 13.

In master mode, the peripheral selection can be defined in
two different ways:

• Fixed Peripheral Select: SPI exchanges data with only
one peripheral

• Variable Peripheral Select: Data can be exchanged with
more than one peripheral

Figures 47 and 48 show the operation of the SPI in master
mode. For details concerning the flag and control bits in
these diagrams, see the tables in the “Programmer’s
Model”, starting on page 99.

Fixed Peripheral Select
This mode is ideal for transferring memory blocks without
the extra overhead in the transmit data register to deter-
mine the peripheral.

Fixed Peripheral Select is activated by setting bit PS to
zero in SP_MR (Mode Register). The peripheral is defined
by the PCS field, also in SP_MR.

This option is only available when the SPI is programmed
in master mode.

Variable Peripheral Select
Variable Peripheral Select is activated by setting bit PS to
one. The PCS field in SP_TDR (Transmit Data Register) is
used to select the destination peripheral. The data transfer
characteristics are changed when the selected peripheral
changes, according to the associated chip select register.

The PCS field in the SP_MR has no effect.

This option is only available when the SPI is programmed
in master mode.

Chip Selects
The chip select lines are driven by the SPI only if it is pro-
grammed in master mode. These lines are used to select
the destination peripheral. The PCSDEC field in SP_MR
(Mode Register) selects 1 to 4 peripherals (PCSDEC = 0)
or up to 15 peripherals (PCSDEC = 1).

If Variable Peripheral Select is active, the chip select sig-
nals are defined for each transfer in the PCS field in
SP_TDR. Chip select signals can thus be defined indepen-
dently for each transfer.

If Fixed Peripheral Select is active, chip select signals are
defined for all transfers by the field PCS in SP_MR. If a
transfer with a new peripheral is necessary, the software
must wait until the current transfer is completed, then
change the value of PCS in SP_MR before writing new
data in SP_TDR.

The value on the NPCS pins at the end of each transfer
can be read in the SP_RDR (Receive Data Register).

By default, all NPCS signals are high (equal to one) before
and after each transfer.

Mode Fault Detection
A mode fault is detected when the SPI is programmed in
master mode and a low level is driven by an external mas-
ter on the NPCS0/NSS signal.

When a mode fault is detected, the MODF bit in the SP_SR
is set until the SP_SR is read and the SPI is disabled until
re-enabled by bit SPIEN in the SP_CR (Control Register).
93

Slave Mode
In slave mode, the SPI waits for NSS to go active low
before receiving the serial clock from an external master.

In s lave mode, CPOL, NCPHA and BITS f ields of
SP_CSR0 are used to define the transfer characteristics.
The other chip select registers are not used in slave mode.

Figure 49. SPI in Slave Mode

S

R

Q

T
D
R
E

R
D
R
F

O
V
R
E

S
P
I
E
N
S

Serializer

SCK

SPIDIS SPIEN

SP_IER
SP_IDR
SP_IMR

SP_SR

MISO
LSB MSB

NSS

MOSI

SPIRQ

SP_RDR
RD

SP_TDR
TD
AT91M6320096

AT91M63200
SPI Status Register
Register Name: SP_SR
Access Type: Read only

• RDRF: Receive Data Register Full
0 = No data has been received since the last read of SP_RDR.
1 = Data has been received and the received data has been transferred from the serializer to SP_RDR since the last
read of SP_RDR.

• TDRE: Transmit Data Register Empty
0 = Data has been written to SP_TDR and not yet transferred to the serializer.
1 = The last data written in the Transmit Data Register has been transferred in the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

• MODF: Mode Fault Error
0 = No mode fault has been detected since the last read of SP_SR.
1 = A mode fault occurred since the last read of the SP_SR.

• OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SP_SR.
1 = An overrun has occurred since the last read of SP_SR.
An overrun occurs when SP_RDR is loaded at least twice from the serializer since the last read of the SP_RDR.

• SPENDRX: End of Receiver Transfer
0 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the receiver is inactive.
1 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the receiver is active.

• SPENDTX: End of Transmitter Transfer
0 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the transmitter is inactive.
1 = The End of Transfer signal from the Peripheral Data Controller channel dedicated to the transmitter is active.

• SPIENS: SPI Enable Status
0 = SPI is disabled.
1 = SPI is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – SPENDTX SPENDRX OVRES MODF TDRE RDRF
103

AT91M63200
TC: Timer/Counter
The AT91M63200 features two Timer/Counter blocks, each
containing three identical 16-bit Timer/Counter channels.
Each channel can be independently programmed to per-
form a wide range of functions including frequency mea-
surement, event counting, interval measurement, pulse
generation, delay timing and pulse width modulation.

Each Timer/Counter channel has three external clock
inputs, five internal clock inputs, and two multi-purpose
input/output signals which can be configured by the user.
Each channel drives an internal interrupt signal which can
be programmed to generate processor interrupts via the
AIC (Advanced Interrupt Controller).

The Timer/Counter block has two global registers which act
upon all three TC channels. The Block Control Register
allows the three channels to be started simultaneously with
the same instruction. The Block Mode Register defines the
external clock inputs for each Timer/Counter channel,
allowing them to be chained.

Each Timer/Counter block operates independently and has
a complete set of block and channel registers. Since they
are identical in operation, only one block is described below
(see "Timer/Counter Description" on page 113). The inter-
nal configuration of a single Timer/Counter block is shown
in Figure 53.

Figure 53. TC Block Diagram

Timer/Counter
Channel 0

Timer/Counter
Channel 1

Timer/Counter
Channel 2

SYNC

Parallel I/O
Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT

INT

INT

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Advanced
Interrupt

Controller

TCLK0
TCLK1
TCLK2

TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Timer/Counter Block

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

MCKI/2

MCKI/8

MCKI/32

MCKI/128

MCKI/1024
111

TC Counter Value Register
Register Name: TC_CVR
Access Type: Read only

• CV: Counter Value
CV contains the counter value in real time.

TC Register A
Register Name: TC_RA
Access Type: Read only if WAVE = 0, Read/Write if WAVE = 1

• RA: Register A
RA contains the Register A value in real time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RA

7 6 5 4 3 2 1 0

RA
AT91M63200128

AT91M63200
PMC System Clock Status Register
Register Name: PMC_SCSR
Access Type: Read only

• CPU: CPU Clock Status
0 = CPU clock is enabled.
1 = CPU clock is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CPU
141

AT91M63200
SF: Special Function Registers
The M63X00 provides registers which implement the following special functions:

• Chip identification: a chip identifier module which enables software to recognize certain characteristics of the chip and
the version number

• RESET status
• Protect mode (see “Protect Mode” on page 42)

SF User Interface
Chip ID Base Address: 0xFFF00000

Chip ID Register
Register Name: SF_CIDR
Access Type: Read only

• VERSION: Version of the chip
This value is incremented by one with each new version of the chip (from zero to a maximum value of 31).

Table 18. SF Memory Map

Offset Register Name Access Reset State

0x00 Chip ID Register SF_CIDR Read only Hardwired

0x04 Chip ID Extension Register SF_EXID Read only Hardwired

0x08 Reset Status Register SF_RSR Read only See register
description

0x0C Reserved – – –

0x10 Reserved – – –

0x14 Reserved – – –

0x18 Protect Mode Register SF_PMR Read/Write 0x0

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH VDSIZ

15 14 13 12 11 10 9 8

NVDSIZ NVPSIZ

7 6 5 4 3 2 1 0

0 1 0 VERSION
145

