E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f72-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-2:

-2: PIC16F72 REGISTER FILE MAP

Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
	08h		88h		108h		188
	09h		89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18E
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	180
	0Dh		8Dh	PMADRL	10Dh		180
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18E
TMR1H	0Fh		8Fh	PMADRH	10Fh		18F
T1CON	10h		90h		110h		190
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
	18h		98h				
	19h		99h				
	1Ah		9Ah				
	1Bh		9Bh				
	1Ch		9Ch				
	1Dh		9Dh				
ADRES	1Eh		9Eh		11Fh		19F
ADCON0	1Fh	ADCON1	9Fh				
	20h	General Purpose Register	A0h		120h	accesses A0h -BFh	1A)
General		32 Bytes	BFh				1B
Purpose			C0h	accesses			1C
Register		accesses		20h-7Fh		accesses	
96 Bytes		40h-7Fh				40h -7Fh	
	7Fh		FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplem	ented data	a memory location	s, read as	·'O'.			

2.2.2.6 PCON Register

Note:	Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate inter-
	rupt flag bits are clear prior to enabling an interrupt.

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR), a Brown-out Reset, an external MCLR Reset and WDT Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a 'don't care' and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration word).

REGISTER 2-6: PCON: POWER CONTROL REGISTER (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x			
_	_	_	_	_	—	POR	BOR			
bit 7							bit 0			
Unimplemented: Read as '0'										

bit 1	POR: Power-on Reset Status bit

1 = No Power-on Reset occurred

0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)

bit 0

bit 7-2

BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred

0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a:

- 16-bit capture register
- 16-bit compare register
- PWM master/slave duty cycle register.

Table 8-1 shows the timer resources of the CCP Module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

TABLE 8-1:CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 8-1: CCPCON1: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCPxX:CCPxY: PWM Least Significant bits Capture mode:

	Capture mode:
	Unused
	Compare mode:
	Unused
	PWM mode:
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0	CCPxM3:CCPxM0: CCPx Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode, set output on match (CCPxIF bit is set)
	1001 = Compare mode, clear output on match (CCPxIF bit is set)
	1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set,
	CCPx pin is unaffected)
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)
	11xx = PWM mode
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	all o	e on other SETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	—	ADIF	—		SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	—	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
87h	TRISC	PORTC	Data D	irection Re	gister					1111	1111	1111	1111
0Eh	TMR1L	Holding	Registe	er for the Le	ast Signific	ant Byte of	the 16-bit 7	FMR1 Regi	ster	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	Registe	er for the M	ost Significa	ant Byte of t	he 16-bit T	MR1 Regis	ster	xxxx	xxxx	uuuu	uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM Register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture	Capture/Compare/PWM Register1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

ER 9-2:	SSPCON	SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0			
	bit 7							bit 0			
bit 7	WCOL: W	/rite Collision	Detect bit								
		d in software		en while it is	still transmi	tting the pr	evious word	d (must be			
bit 6		Receive Over	flow Indicate	or bit							
DILO			now mulcall								
	1 = A new of ove must mode by wr 0 = No ov	 In SPI mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. 0 = No overflow 									
	1 = A byte is a "c	<u>In I²C mode:</u> 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode. SSPOV must be cleared in software in either mode. 0 = No overflow									
bit 5	SSPEN: S	SSPEN: Synchronous Serial Port Enable bit									
	In SPI mode: 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins 0 = Disables serial port and configures these pins as I/O port pins										
	In l ² C mode:										
	 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins 0 = Disables serial port and configures these pins as I/O port pins 										
	In both modes, when enabled, these pins must be properly configured as input or output.										
bit 4		CKP: Clock Polarity Select bit									
	In SPI mode:										
	 1 = IDLE state for clock is a high level (Microwire[®] default) 0 = IDLE state for clock is a low level (Microwire alternate) 										
	In I ² C mode: SCK release control 1 = Enable clock										
	0 = Holds	clock low (cl	ock stretch -	used to ens	ure data setu	ıp time)					
bit 3-0	SSPM<3:	0>: Synchro	nous Serial F	Port Mode Se	lect bits						
	0000 = SI	SSPM<3:0>: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4									
		0001 = SPI Master mode, clock = Fosc/16									
		PI Master mo			10						
				TMR2 o <u>utp</u> ut CK pin. SS p		abled.					
							an be used	as I/O pin.			
	$0110 = I^2$	0101 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin. 0110 = I ² C Slave mode, 7-bit address									
		0111 = I^2C Slave mode, 10-bit address 1011 = I^2C firmware controlled Master mode (Slave IDLE)									
						D hit intorru	into onoblo	4			
	1110 = I^2C Slave mode, 7-bit address with START and STOP bit interrupts enabled 1111 = I^2C Slave mode, 10-bit address with START and STOP bit interrupts enabled										
	Legend:										
	R = Read	able bit	W = V	Vritable bit	U = Unim	plemented	bit, read as	'0'			
			v		0 - 01111	plomonicu	, 1000 05	~			

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

9.3.1.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

9.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-7).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

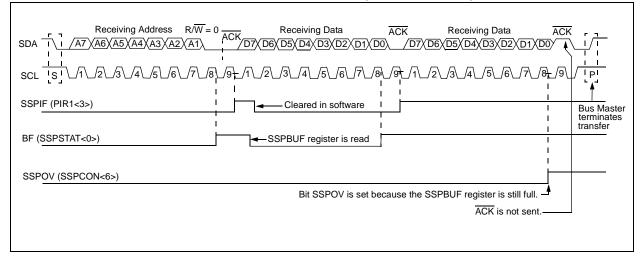
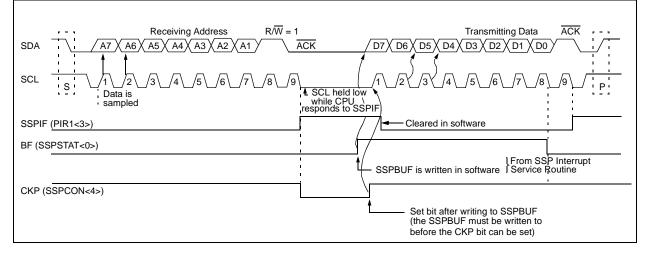

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave device, the slave logic is reset (resets SSPSTAT register) and the slave device then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/SCK/SCL should be enabled by setting bit CKP.

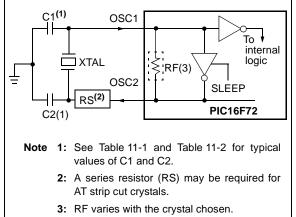
TABLE 9-2:	DATA TRANSFER RECEIVED BYTE ACTIO	NS
IADLE 3-Z.	DATA TRANSFER RECEIVED BITE ACTIO	UND -

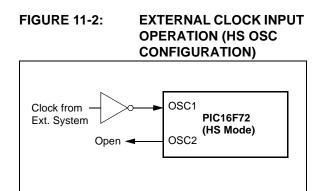

	ts as Data s Received			Set bit SSPIF
BF	SSPOV	$SSPSR \rightarrow SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

11.2 Oscillator Configurations

11.2.1 OSCILLATOR TYPES


The PIC16F72 can be operated in four different Oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:


- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

11.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKI and OSC2/CLKO pins to establish oscillation (Figure 11-1). The PIC16F72 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS mode, the device can accept an external clock source to drive the OSC1/CLKI pin (Figure 11-2). See Figure 14-1 or Figure 14-2 (depending on the part number and VDD range) for valid external clock frequencies.

FIGURE 11-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 11-1: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

-	Typical Capac	itor Values Use	ed:
Mode	Freq	OSC1	OSC2
XT	455 kHz	56 pF	56 pF
	2.0 MHz	47 pF	47 pF
	4.0 MHz	33 pF	33 pF
HS	8.0 MHz	27 pF	27 pF
	16.0 MHz	22 pF	22 pF

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes at the bottom of page 62 for additional information.

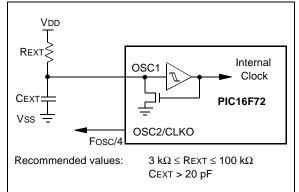
TABLE 11-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (FOR DESIGN GUIDANCE ONLY)

Osc Type	Crystal Freq	Typical Capa Tes	
	печ	C1	C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	56 pF	56 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15 pF	15 pF
	20 MHz	15 pF	15 pF

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.


See the notes following this table for additional information.

- Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time.
 - Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

11.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 11-3 shows how the R/C combination is connected to the PIC16F72.

11.3 **RESET**

The PIC16F72 differentiates between various kinds of RESET:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any RESET condition. Their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during SLEEP, and Brown-out Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different RESET situations, as indicated in Table 11-4. These bits are used in software to determine the nature of the RESET. See Table 11-6 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 11-4.

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k \text{ - (W)} \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

XORLW	Exclusive OR Literal with W
Syntax:	[label] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' = '0', the result is placed in W register. If 'd' = '1', the result is placed in register 'f'.

TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	VXX381219	PIC16F62X	X7Oði Olq	(X7O81OI9	PIC16C8X/	PIC16F8X	(X6D81DI9	X43713I9	(XTOTIOI9	PIC18CXX	PIC18FXX	83CXX 52CXX/ 54CXX/	хххэн	МСКFXXX	MCP2510
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler				1								>	>						
MPLAB [®] C18 C Compiler														>	>				
MPLINK TM Assembler/ MPLINK TM Object Linker	>	>	>	>	^	^	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	~	~	>	>	~	×*`	>	>	>	~	>	>	>	~	~				
ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
MPLAB® ICD In-Circuit Debugger				*>			* >			>					>				
PICSTART [®] Plus Entry Level Development Programmer	>	>	>	>	>	**^	>	`	`	`	>	>	>	>	>				
PRO MATE® II Universal Device Programmer	>	>	>	>	>	**/	^	^	^	^	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		÷+		>			>							
PICDEM [™] 2 Demonstration Board				.↓			.↓							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board		>																	
PICDEM TM 17 Demonstration Board													>						
KEELoQ [®] Evaluation Kit																	>		
KEELoq® Transponder Kit																	>		
microlD™ Programmer's Kit																		~	
125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit																		`	
13.56 MHz Anticollision microlD TM Developer's Kit																		>	
MCD0610 CAN Barrelande Kit																			>

** Contact Microchip Technology Inc. for availability date.
[†] Development tool is available on select devices.

14.2 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial)

	RACTE	RISTICS	$ \begin{array}{lll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \\ \mbox{Operating voltage VDD range as described in DC Specification,} \\ \mbox{Section 14.1.} \end{array} $				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range
D030A			Vss		0.8V	V	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss		0.2 Vdd	V	
D033		OSC1 (in XT and LP mode)	Vss	—	0.3V	V	(Note 1)
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V	(Note 1)
	Vih	Input High Voltage					
		I/O ports					
D040		with TTL buffer	2.0		Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25 VDD + 0.8V		Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8 Vdd	—	Vdd	V	For entire VDD range
D042		MCLR	0.8 Vdd	—	Vdd	V	
D042A		OSC1 (in XT and LP mode)	1.6V		Vdd	V	(Note 1)
		OSC1 (in HS mode)	0.7 Vdd		Vdd	V	(Note 1)
D043		OSC1 (in RC mode)	0.9 Vdd	—	Vdd	V	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	lı∟	Input Leakage Current (Notes	2, 3)				
D060		I/O ports		—	±1	μΑ	$Vss \le VPIN \le VDD$, Pin at hi-impedance
D061		MCLR, RA4/T0CKI	—	_	±5	μA	$Vss \le VPIN \le VDD$
D063		OSC1	—	—	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F72 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

14.2 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial) (Continued)

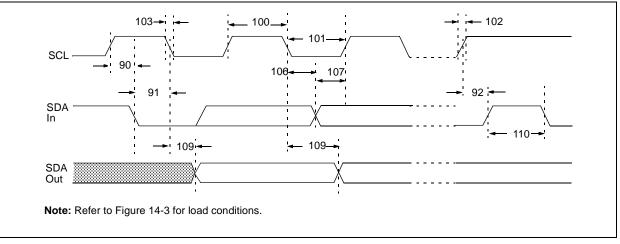
	ARACTE	RISTICS	$ \begin{array}{lll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \\ \mbox{Operating voltage VDD range as described in DC Specification,} \\ \mbox{Section 14.1.} \end{array} $				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Vol	Output Low Voltage					
D080		I/O ports	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083		OSC2/CLKO (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Vон	Output High Voltage					
D090		I/O ports (Note 3)	Vdd - 0.7	—	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092		OSC2/CLKO (RC osc config)	Vdd - 0.7	—	—	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D150*	Vod	Open Drain High Voltage	—	—	12	V	RA4 pin
		Capacitive Loading Specs on	Output Pins			•	•
D100	Cosc2	OSC2 pin	_	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF	
D102	Св	SCL, SDA in I ² C mode	—	-	400	pF	
		Program FLASH Memory	•				1
D130	ЕР	Endurance	100	1000	—	E/W	25°C at 5V
D131	Vpr	VDD for read	2.0	—	5.5	V	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F72 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

Param No.	Symbol	Charact	teristic	Min	Тур	Max	Units	Conditions	
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600		_		START condition	
91*	THD:STA	START condition	100 kHz mode	4000		_		After this period, the first clock	
		Hold time	400 kHz mode	600		_		pulse is generated	
92*	Tsu:sto	STOP condition	100 kHz mode	4700		_	ns		
		Setup time	400 kHz mode	600		_			
93	THD:STO	STOP condition	100 kHz mode	4000		_	ns		
		Hold time	400 kHz mode	600		_			

TABLE 14-7: I²C BUS START/STOP BITS REQUIREMENTS

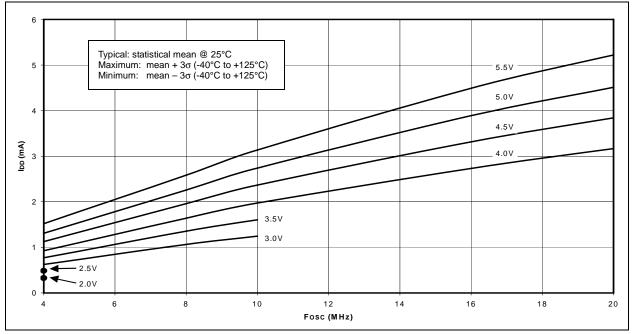
* These parameters are characterized but not tested.

FIGURE 14-15: I²C BUS DATA TIMING

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



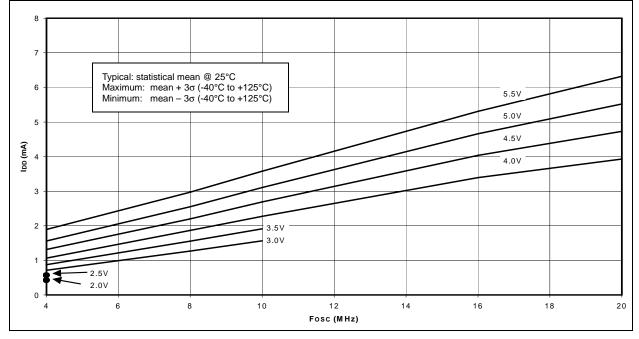
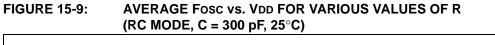



FIGURE 15-1: TYPICAL IDD vs. Fosc OVER VDD (HS MODE)

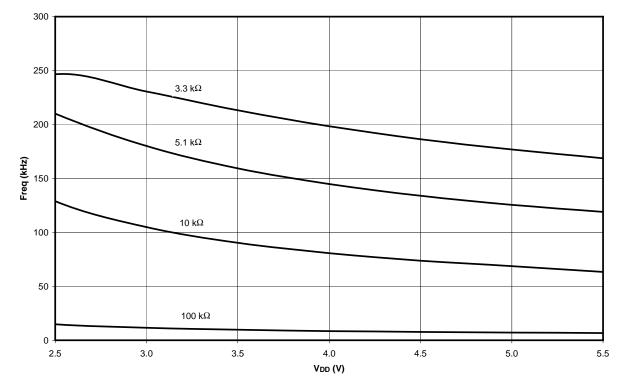
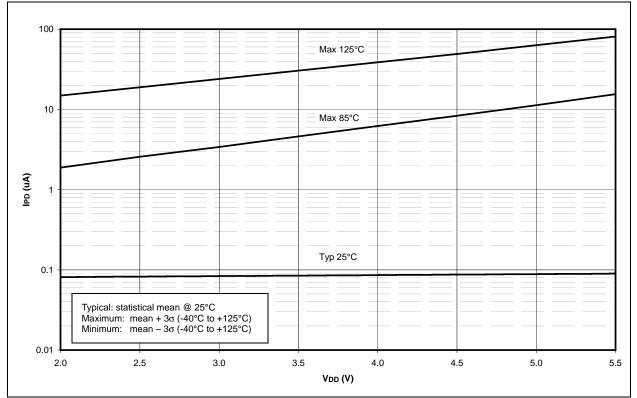
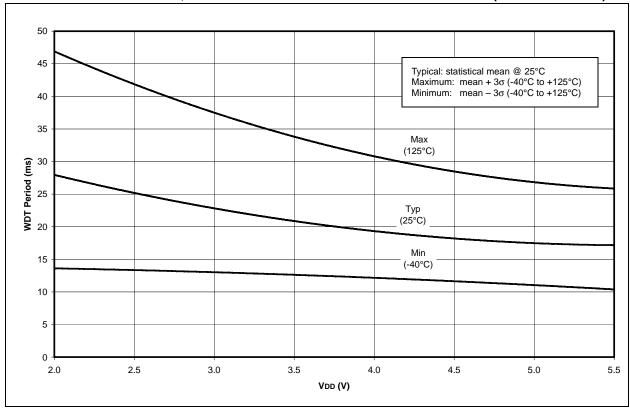
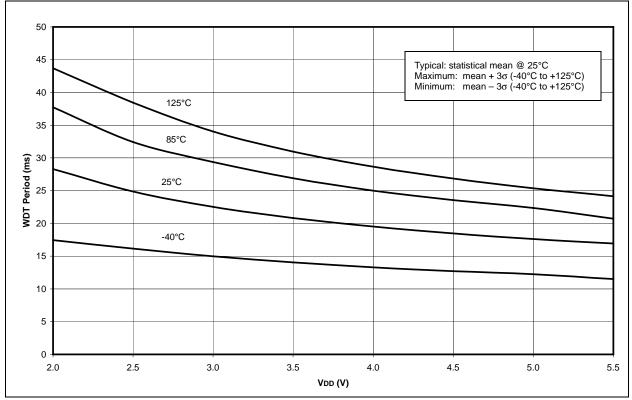
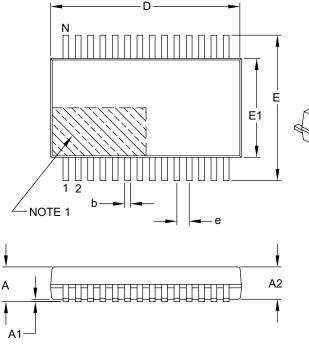
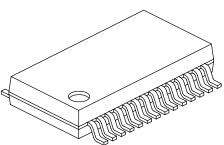
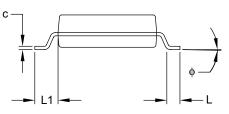



FIGURE 15-10: IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)


FIGURE 15-13: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)





28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	с	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

PIC16F72

Oscillator Configuration	59, 61
Crystal Oscillator/Ceramic Resonators	61
HS	61, 65
LP	61, 65
RC	61, 62, 65
XT	61, 65
Oscillator, WDT	70

Ρ

-
P44
Package Marking Information117
PCFG0 bit54
PCFG1 bit
PCFG2 bit
PCL Register
PCLATH Register
PCON Register
POR bit
PICDEM 1 Low Cost PIC
Demonstration Board
PICDEM 17 Demonstration Board
PICDEM 2 Low Cost PIC16CXX
Demonstration Board83
PICDEM 3 Low Cost PIC16CXXX
Demonstration Board84
PICSTART Plus Entry Level
Development Programmer83
Pin Functions
MCLR/VPP
OSC1/CLKI
OSC2/CLKO
RA0/AN0
RA1/AN1
RA2/AN26
RA3/AN3/VREF6
RA4/T0CKI
RA5/AN4/SS6
RB0/INT6
RB16
RB26
RB3
RB4
RB5
RB6/PGC
RB7/PGD
RC0/T1OSO/T1CKI
RC1/T10SI6
RC2/CCP16
RC3/SCK/SCL6
RC4/SDI/SDA6
RC5/SDO6
RC66
RC76
VDD6
Vss6
Pinout Descriptions
PIC16F72
POP
POP
PORTA
Associated Registers
Functions22

PORTA Register PORTB		9
Associated Registers		24
Functions		
Pull-up Enable (RBPU bit)		13
RB0/INT Edge Select (INTEDG bit)		13
RB0/INT Pin, External		69
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)		14
RB7:RB4 Interrupt-on-Change		69
RB7:RB4 Interrupt-on-Change Enable		
(RBIE bit)		69
RB7:RB4 Interrupt-on-Change Flag		
(RBIF bit)	14,	69
PORTB Register		
Associated Registers		26
Functions		
PORTC Register		-
Postscaler, WDT		
Assignment (PSA Bit)		13
Rate Select (PS2:PS0 bits)		
Power-down Mode. See SLEEP		
Power-on Reset (POR) 59, 62, 64	1.65.	66
Brown-out Reset (BOR)		
Oscillator Start-up Timer (OST)		
POR Status (POR bit)		
Power Control/Status Register (PCON)		
Power-down (PD bit)		
Power-up Timer (PWRT)		
Time-out (TO bit)		
Time-out Sequence		
PR2 Register		
Prescaler, Timer0		00
Assignment (PSA bit)		13
Rate Select (PS2:PS0 bits)		
PRO MATE II Universal Device Programmer		
Product Identification System		
Program Counter	1	55
RESET Conditions		GE
		60
Program Memory Paging		10
Program Memory Map and Stack		19
Program Memory Map and Stack		
Program Verification		
		19

R

R/W	44
R/W bit	49
RBIF bit	23
Read/Write bit Information, R/W	44
Reader Response	132
Reading Program Memory	27
PMADR	27
PMCON1 Register	27
Receive Overflow Indicator bit, SSPOV	45
Register File Map	8

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent		
RE:	Reader Response			
From	n: Name			
	Company			
	Telephone: ()	FAX: ()		
Appli	ication (optional):			
Wou	ld you like a reply?YN			
Devi	ce: DSTEMP	Literature Number: DS00000A		
Ques	stions:			
1. V	What are the best features of this do	ocument?		
2. H	How does this document meet your	hardware and software development needs?		
_				
_				
3. E	3. Do you find the organization of this document easy to follow? If not, why?			
_				
_				
4. V	What additions to the document do y	you think would enhance the structure and subject?		
_				
- -				
5. V	what deletions from the document c	ould be made without affecting the overall usefulness?		
-				
6. I	s there any incorrect or misleading i	information (what and where)?		
0. 1	s there any monteet of misleading i			
_				
- 7. H	low would you improve this docume	ent?		
_				
-				