

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f72-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 1											
80h ⁽¹⁾	INDF	Addressi	ng this loca	tion uses cor	ntents of FSR	to address	data memor	y (not a phys	ical register)	0000 0000	19
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13
82h ⁽¹⁾	PCL	Program	Counter's	PC) Least S	ignificant By	te	-	-		0000 0000	18
83h (1)	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	12
84h (1)	FSR	Indirect [Data Memo	ry Address F	Pointer					xxxx xxxx	19
85h	TRISA		_	PORTA Dat	a Direction F	Register				11 1111	21
86h	TRISB	PORTB	Data Direct	on Register						1111 1111	23
87h	TRISC	PORTC	Data Direct	ion Register						1111 1111	25
88h	_	Unimple	mented							_	_
89h		Unimple	mented							_	_
8Ah ^(1,2)	PCLATH		—	_	Write Buffer	for the uppe	er 5 bits of th	ne PC		0 0000	18
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
8Ch	PIE1		ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	15
8Dh	_	Unimple	mented							_	—
8Eh	PCON		_	_	—	_	_	POR	BOR	qq	17
8Fh		Unimple	mented							_	_
90h		Unimple	mented							_	_
91h		Unimple	mented							_	_
92h	PR2	Timer2 F	Period Regis	ster						1111 1111	41
93h	SSPADD	Synchro	nous Serial	Port (I ² C mo	ode) Address	Register	-	-		0000 0000	43,48
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	44
95h		Unimple	mented							_	—
96h	_	Unimple	mented							_	_
97h		Unimple	mented							_	—
98h	_	Unimple	mented							_	_
99h	_	Unimple	mented							_	_
9Ah	_	Unimple	mented							_	_
9Bh	_	Unimple	mented							_	_
9Ch		Unimple	Jnimplemented							_	_
9Dh		Unimple	Jnimplemented							_	_
9Eh	_	Unimple	mented								
9Fh	ADCON1		_	_	_	_	PCFG2	PCFG1	PCFG0	000	54

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. \\ Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: This bit always reads as a '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 2	r	T									1
100h ⁽¹⁾	INDF	Addressi	ng this loca	tion uses cor	ntents of FSR	to address of	data memory	/ (not a phys	ical register)	0000 0000	19
101h	TMR0	Timer0 M	lodule's Re	gister						xxxx xxxx	27
102h ⁽¹	PCL	Program	Counter's (PC) Least Si	gnificant Byte	e				0000 0000	18
103h (1)	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12
104h (1)	FSR	Indirect D	Data Memor	y Address Po	ointer					xxxx xxxx	19
105h	_	Unimpler	nented							_	_
106h	PORTB	PORTB I	Data Latch	when written:	PORTB pin	s when read				xxxx xxxx	23
107h	—	Unimpler	nented							—	_
108h	—	Unimpler	nented							—	_
109h	_	Unimpler	nented							_	_
10Ah ^(1,2)	PCLATH	_		—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	18
10Bh (1)	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
10Ch	PMDATL	Data Reg	gister Low B	syte	•	•	•		•	xxxx xxxx	35
10Dh	PMADRL	Address	Register Lo	w Byte						xxxx xxxx	35
10Eh	PMDATH	—	_	Data Regist	er High Byte					xx xxxx	35
10Fh	PMADRH			—	Address Re	gister High B	Byte			x xxxx	35
Bank 3											
180h (1)	INDF	Addressi	ng this loca	tion uses cor	ntents of FSR	to address of	data memory	/ (not a phys	ical register)	0000 0000	19
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13
182h ⁽¹⁾	PCL	Program	Counter's (PC) Least S	ignificant By	te				0000 0000	18
183h (1)	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12
184h (1)	FSR	Indirect D	Data Memor	y Address Po	ointer					xxxx xxxx	19
185h		Unimpler	nented							_	_
186h	TRISB	PORTB I	Data Directi	on Register						1111 1111	23
187h	_	Unimpler	nented							—	_
188h	_	Unimpler	nented							_	_
189h		Unimpler	nented							_	_
18Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	18
18Bh (1)	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
18Ch	PMCON1	(3)	—	—	—	—	—	—	RD	10	35
18Dh	—	Unimpler	nented							—	—
18Eh	—	Reserved	d, maintain o	clear						0000 0000	_
18Fh	_	Reserved	d, maintain (clear						0000 0000	_

TABLE 2-1: SP	PECIAL FUNCTION REGISTER SUMMAR	Y (CONTINUED)
---------------	---------------------------------	---------------

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: This bit always reads as a '1'.

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

- n = Value at POR

EGISTER 2-5:	PIR1: PERIPHERAL INTERRUPT FLAG REGISTER 1 (ADDRESS 0Ch)									
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
		ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	d as '0'							
bit 6			nterrupt Flag	bit						
) conversion /D conversio	completed	olete						
bit 5-4	Unimplem	ented: Read	d as '0'							
bit 3	SSPIF: Sy	nchronous S	Serial Port (S	SP) Interrupt	Flag bit					
	from th The co 0 = No SS	ne Interrupt S onditions that P interrupt c	condition has Service Routi t will set this condition has	ine. bit are a tran				Ū		
bit 2	CCP1IF: C	CP1 Interru	pt Flag bit							
		R1 register ca	apture occurr capture occu		cleared in s	oftware)				
		R1 register co	ompare matc compare mat		must be clea	ared in softv	vare)			
	<u>PWM mod</u> Unused in									
bit 1	TMR2IF: T	MR2 to PR2	2 Match Inter	rupt Flag bit						
			ch occurred (natch occurr		ared in softw	/are)				
bit 0	TMR1IF: T	MR1 Overflo	ow Interrupt	Flag bit						
	1 = TMR1	register ove	rflowed (mus not overflow	-	in software))				
	Legend:]		
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		
	1									

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register, shown in Register 6-1. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 6-1 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

6.1 Timer2 Operation

Timer2 can be used as the PWM time-base for PWM mode of the CCP module.

The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

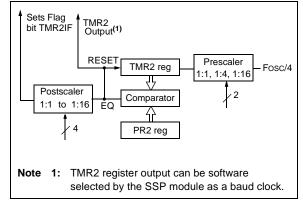
The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

6.2 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMR2 register
- A write to the T2CON register
- Any device RESET (Power-on Reset, MCLR , WDT Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.


6.3 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

6.4 Output of TMR2

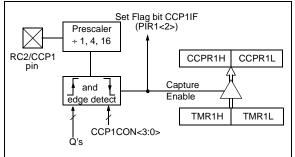
The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate a shift clock.

FIGURE 6-1: TIMER2 BLOCK DIAGRAM

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in Operating mode.

8.1.4 CCP PRESCALER

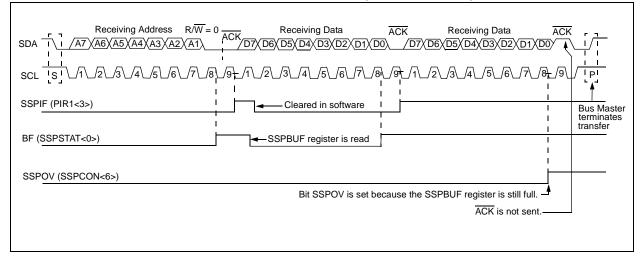
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

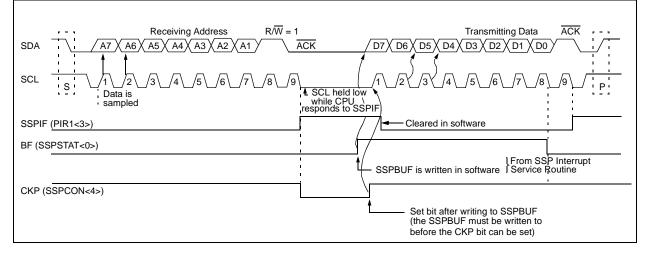
EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	; Turn CCP module off
MOVLW	NEW_CAPT_PS	; Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	; Load CCP1CON with
		; this value

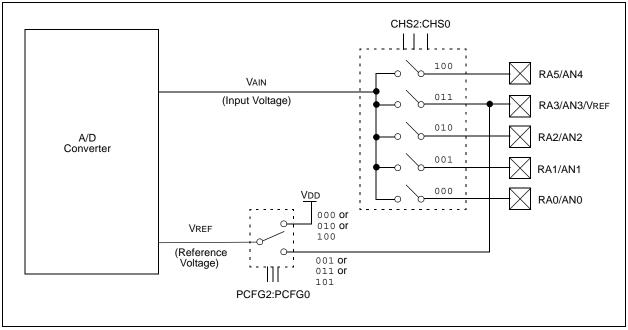
ER 9-2:	SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0			
	bit 7							bit 0			
bit 7	WCOL: W	/rite Collision	Detect bit								
		d in software		en while it is	still transmi	tting the pr	evious word	d (must be			
bit 6		Receive Over	flow Indicate	or bit							
DILO	In SPI mo		now mulcall								
	1 = A new of ove must mode by wr 0 = No ov	v byte is rece erflow, the da read the SSI , the overflo iting to the S verflow	ata in SSPSF PBUF, even i w bit is not s	e SSPBUF re R is lost. Ove if only transm et since each ster.	erflow can on hitting data, to	ly occur in avoid setti	Slave mode	e. The user . In Master			
		e is received lon't care" in		SPBUF regi ode. SSPOV							
bit 5	SSPEN: S	Synchronous	Serial Port E	Enable bit							
	In SPI mode: 1 = Enables serial port and configures SCK, SDO, and SDI as serial port pins 0 = Disables serial port and configures these pins as I/O port pins										
	In l ² C mode:										
	1 = Enabl	es the serial		figures the S ures these pi			rial port pins	5			
	In both mo	odes, when e	enabled, thes	se pins must	be properly o	configured a	as input or o	utput.			
bit 4					,	Ū	•	·			
	CKP: Clock Polarity Select bit In SPI mode:										
	 1 = IDLE state for clock is a high level (Microwire[®] default) 0 = IDLE state for clock is a low level (Microwire alternate) 										
	In I ² C mod SCK relea 1 = Enable	se control									
	0 = Holds	clock low (cl	ock stretch -	used to ens	ure data setu	ıp time)					
bit 3-0	SSPM<3:	0>: Synchro	nous Serial F	Port Mode Se	lect bits						
	0000 = SPI Master mode, clock = FOSC/4										
		0001 = SPI Master mode, clock = Fosc/16									
		PI Master mo			10						
				TMR2 o <u>utp</u> ut CK pin. SS p		abled.					
				CK pin. SS p			an be used	as I/O pin.			
	$0110 = I^2$	C Slave mod	le, 7-bit addr	ess				•			
		C Slave mod									
				ster mode (S ess with STA		D hit intorru	unto onoblo	4			
				lress with STA							
	Legend:										
	R = Read	able bit	W = V	Vritable bit	U = Unim	plemented	bit, read as	'0'			
			vv — v		0 - 01111	plomonicu	, 1000 05	~			

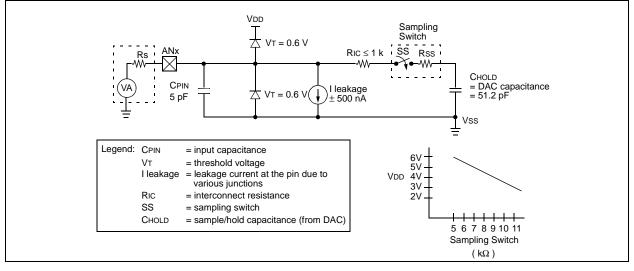

'1' = Bit is set

'0' = Bit is cleared


- n = Value at POR

x = Bit is unknown





10.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 10-2. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current).

The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PICTM Mid-Range MCU Reference Manual, (DS33023). In general, however, given a max of 10 k Ω and at a temperature of 100°C, TACQ will be no more than 16 μ s.

10.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2 Tosc
- 8 Tosc
- 32 Tosc
- Internal RC oscillator (2 6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than 1.6 μ s and not greater than 6.4 μ s.

Table 10-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

10.3 Configuring Analog Port Pins

The ADCON1, and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<2:0> bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current out of the device specification.

10.4 A/D Conversions

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, an acquisition is automatically started on the selected channel. The GO/DONE bit can then be set to start the conversion.

AD Clock	AD Clock Source (TAD)				
Operation	ADCS<1:0>	Max.			
2 Tosc	00	1.25 MHz			
8 Tosc	01	5 MHz			
32 Tosc	10	20 MHz			
RC ^(1, 2)	11	(Note 1)			

TABLE 10-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

Note 1: The RC source has a typical TAD time of 4 µs, but can vary between 2-6 µs.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

11.11.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 11.14 for details on SLEEP mode.

11.11.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>) (see Section 4.0).

11.11.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (see Section 3.2).

11.12 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W, STATUS registers). This will have to be implemented in software, as shown in Example 11-1.

For the PIC16F72 device, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 20h in bank 0, it must also be defined at A0h in bank 1). The register STATUS_TEMP is only defined in bank 0.

EXAMPLE 11-1: SAVING STATUS, W AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		;Insert user code here
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

13.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC MCUs and can be used to develop for this and other PIC microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial ProgrammingTM protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

13.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

13.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

13.11 PICDEM 1 Low Cost PIC Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

13.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution	PIC16F72	_	_	8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16LF72	—	_	8 bits	bit	VREF = VDD = 2.2V
A02	Eabs	Total Absolute Er	ror	_	_	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral Linearity	Error	—	_	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential Linear	—	_	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A05	Efs	Full Scale Error		—	_	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset Error		—	—	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity (No	te 3)	—	guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltag	e	2.5 2.2	_	Vdd+0.3 Vdd+0.3	V V	-40°C to +85°C 0°C to +85°C
A25	VAIN	Analog Input Volt	age	Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended Ir Analog Voltage S		—	_	10.0	kΩ	
A40	IAD	A/D Conversion	PIC16F72	—	180	—	μA	Average current
		Current (VDD)	PIC16LF72	—	90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input current (Note 2)		N/A —		± 5 500	μΑ μΑ	During VAIN acquisition. During A/D Conversion cycle.

TABLE 14-9: A/D CONVERTER CHARACTERISTICS: PIC16F72 (INDUSTRIAL) PIC16LF72 (INDUSTRIAL)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

NOTES:

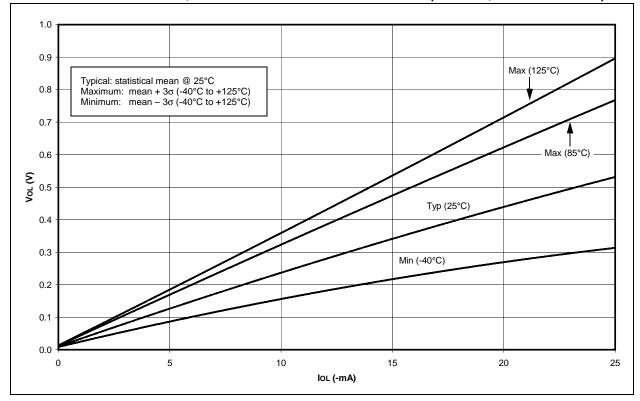
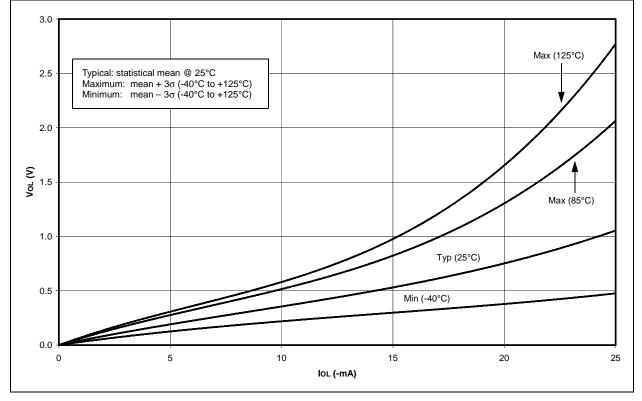
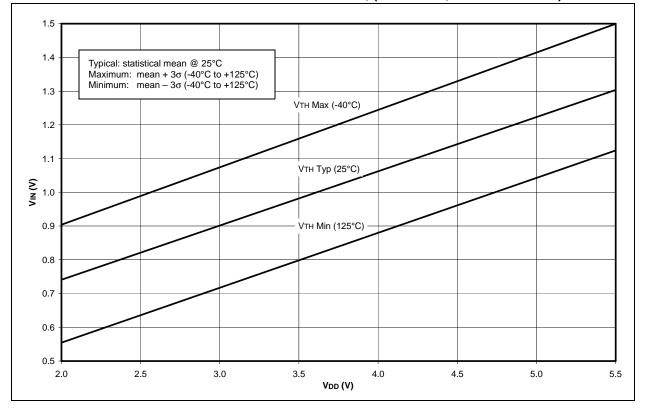
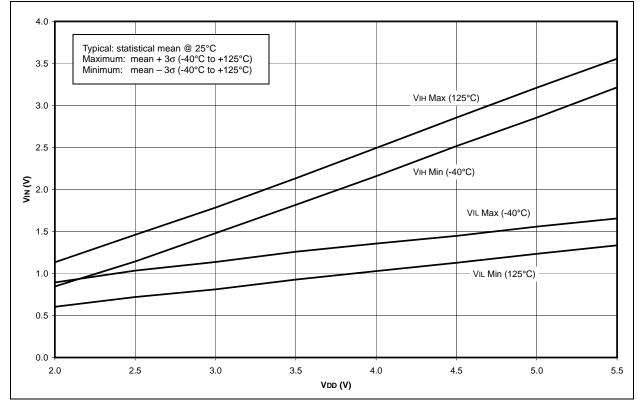
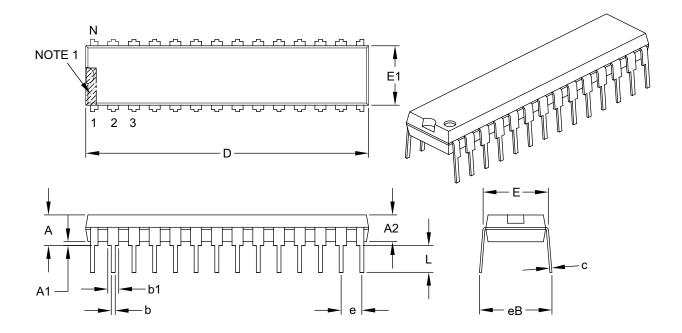




FIGURE 15-17: TYPICAL, MINIMUM AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)



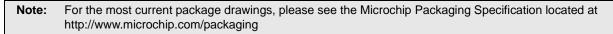

FIGURE 15-19: MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO +125°C)

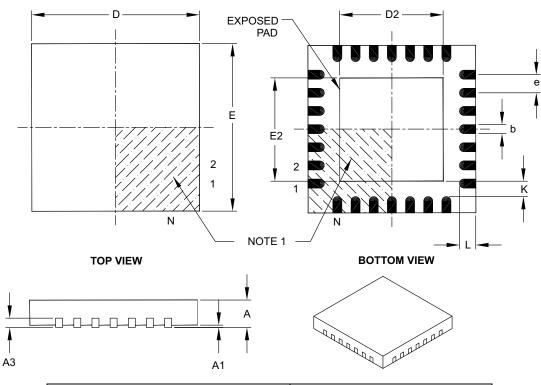
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensior	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ	-	-	.430	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Units		MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	a) PIC16F72-04I/SO = Industrial Temp., SOIC package, normal VDD limits
Device	PIC16F72: Standard VDD range PIC16F72T: (Tape and Reel) PIC16LF72: Extended VDD range	 b) PIC16LF72-20I/SS = Industrial Temp., SSOP package, extended VDD limits c) PIC16F72-20I/ML = Industrial Temp., QFN package, normal VDD limits
Temperature Range	$- = 0^{\circ}C \text{ to } +70^{\circ}C$ I = -40^{\circ}C to +85^{\circ}C	
Package	$\begin{array}{rcl} SO & = & SOIC \\ SS & = & SSOP \\ ML & = & QFN \\ P & = & PDIP \end{array}$	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.