

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f72t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

1.0	Device Overview						
2.0	Memory Organization	7					
3.0	I/O Ports						
4.0	Reading Program Memory	27					
5.0	Timer0 Module						
6.0	Timer1 Module	31					
7.0	Timer2 Module	35					
8.0	Capture/Compare/PWM (CCP) Module	37					
9.0	Synchronous Serial Port (SSP) Module						
10.0	Analog-to-Digital Converter (A/D) Module						
11.0	Special Features of the CPU	59					
12.0	Instruction Set Summary						
13.0	Development Support	81					
14.0	Electrical Characteristics	87					
15.0	DC and AC Characteristics Graphs and Tables1	07					
16.0	Package Marking Information1	17					
Appe	ndix A: Revision History1	23					
	ndix B: Conversion Considerations1						
Index		25					
On-Li	ne Support1	31					
	ader Response						
Produ	ict Identification System 1	33					

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

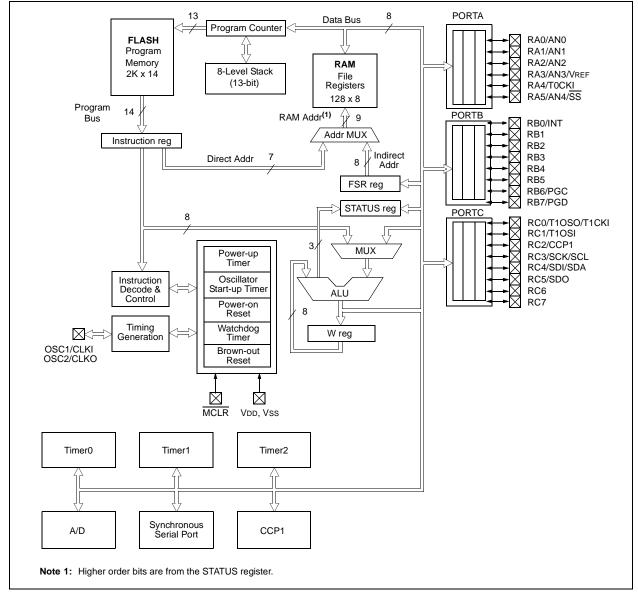
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

This document contains device specific information for the operation of the PIC16F72 device. Additional information may be found in the PIC[™] Mid-Range MCU Reference Manual (DS33023), which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.


The PIC16F72 belongs to the Mid-Range family of the PIC devices. A block diagram of the device is shown in Figure 1-1.

The program memory contains 2K words, which translate to 2048 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 128 bytes.

There are 22 I/O pins that are user configurable on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include:

- External interrupt
- Change on PORTB interrupt
- Timer0 clock input
- Timer1 clock/oscillator
- Capture/Compare/PWM
- A/D converter
- SPI/I²C

Table 1-1 details the pinout of the device with descriptions and details for each pin.

FIGURE 1-1: PIC16F72 BLOCK DIAGRAM

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see Section 12.0, Instruction Set Summary.

Note 1: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1:	STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)
---------------	--

ER 2-1:	STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)											
	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7					•		bit 0				
bit 7	IRP: Regis	ter Bank Sel	ect bit (used f	for indirect ad	ldressing)							
		2, 3 (100h - 1										
), 1 (00h - FF	•									
bit 6-5		-	k Select bits	(used for dire	ct address	ing)						
		3 (180h - 1F										
		2 (100h - 17 1 (80h - FFh										
		0 (00h - 7Fh										
	Each bank	is 128 bytes										
bit 4	TO: Time-o	out bit										
		1 = After power-up, CLRWDT instruction, or SLEEP instruction										
		T time-out oc	curred									
bit 3	PD: Power											
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 											
h # 0	-		SLEEP INSUU	iction								
bit 2	Z : Zero bit											
	 The result of an arithmetic or logic operation is zero The result of an arithmetic or logic operation is not zero 											
bit 1	DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW and SUBWF instructions) ⁽¹⁾											
	1 = A carry-out from the 4th low order bit of the result occurred											
	0 = No car	ry-out from th	ne 4th Iow ord	der bit of the r	result							
bit 0	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW and SUBWF instructions) ^(1,2)											
		1 = A carry-out from the Most Significant bit of the result occurred										
	0 = No car	ry-out from th	ne Most Signi	ficant bit of th	ne result or	ccurred						
	Note 1:		the polarity is tof the secor		subtractio	n is execute	ed by addin	g the two's				
	2:	•	RRF, RLF) inst urce register.		bit is loade	ed with eithe	er the high o	r low order				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

- n = Value at POR

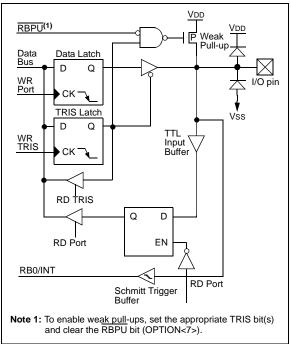
EGISTER 2-5:	PIR1: PERIPHERAL INTERRUPT FLAG REGISTER 1 (ADDRESS 0Ch)									
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
		ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	d as '0'							
bit 6			nterrupt Flag	bit						
) conversion /D conversio	completed	olete						
bit 5-4	Unimplem	ented: Read	d as '0'							
bit 3	SSPIF: Sy	nchronous S	Serial Port (S	SP) Interrupt	Flag bit					
	 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are a transmission/reception has taken place. 0 = No SSP interrupt condition has occurred 									
bit 2	CCP1IF: CCP1 Interrupt Flag bit									
	<u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred									
		R1 register co	ompare matc compare mat		must be clea	ared in softv	vare)			
	<u>PWM mod</u> Unused in									
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit									
	 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred 									
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit									
	1 = TMR1	register ove	rflowed (mus not overflow	-	in software))				
	Legend:]		
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		
	1									

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

3.2 PORTB and the TRISB Register


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: INITIALIZING PORTB

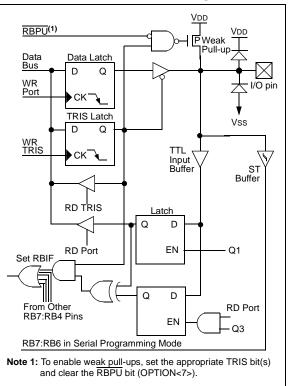
BANKSEL	PORTB	; Select bank for PORTB
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BANKSEL	TRISB	; Select Bank for TRISB
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\mathsf{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'd together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt-on-mismatch feature, together with software configurable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION<6>).

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

5.5 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, that will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.5.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

5.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register. Data in the Timer1 register (TMR1) may become corrupted. Corruption occurs when the timer enable is turned off at the same instant that a ripple carry occurs in the timer module.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[™] Mid-Range MCU

Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

5.6 Timer1 Oscillator

A crystal oscillator circuit is built between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2				
LP	32 kHz	33 pF	33 pF				
	100 kHz	15 pF	15 pF				
	200 kHz	15 pF	15 pF				
These v	alues are for	design guidar	ice only.				
c	Note 1: Higher capacitance increases the stability of oscillator, but also increases the start-up time.						
 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 							

5.7 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/ clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.8 Resetting Timer1 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" signal (CCP1M3:CCP1M0 = 1011), the signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note: The special event triggers from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

PIC16F72

REGISTER 6-1:	TER 6-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)							
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimple	nented: Rea	ad as '0'					
bit 6-3	-			put Postscale	e Select bits			
		1 Postscale						
	0001 = 1:	2 Postscale						
	0010 = 1:	3 Postscale						
	•							
	•							
	1111 = 1 :	16 Postscale	9					
bit 2	TMR2ON	: Timer2 On	bit					
	1 = Timei	2 is on						
	0 = Time	2 is off						
bit 1-0	T2CKPS	I:T2CKPS0:	Timer2 Cloc	k Prescale S	elect bits			
	00 = Pre:	scaler is 1						
		scaler is 4						
	1x = Pres	scaler is 16						
	Legend:							
	R = Read	able bit	W = V	Vritable bit	U = Unim	plemented	bit, read as	'0'

TABLE 6-1:	REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

- n = Value at POR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all c RES	other
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1		ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	_	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
11h	TMR2	Timer	Timer2 Module Register							0000	0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer	2 Period Re	gister						1111	1111	1111	1111

'1' = Bit is set

'0' = Bit is cleared

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

x = Bit is unknown

7.3 Reading the FLASH Program Memory

To read a program memory location, the user must write two bytes of the address to the PMADRL and PMADRH registers and then set control bit, RD (PMCON1<0>). Once the read control bit is set, the program memory FLASH controller will use the second instruction cycle after to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle in the PMDATL and PMDATH registers; therefore, it can be read as two bytes in the following instructions. PMDATL and PMDATH registers will hold this value until another read, or until it is written to by the user (during a write operation).

7.4 Operation During Code Protect

The FLASH program memory control can read anywhere within the program memory, whether or not the program memory is code protected.

This does not compromise the code, because there is no way to rewrite a portion of the program memory, or leave contents of a program memory read in a register while changing modes.

EXAMPLE 7-1: FLASH PROGRAM READ

	PMADRH	; Select Bank for PMADRH
MOVLW	MS_PROG_EE_ADDR	i
MOVWF	PMADRH	; MS Byte of Program Address to read
MOVLW	LS_PROG_EE_ADDR	;
MOVWF	PMADRL	; LS Byte of Program Address to read
BANKSEL	PMCON1	; Select Bank for PMCON1
BSF	PMCON1, RD	; EE Read
		;
NOP		; Any instructions here are ignored as program
NOP		; memory is read in second cycle after BSF PMCON1,RD
		;
		; First instruction after BSF PMCON1, RD executes normally
BANKSEL	PMDATL	; Select Bank for PMDATL
MOVF	PMDATL, W	; W = LS Byte of Program PMDATL
MOVF	PMDATH, W	; W = MS Byte of Program PMDATL

TABLE 7-1: REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value all o RES	ther
10Dh	PMADRL	Address	Address Register Low Byte							xxxx xxxx	uuuu	uuuu
10Fh	PMADRH		—	—	 Address Register High Byte 					xxxx xxxx	uuuu	uuuu
10Ch	PMDATL	Data Re	gister Lo	ow Byte						xxxx xxxx	uuuu	uuuu
10Eh	PMDATH		—	Data Re	Register High Byte					xxxx xxxx	uuuu	uuuu
18Ch	PMCON1	(1)		—		_	_	—	RD	10	1	0

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'. Shaded cells are not used during FLASH access.

Note 1: This bit always reads as a '1'.

Maximum PWM resolution (bits) for a given PWM frequency is calculated using Equation 8-3.

EQUATION 8-3: PWM MAX RESOLUTION

PWM Maximum Resolution = $\frac{\log{(\frac{Fosc}{FpWM})}}{\log(2)}$ bits

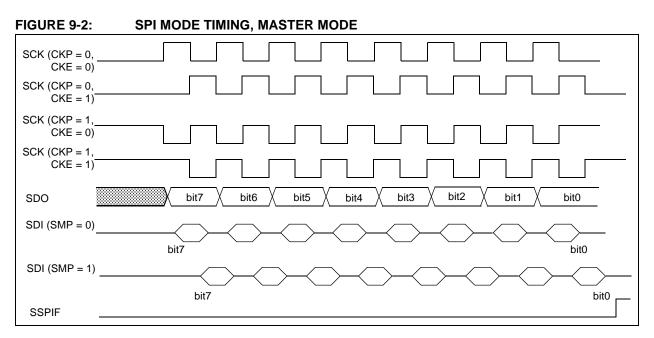
Note:	If the PWM duty cycle value is longer than
	the PWM period, the CCP1 pin will not be
	cleared.

For a sample PWM period and duty cycle calculation, see the PIC[™] Mid-Range MCU Reference Manual (DS33023).

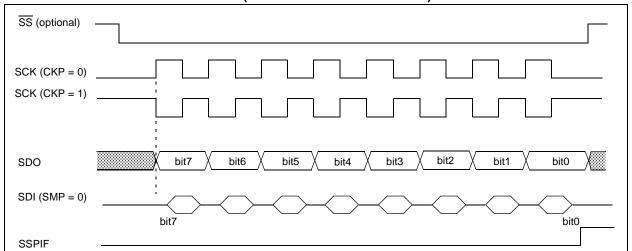
8.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

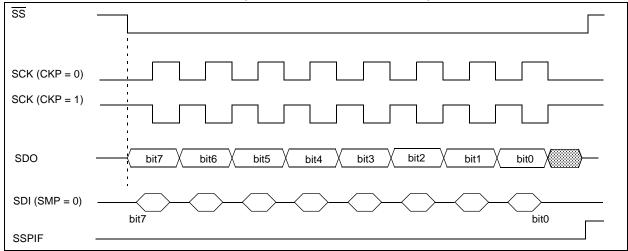
- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.


TABLE 8-3 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

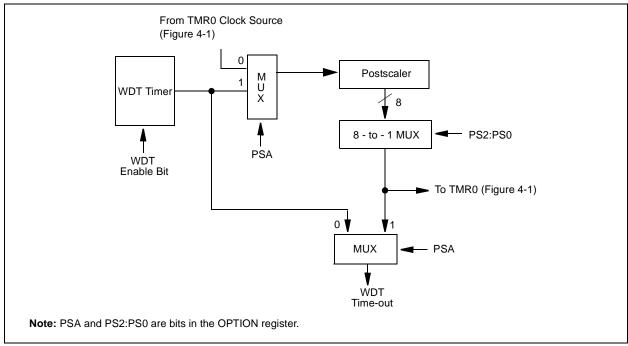

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR		e on ther ETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
87h	TRISC	PORT	PORTC Data Direction Register								1111	1111	1111
11h	TMR2	Timer2	Module Re	gister						0000	0000	0000	0000
92h	PR2	Timer2	Module Pe	riod Registe	r					1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Captur	Capture/Compare/PWM Register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)							xxxx	xxxx	uuuu	uuuu	
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

© 2007 Microchip Technology Inc.

11.13 Watchdog Timer (WDT)


The Watchdog Timer is a free running, on-chip RC oscillator that does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTEN (see Section 11.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 11-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 11-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BOREN ⁽¹⁾		CP	PWRTEN ⁽¹⁾	WDTEN	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 11-1 for operation of these bits.

14.1 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial)

PIC16L (Indus			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F72 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym	Characteristic	Min Typ† Max Units Conditions							
	Vdd	Supply Voltage								
D001		PIC16LF72	2.0 2.5 2.2		5.5 5.5 5.5	V V V	A/D not used, -40°C to +85°C A/D in use, -40°C to +85°C A/D in use, 0°C to +85°C			
D001 D001A		PIC16F72	4.0 Vbor*	_	5.5 5.5	V V	All configurations BOR enabled (Note 7)			
D002*	Vdr	RAM Data Retention Voltage (Note 1)		1.5	—	V				
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details			
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V	BOREN bit in configuration word enabled			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

14.1 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial) (Continued)

PIC16LI (Indus	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC16F72 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym	Characteristic	Min	Typ† Max Units Conditions						
	Idd	Supply Current (Notes 2, 5	5)							
D010		PIC16LF72	_	0.4	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			—	25	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D010		PIC16F72	-	0.9	4	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			—	5.2	15	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D015*	Δ Ibor	Brown-out Reset Current (Note 6)		25	200	μA	BOR enabled, VDD = 5.0V			
	IPD	Power-down Current (Note	es 3, 5)							
D020 D021		PIC16LF72	_	2.0 0.1	30 5	μΑ μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, -40°C to +85°C			
D020 D021		PIC16F72	—	5.0 0.1	42 19	μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D023*	Δ Ibor	Brown-out Reset Current (Note 6)		25	200	μA	BOR enabled, VDD = 5.0V			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

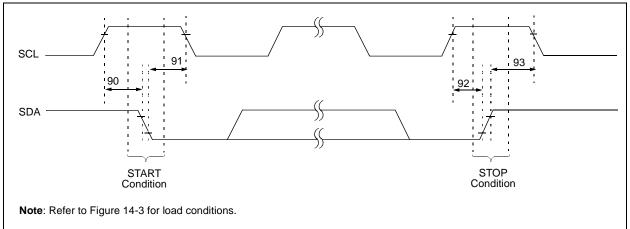
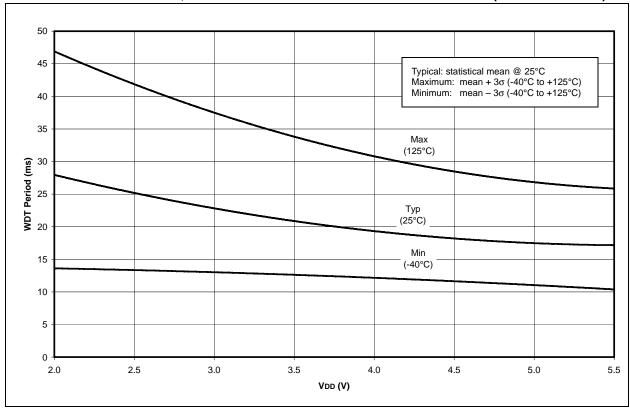
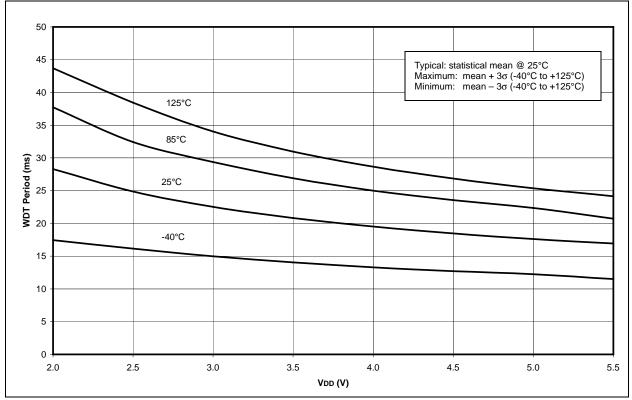

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү		—	ns		
71*	TscH	SCK input high time (Slave mod	e)	TCY + 20		—	ns	
72*	TscL	SCK input low time (Slave mode	e)	TCY + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to S	SCK edge	100		_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to S	100	_	_	ns		
75*	TdoR	SDO data output rise time	Standard(F) Extended(LF)	_	10 25	25 50	ns ns	
76*	TdoF	SDO data output fall time	—	10	25	ns		
77*	TssH2doZ	SS↑ to SDO output hi-impedanc	e	10	_	50	ns	
78*	TscR	SCK output rise time (Master mode)	Standard(F) Extended(LF)		10 25	25 50	ns ns	
79*	TscF	SCK output fall time (Master mo	de)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	Standard(F) Extended(LF)	_		50 145	ns ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK e	Тсү	_	—	ns		
82*	TssL2doV	SDO data output valid after SS↓	_	_	50	ns		
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40		—	ns		

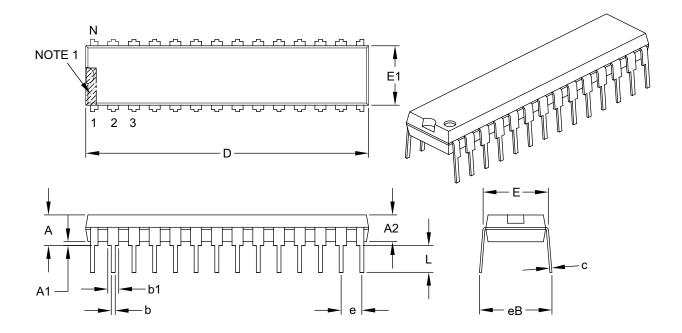
TABLE 14-6: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 14-14: I²C BUS START/STOP BITS TIMING


FIGURE 15-13: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES		
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	54
CCPCON1 (Capture/Compare/PWM Control 1)	37
Initialization Conditions (table)	
INTCON (Interrupt Control)	
OPTION	
PCON (Power Control)	
PIE1 (Peripheral Interrupt Enable 1)	
PIR1 (Peripheral Interrupt Flag 1)	
PMCON1 (Program Memory Control 1)	
SSPCON (Sync Serial Port Control)	
SSPSTAT (Synchronous Serial Port Status)	44
STATUS	12
Summary	
T1CON (Timer1 Control)	
RESET	
Brown-out Reset (BOR). See Brown-out Reset (BOR)	
MCLR RESET. See MCLR	
Power-on Reset (POR). See Power-on Reset (POR)	
RESET Conditions for All Registers	
RESET Conditions for PCON Register	65
RESET Conditions for Program Counter	
RESET Conditions for STATUS Register	65
WDT Reset. See Watchdog Timer (WDT)	
Revision History12	23
RP0, RP1 bit	
	••
S	
S	11
Sales and Support1	33
Slave Mode	
SCL	-
SDA	48
SLEEP	71
SMP	44
Software Simulator (MPLAB SIM)	82
Special Event Trigger	
Special Features of the CPU	
Special Function Registers	
PMADRH	77
PMADRL	
PMCON1	
PMDATH	
PMDATL	27
SPI	
Associated Registers	46
SPI Clock Edge Select bit, CKE	
SPI Data Input Sample Phase Select bit, SMP	
SPI Mode	•••
Serial Clock	<u>4</u> 2
Serial Data In	-
	+0

	Serial Data In	
	Serial Data Out	
	Slave Select	
SSP		
	ACK	
	Addressing	
	BF bit	
	I ² C Mode Operation	
	R/W bit	
	Reception	
	SCL Clock Input	
	SSPOV bit	
	Transmission	-

SSPADD Register	. 10
SSPEN	. 45
SSPIF	. 16
SSPM3:SSPM0	. 45
SSPOV	
SSPSTAT Register	
Stack	
Overflows	
Underflow	. 19
START bit, S	
STATUS Register	
DC bit	. 12
IRP bit	. 12
PD bit	. 62
TO bit 12,	, 62
STOP bit, P	. 44
Synchronous Serial Port (SSP)	
Overview	. 43
SPI Mode	. 43
Synchronous Serial Port Enable bit, SSPEN	. 45
Synchronous Serial Port Interrupt	. 16
Synchronous Serial Port Mode Select bits,	
SSPM3:SSPM0	. 45

Т

T2CKPS0 bit	. 36	
T2CKPS1 bit		
T2CON (Timer2 Control)	. 36	
Tad		
Timer0	. 29	
Clock Source Edge Select (T0SE bit)	. 13	
Clock Source Select (T0CS bit)		
External Clock	. 30	
Interrupt	. 29	
Operation	. 29	
Overflow Enable (TMR0IE bit)	. 14	
Overflow Flag (TMR0IF bit)		
Overflow Interrupt		
Prescaler	. 30	
ТОСКІ	. 30	
Timer1		
Associated Registers	. 34	
Asynchronous Counter Mode	. 33	
Capacitor Selection		
Counter Operation	. 32	
Interrupt	. 33	
Operation in Timer Mode	. 32	
Oscillator	. 33	
Prescaler	. 34	
Resetting TMR1H, TMR1L Register Pair	. 34	
Resetting Using a CCP Trigger Output		
Synchronized Counter Mode		
Timer2	. 35	
Interrupt	. 35	
Operation	. 35	
Output	. 35	
Prescaler, Postscaler	. 35	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent			
RE:	Reader Response				
From	n: Name				
	Company				
	Telephone: ()	FAX: ()			
Appli	ication (optional):				
Wou	ld you like a reply?YN				
Devi	ce: DSTEMP	Literature Number: DS00000A			
Ques	stions:				
1. V	1. What are the best features of this document?				
2. How does this document meet your hardware and software development needs?					
_					
_					
3. Do you find the organization of this document easy to follow? If not, why?					
_					
_					
4. V	What additions to the document do y	you think would enhance the structure and subject?			
_					
- -					
5. V	what deletions from the document c	ould be made without affecting the overall usefulness?			
-					
6. I	. Is there any incorrect or misleading information (what and where)?				
0. 1	s there any monteet of misleading i				
_					
- 7. H	How would you improve this docume	ent?			
_					
-					