

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

20000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f72t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Reference Manual Features	PIC16F72
Operating Frequency	DC - 20 MHz
RESETS and (Delays)	POR, BOR, (PWRT, OST)
FLASH Program Memory - (14-bit words, 1000 E/W cycles)	2K
Data Memory - RAM (8-bit bytes)	128
Interrupts	8
I/O Ports	PORTA, PORTB, PORTC
Timers	Timer0, Timer1, Timer2
Capture/Compare/PWM Modules	1
Serial Communications	SSP
8-bit A/D Converter	5 channels
Instruction Set (No. of Instructions)	35

TABLE 1-1: PIC16F72 PINOUT DESCRIPTION

OSC1/CLKI OSC2/CLKO		Pin#	I/O/P Type	Buffer Type	Description	
OSC2/CLKO	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.	
	10	7	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, the OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.	
MCLR/Vpp	1	26	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active low RESET to the device.	
					PORTA is a bi-directional I/O port.	
RA0/AN0	2	27	I/O	TTL	RA0 can also be analog input0.	
RA1/AN1	3	28	I/O	TTL	RA1 can also be analog input1.	
RA2/AN2	4	1	I/O	TTL	RA2 can also be analog input2.	
RA3/AN3/VREF	5	2	I/O	TTL	RA3 can also be analog input3 or analog reference voltage.	
RA4/T0CKI	6	3	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.	
RA5/AN4/SS	7	4	I/O	TTL	RA5 can also be analog input4 or the slave select for the synchronous serial port.	
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.	
RB0/INT	21	18	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.	
RB1	22	19	I/O	TTL		
RB2	23	20	I/O	TTL		
RB3	24	21	I/O	TTL		
RB4	25	22	I/O	TTL	Interrupt-on-change pin.	
RB5	26	23	I/O	TTL	Interrupt-on-change pin.	
RB6/PGC	27	24	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming clock.	
RB7/PGD	28	25	I/O	TTL/ST ⁽²⁾	Interrupt-on-change pin. Serial programming data.	
					PORTC is a bi-directional I/O port.	
RC0/T1OSO/ T1CKI	11	8	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input	
RC1/T1OSI	12	9	I/O	ST	RC1 can also be the Timer1 oscillator input.	
RC2/CCP1	13	10	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.	
RC3/SCK/SCL	14	11	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.	
RC4/SDI/SDA	15	12	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).	
RC5/SDO	16	13	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).	
RC6	17	14	I/O	ST		
RC7	18	15	I/O	ST		
Vss	8, 19	5, 16	Р	_	Ground reference for logic and I/O pins.	
Vdd	20	17	Р	_	Positive supply for logic and I/O pins.	

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

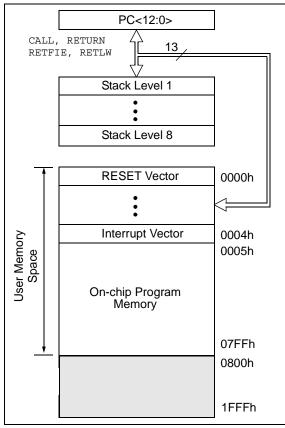
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC16F72 device. These are the program memory and the data memory. Each block has separate buses so that concurrent access can occur. Program memory and data memory are explained in this section. Program memory can be read internally by the user code (see Section 7.0).

The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.


Additional information on device memory may be found in the PIC[™] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

PIC16F72 devices have a 13-bit program counter capable of addressing a 8K x 14 program memory space. The address range for this program memory is 0000h - 07FFh. Accessing a location above the physically implemented address will cause a wraparound.

The RESET Vector is at 0000h and the Interrupt Vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

2.2 Data Memory Organization

The Data Memory is partitioned into multiple banks that contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM.

All implemented banks contain SFRs. Some "high use" SFRs from one bank may be mirrored in another bank, for code reduction and quicker access (e.g., the STATUS register is in Banks 0 - 3).

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register FSR (see Section 2.5).

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2	bit 2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit 4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/AN4/SS	bit 5	TTL	Input/output or analog input or slave select input for synchronous serial port.

TABLE 3-1:PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

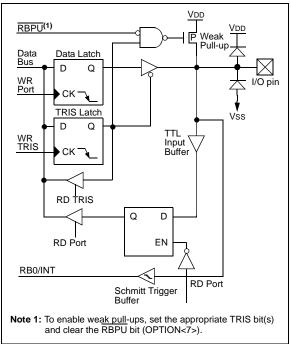
TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA I	Data Dire	ction Reg	gister			11 1111	11 1111
9Fh	ADCON1	_	—	—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D Port Configuration Control bits (PCFG2:PCFG0) in the A/D Control Register (ADCON1) must be set to one of the following configurations: 100, 101, 11x.

3.2 PORTB and the TRISB Register


PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: INITIALIZING PORTB

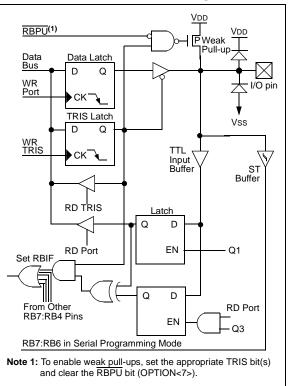
BANKSEL	PORTB	; Select bank for PORTB
CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
BANKSEL	TRISB	; Select Bank for TRISB
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'd together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt-on-mismatch feature, together with software configurable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, *"Implementing Wake-Up on Key Stroke"* (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION<6>).

FIGURE 3-4: BLOCK DIAGRAM OF RB7:RB4 PINS

8.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a:

- 16-bit capture register
- 16-bit compare register
- PWM master/slave duty cycle register.

Table 8-1 shows the timer resources of the CCP Module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

TABLE 8-1:CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 8-1: CCPCON1: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

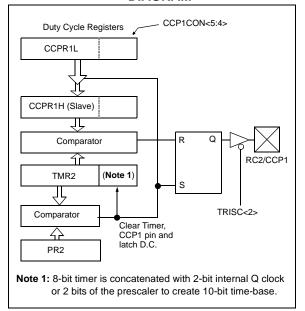
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCPxX:CCPxY: PWM Least Significant bits Capture mode:

	Capture mode:
	Unused
	Compare mode:
	Unused
	PWM mode:
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0	CCPxM3:CCPxM0: CCPx Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode, set output on match (CCPxIF bit is set)
	1001 = Compare mode, clear output on match (CCPxIF bit is set)
	1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set,
	CCPx pin is unaffected)
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)
	11xx = PWM mode
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

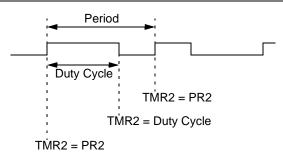

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 8.3.3.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 8-4: PWM OUTPUT

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the formula in Equation 8-1.

EQUATION 8-1: PWM PERIOD

 $PWM period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 6.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. Equation 8-2 is used to calculate the PWM duty cycle in time.

EQUATION 8-2: PWM DUTY CYCLE

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

STER 9-1:	SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (ADDRESS 94h)								
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
	SMP	CKE	D/A	Р	S	R/W	UA	BF	
	bit 7							bit 0	
bit 7	SMP: SPI Data Input Sample Phase bits SPI Master mode:								
	1 = Input da	ata sampled ata sampled		ata output tim f data output		owire [®])			
			/hen SPI is	used in Slave	e mode				
	This bit mu	st be mainta	ined clear						
bit 6	CKE: SPI (Clock Edge S	Select bits (F	Figure 9-2, Fi	gure 9-3, a	nd Figure 9-4	4)		
	<u>SPI mode, CKP = 0:</u> 1 = Data transmitted on rising edge of SCK (Microwire alternate) 0 = Data transmitted on falling edge of SCK								
	<u>SPI mode, CKP = 1:</u> 1 = Data transmitted on falling edge of SCK (Microwire default) 0 = Data transmitted on rising edge of SCK <u>I²C mode:</u>								
6.14 F		st be mainta		- 1- 3					
bit 5	D/A: Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data								
				eived or trans					
bit 4	P: STOP bit (I ² C mode only) – This bit is cleared when the SSP module is disabled, or when the START bit is detected last. SSPEN is cleared.								
	 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last 								
bit 3	S: START bit (I ² C mode only) – This bit is cleared when the SSP module is disabled, or when the STOP bit is detected last. SSPEN is cleared.								
	 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last 								
bit 2	R/W : Read/Write Information bit (I ² C mode only) – This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or ACK bit.								
	1 = Read 0 = Write								
bit 1	UA: Update	e Address bi	t (10-bit I ² C	mode only)					
		es that the us s does not n			address in	the SSPADD	register		
bit 0	BF: Buffer	Full Status b	it						
	<u>Receive (SPI and I²C modes):</u> 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty								
	-			- is empty					
	1 = Transm	² C mode onl <u>i</u> it in progres it complete,	s, SSPBUF						
	Legend:								
	R = Readal	ole bit	W = W	/ritable bit	U = Unir	nplemented b	oit, read as	'0'	
	- n = Value	at POR	<u>'1' = B</u>	it is set	'0' = Bit	is cleared	x = Bit is u	Inknown	

In 10-bit Address mode, two address bytes need to be received by the slave device. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

9.3.1.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then a no Acknowledge (ACK) pulse is given. An overflow condition is indicated if either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

9.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master device must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master device by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-7).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave device, the slave logic is reset (resets SSPSTAT register) and the slave device then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/SCK/SCL should be enabled by setting bit CKP.

TABLE 9-2:	DATA TRANSFER RECEIVED BYTE ACTIO	NS
IADLE 3-Z.	DATA TRANSFER RECEIVED BITE ACTIO	UND -

Status Bits as Data Transfer is Received				Set bit SSPIF
BF	SSPOV	$SSPSR \rightarrow SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

PIC16F72

REGISTER 10-2: ADCON1: A/D CONTROL REGISTER 1 (ADDRESS 9Fh)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-3 Unimplemented: Read as '0'

bit 2-0

PCFG<2:0>: A/D Port Configuration Control bits

PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	VREF
000	Α	А	Α	А	А	Vdd
001	Α	А	Α	А	Vref	RA3
010	Α	А	Α	А	А	Vdd
011	Α	А	Α	А	Vref	RA3
100	Α	Α	D	D	А	Vdd
101	Α	А	D	D	Vref	RA3
11x	D	D	D	D	D	Vdd

A = Analog input

D = Digital I/O

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0<2>) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 10-1.

The value in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 10.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared

OR

- Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

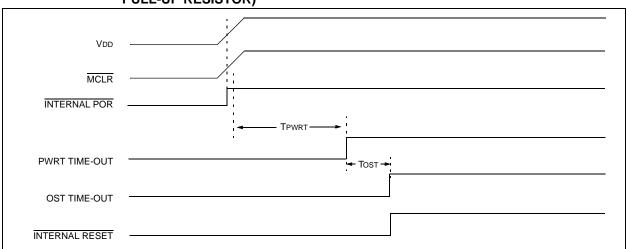


FIGURE 11-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK): CASE 1

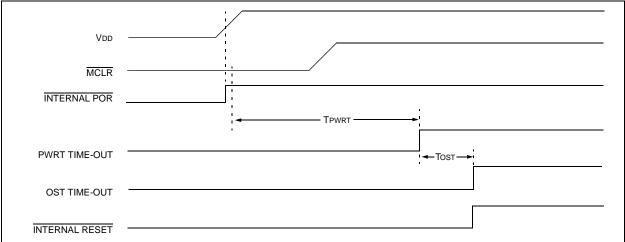
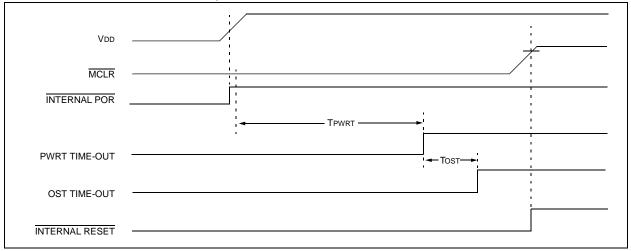



FIGURE 11-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK): CASE 2

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' = '0', the next instruction is executed. If bit 'b' = '1', then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRF	Clear f		
Syntax:	[label] CLRF f		
Operands:	$0 \le f \le 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' = '1', the next instruction is executed. If bit 'b' in register 'f' = '0', the next instruction is discarded, and a NOP is executed instead, making this a 2 TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC) + 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \end{array}$
Status Affected:	None		$1 \rightarrow PD$
Description:	Call Subroutine. First, return	Status Affected:	TO, PD
	address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

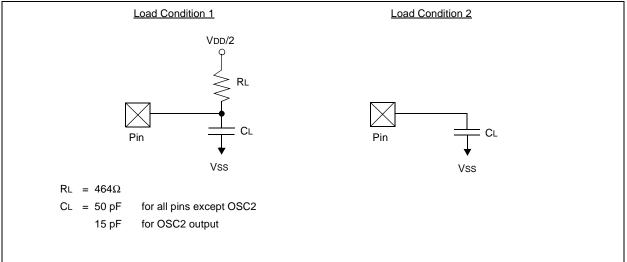
13.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

13.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

13.15 KEELOQ Evaluation and Programming Tools


KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

14.3 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

	0	•
1. TppS2ppS		(I ² C specifications only)
2. TppS		(I ² C specifications only)
Frequency	Т	Time
CCP1	OSC	OSC1
CLKO	rd	RD
CS	rw	RD or WR
SDI	SC	SCK
SDO	SS	SS
Data in	tO	TOCKI
I/O port	t1	T1CKI
MCLR	wr	WR
se letters and their meanings:		
Fall	Р	Period
High	R	Rise
Invalid (Hi-impedance)	V	Valid
Low	Z	Hi-impedance
output access	High	High
Bus free	Low	Low
² C specifications only)		
Hold	SU	Setup
DATA input hold	STO	STOP condition
START condition		
	Frequency se letters (pp) and their meanings: CCP1 CLKO CS SDI SDO Data in I/O port MCLR se letters and their meanings: Fall High Invalid (Hi-impedance) Low output access Bus free ² C specifications only) Hold DATA input hold	4. Ts Frequency T se letters (pp) and their meanings: Osc CCP1 osc CLKO rd CS rw SDI sc SDO ss Data in t0 I/O port t1 MCLR wr se letters and their meanings: P Fall P High R Invalid (Hi-impedance) V Low Z output access High Bus free Low ² C specifications only) SU Hold SU DATA input hold STO

FIGURE 14-3: LOAD CONDITIONS

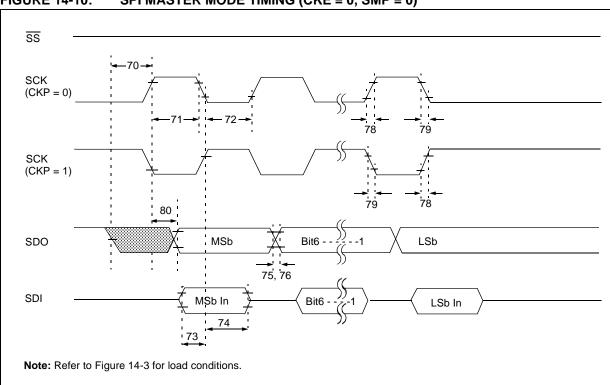
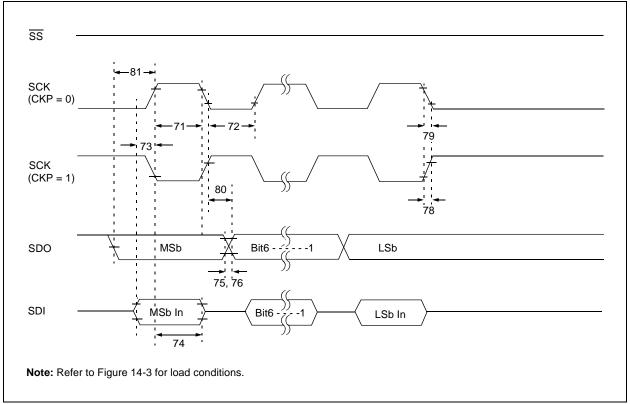
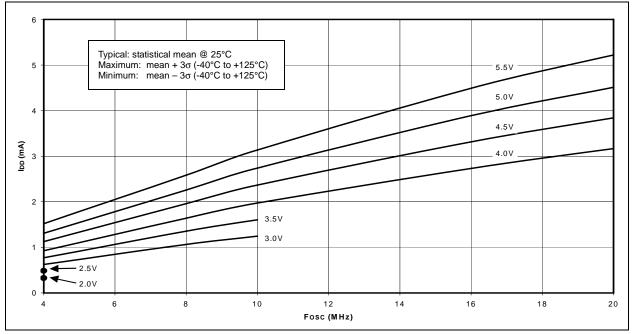



FIGURE 14-10: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



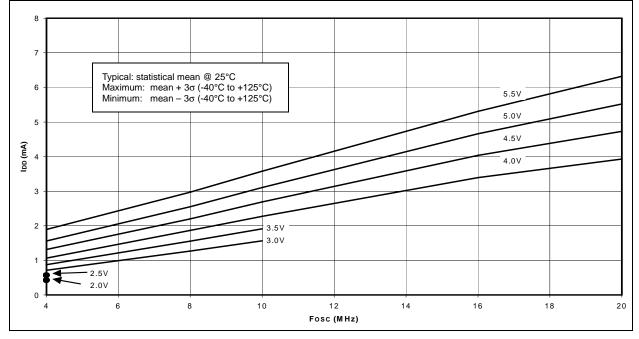
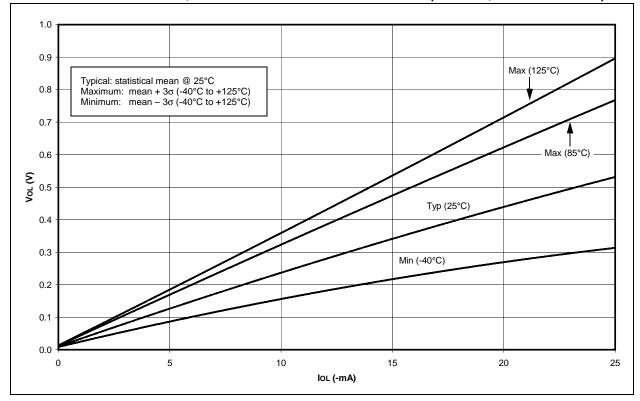
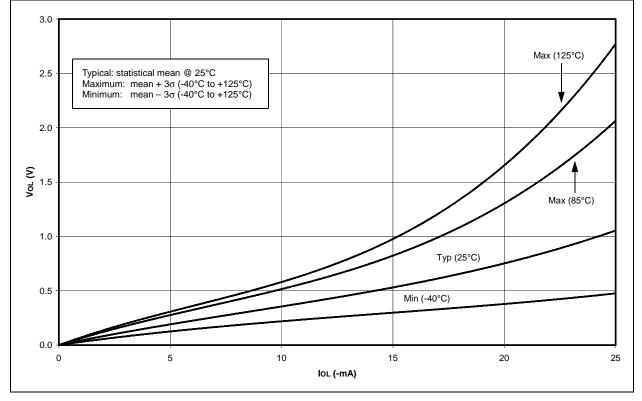
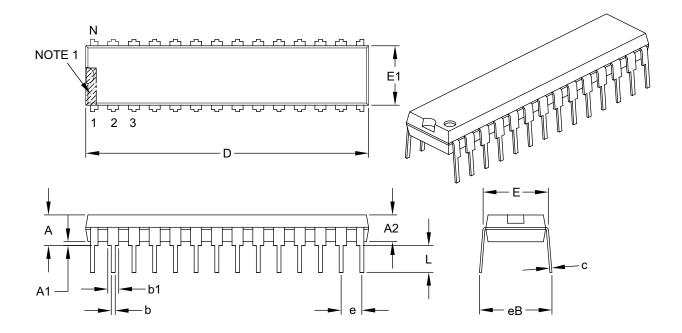


FIGURE 15-1: TYPICAL IDD vs. Fosc OVER VDD (HS MODE)

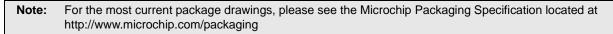

FIGURE 15-17: TYPICAL, MINIMUM AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)

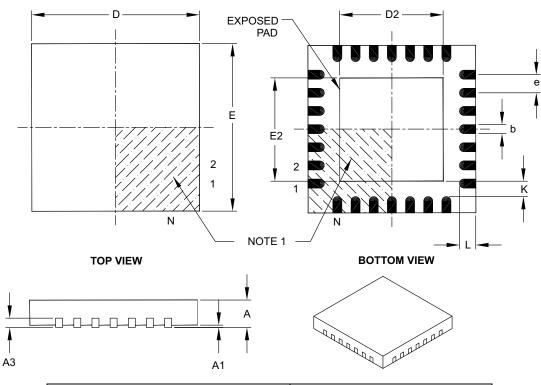
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	.100 BSC			
Top to Seating Plane	Α	-	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ	-	-	.430	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

Timing Diagrams
A/D Conversion105
Brown-out Reset96
Capture/Compare/PWM (CCP1)98
CLKO and I/O95
External Clock94
I ² C Bus Data102
I ² C Bus START/STOP bits101
I ² C Reception (7-bit Address) 50
I ² C Transmission (7-bit Address)
RESET, Watchdog Timer, Oscillator Start-up Timer
and Power-up Timer96
Slow Rise Time (MCLR Tied to VDD Through
RC Network)68
SPI Master Mode 47
SPI Master Mode (CKE = 0, SMP = 0)
SPI Master Mode (CKE = 1, SMP = 1)
SPI Slave Mode (CKE = 0) 47, 100
SPI Slave Mode (CKE = 1)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through Pull-up Resistor)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 1
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 2
Timer0 and Timer1 External Clock
Wake-up from SLEEP through Interrupt
Timing Parameter Symbology93
TMR1H Register9
TMR1L Register9
TMR2 Register9
TMR2ON bit
TOUTPS0 bit
TOUTPS1 bit
TOUTPS2 bit
TOUTPS3 bit
TRISA Register 10, 21
TRISB Register 10, 23
TRISC Register 10, 25

U

0	
UA	44
Update Address bit, UA	44
W	
Wake-up from SLEEP	59, 71
Interrupts	
MCLR Reset	66
WDT Reset	
Watchdog Timer (WDT)	59, 70
Associated Registers	
Enable (WDTEN bit)	
Postscaler. See Postscaler, WDT	
Programming Considerations	
RC Oscillator	
Time-out Period	
WDT Reset, Normal Operation	
WDT Reset, SLEEP	
WCOL	, ,
Write Collision Detect bit, WCOL	
WWW, On-Line Support	