

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f72t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 2-3 shows the four situations for the loading of the PC.

- Example 1 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH).
- Example 2 shows how the PC is loaded during a GOTO instruction (PCLATH<4:3> \rightarrow PCH).
- · Example 3 shows how the PC is loaded during a CALL instruction (PCLATH<4:3> \rightarrow PCH), with the PC loaded (PUSH'd) onto the Top-of-Stack.
- · Example 4 shows how the PC is loaded during one of the return instructions, where the PC is loaded (POP'd) from the Top-of-Stack.

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2	bit 2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit 4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/AN4/SS	bit 5	TTL	Input/output or analog input or slave select input for synchronous serial port.

TABLE 3-1:PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
05h	PORTA	—		RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA I	Data Dire	ection Reg	gister			11 1111	11 1111
9Fh	ADCON1	_	_	—	—	—	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D Port Configuration Control bits (PCFG2:PCFG0) in the A/D Control Register (ADCON1) must be set to one of the following configurations: 100, 101, 11x.

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from CCP module trigger

Timer1 has a control register, shown in Register 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

5.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- · As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "RESET input". This RESET can be generated by the CCP module (Section 8.0).

REGISTER 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

	••••••••••••••••••								
bit 5-4	T1CKPS1:T1CKPS0: T	mer1 Input Clock Prese	cale Select bits						
	11 = 1:8 Prescale value	11 = 1:8 Prescale value							
	10 = 1:4 Prescale value	10 = 1:4 Prescale value							
	01 = 1.2 Prescale value								
hit 3	TIOSCEN: Timer1 Osci	llator Enable Control bi	ŧ						
DIL 5	1 – Oscillator is opoblas		L						
	1 = Oscillator is enabled0 = Oscillator is shut-off	1 = Oscillator is enabled0 = Oscillator is shut-off (The oscillator inverter is turned off to eliminate power drain.)							
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit								
	TMR1CS = 1:								
	1 = Do not synchronize external clock input								
	0 = Synchronize external clock input								
	<u>TMR1CS = 0:</u>								
	This bit is ignored. Time	r1 uses the internal cloo	ck when TMR1CS = '0						
bit 1	TMR1CS: Timer1 Clock Source Select bit								
	1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge)								
	0 = Internal clock (Fosc/4)								
bit 0	TMR1ON: Timer1 On bit								
	1 = Enables Timer1								
	0 = Stops Timer1								
	Legend:	Legend:							
	R = Readable bit	W = Writable bit	U = Unimplemented	d bit, read as '0'					
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

7.0 READING PROGRAM MEMORY

The FLASH Program Memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit wide numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory:

- PMCON1
- PMDATL
- PMDATH
- PMADRL
- PMADRH

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATL registers form a two-byte word, which holds the 14-bit data for reads. The PMADRH:PMADRL registers form a two-byte word, which holds the 13-bit address of the FLASH location being accessed. This device has up to 2K words of program FLASH, with an address range from 0h to 07FFh. The unused upper bits PMDATH<7:6> and PMADRH<7:5> are not implemented and read as zeros.

R = Readable bit

'1' = Bit is set

7.1 PMADR

The address registers can address up to a maximum of 8K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the PMADRH register and the LSByte is written to the PMADRL register. The upper MSbits of PMADRH must always be clear.

7.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit RD initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 7-1: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)

					•		
R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
reserved		—	—	—	—	—	RD
oit 7							bit 0
Reserved:	Read as '1'						
Unimplem	ented: Read	d as '0'					
RD: Read	Control bit						
1 = Initiates in softv	s a FLASH ro vare.	ead, RD is cl	eared in hard	ware. The R	D bit can or	nly be set (no	ot cleared)
0 = Does n	ot initiate a	FLASH read					
Legend:							
W = Writab	ole bit	U = 1	Unimplement	ed bit. read	as '0'		

S = Settable bit

'0' = Bit is cleared

bit 7 bit 6-1 bit 0

-n = Value at POR

x = Bit is unknown

8.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a:

- 16-bit capture register
- 16-bit compare register
- PWM master/slave duty cycle register.

Table 8-1 shows the timer resources of the CCP Module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

TABLE 8-1:CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 8-1: CCPCON1: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCPxX:CCPxY: PWM Least Significant bits Capture mode:

	Capture mode:
	Unused
	Compare mode:
	Unused
	PWM mode:
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0	CCPxM3:CCPxM0: CCPx Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode, set output on match (CCPxIF bit is set)
	1001 = Compare mode, clear output on match (CCPxIF bit is set)
	1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set,
	CCPx pin is unaffected)
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)
	11xx = PWM mode
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Maximum PWM resolution (bits) for a given PWM frequency is calculated using Equation 8-3.

EQUATION 8-3: PWM MAX RESOLUTION

PWM Maximum Resolution = $\frac{\log{(\frac{Fosc}{FpWM})}}{\log(2)}$ bits

Note:	If the PWM duty cycle value is longer than
	the PWM period, the CCP1 pin will not be
	cleared.

For a sample PWM period and duty cycle calculation, see the PIC[™] Mid-Range MCU Reference Manual (DS33023).

8.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-3:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o RES	e on ther ETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	_	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
87h	TRISC	PORT	ORTC Data Direction Register							1111	1111	1111	1111
11h	TMR2	Timer2	2 Module Re	gister						0000	0000	0000	0000
92h	PR2	Timer2	2 Module Pe	riod Registe	r					1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Captur	Capture/Compare/PWM Register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Captur	Capture/Compare/PWM Register1 (MSB)							xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

IER 9-1:	SSPSIAI	:SYNCHR	UNUUSS	ERIALPOR	ISTATUS	REGISTER		5594h)			
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7							bit 0			
bit 7	SMP: SPI I	Data Input S	ample Pha	se bits							
	SPI Master	<u>mode:</u>									
	1 = Input data sampled at end of data output time										
	SPI Slave r	0 = Input data sampled at middle of data output time (Microwire [®])									
	SMP must	be cleared v	vhen SPI is	used in Slav	e mode						
	I ² C mode:										
	This bit mu	st be mainta	ined clear								
bit 6	CKE: SPI (Clock Edge S	Select bits (Figure 9-2, F	igure 9-3, a	and Figure 9-	4)				
	<u>SPI mode,</u>	$\underline{CKP = 0}$	ricing odg		arowiro olto	raata)					
	1 = Data tra	 1 = Data transmitted on rising edge of SCK (Microwire alternate) 0 = Data transmitted on falling edge of SCK 									
	SPI mode,	CKP = 1:	0.00								
	1 = Data tra	ansmitted or	n falling edg	e of SCK (M	crowire def	ault)					
	0 = Data tra	0 = Data transmitted on rising edge of SCK									
	This bit mu	st be mainta	ined clear								
bit 5	D/A: Data/	Address bit (¹² C mode c	only)							
	1 = Indicates that the last byte received or transmitted was data										
0 = Indicates that the last byte received or transmitted was address					address						
bit 4	P: STOP bit (I ² C mode only) – This bit is cleared when the SSP module is disabled, or when the START bit is detected last. SSPEN is cleared.										
	 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last 										
bit 3	S: START I the STOP b	bit (I ² C mode bit is detecte	e only) – Tł d last. SSP	nis bit is clear EN is cleared	ed when th d.	e SSP modu	le is disable	d, or when			
	1 = Indicate 0 = START	es that a ST bit was not	ART bit has detected la	been detect st	ed last (this	bit is '0' on F	RESET)				
bit 2	R/W : Read/Write Information bit (I ² C mode only) – This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or ACK bit.										
	1 = Read 0 = Write										
bit 1	UA: Update	e Address bi	t (10-bit I ² C	mode only)							
	1 = Indicate 0 = Addres	es that the u is does not r	ser needs t need to be u	o update the updated	address in	the SSPADD	register				
bit 0	BF: Buffer	Full Status b	oit								
	<u>Receive (S</u>	Receive (SPI and I ² C modes):									
	1 = Receive complete, SSPBUF is full										
	0 = Receiv	0 = Receive not complete, SSPBUF is empty Transmit $(l^2 C)$ mode only):									
	1 = Transmit(1)	nit in progres	i <u>y).</u> is, SSPBUF	is full							
	0 = Transmit complete, SSPBUF is empty										
	Legend:										
	R = Reada	ble bit	VV = V	Vritable bit	U = Unii	mplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit	is cleared	x = Bit is u	Inknown			

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0					
	bit 7							bit 0					
bit 7	WCOL: W	WCOL: Write Collision Detect bit											
	1 = The S cleare	SPBUF regi d in software	ister is writte e)	en while it is	still transmit	tting the pre	evious word	l (must be					
hit G			flow Indiaat	ar bit									
		de.	now mulcal										
	1 = A new of ove must l mode by wri $0 = \text{No ov}$ $\frac{\ln l^2 \text{C mod}}{1 = A \text{ byte}}$ is a "d	v byte is rece erflow, the da read the SSF , the overflov iting to the S verflow <u>de:</u> e is received don't care" in	ived while th ata in SSPSI PBUF, even w bit is not s SPBUF regis t while the S Transmit mo	e SSPBUF re R is lost. Over if only transmi et since each ster. SSPBUF regis	gister is still flow can on tting data, to new recept ster is still he nust be clea	holding the ly occur in s avoid setti ion (and tra olding the p ared in softw	previous da Slave mode ng overflow. Insmission) previous byte vare in eithe	ta. In case . The user . In Master is initiated e. SSPOV r mode.					
	0 = No ov	rerflow											
bit 5	SSPEN: S	Synchronous	Serial Port I	Enable bit									
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disabl}$ $\frac{\text{In I}^2\text{C mod}}{1 = \text{Enable}}$ $0 = \text{Disabl}$	<u>de</u> : es serial port es serial por <u>de:</u> es the serial es serial por	and configu t and configu port and cor t and configu	rres SCK, SD ures these pir figures the S ures these pir	O, and SDI a is as I/O por DA and SCL is as I/O por	as serial por t pins . pins as ser t pins	rt pins rial port pins						
	In both mo	odes, when e	enabled, the	se pins must b	e properly c	configured a	s input or o	utput.					
bit 4	CKP: Cloc In SPI mod 1 = IDLE s	CKP: Clock Polarity Select bit In SPI mode:											
	0 = IDLE state for clock is a low level (Microwire alternate)												
	<u>In I²C moo</u> SCK relea 1 = Enable	<u>de:</u> ise control e clock											
	0 = Holds	clock low (cl	ock stretch -	used to ensu	ire data setu	ıp time)							
bit 3-0	SSPM<3:(0000 = SF 0010 = SF 0100 = SF 0100 = SF 0101 = SF 0110 = I ² (0111 = I ² (1110 = I ² (SSPM<3:0>: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin. 0110 = I²C Slave mode, 10-bit address 1011 = I²C Slave mode, 7-bit address 1011 = I²C Slave mode, 7-bit address with START and STOP bit interrupts enabled 1111 = I²C Slave mode, 10-bit address with START and STOP bit interrupts enabled 											
	Legend:												
	R - Read	able bit	W = V	Vritable bit	LI = LInim	nlemented l	hit read as '	'n'					

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

9.3.2 MASTER MODE OPERATION

Master mode operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle, based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is IDLE and both the S and P bits are clear.

In Master mode operation, the SCL and SDA lines are manipulated in firmware by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So, when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode operation can be done with either the Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the Slave mode active. When both Master mode operation and Slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on Master mode operation, see AN554 - Software Implementation of l^2C Bus Master.

9.3.3 MULTI-MASTER MODE OPERATION

In Multi-Master mode operation, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle, based on the START and STOP conditions. Control of the I²C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE and both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master mode operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the Slave device continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

For more information on Multi-Master mode operation, see AN578 - Use of the SSP Module in the l^2C Multi-Master Environment.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	0000 0000
8Ch	PIE1	—	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	0000 0000
13h	SSPBUF	Synchron	ous Seria	Port Recei	ive Buffer	/Transmit	Register			XXXX XXXX	uuuu uuuu
93h	SSPADD	Synchron	ous Seria	l Port (l ² C n	node) Ado	dress Reę	gister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC D	ORTC Data Direction Register							1111 1111	1111 1111

 TABLE 9-3:
 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

Note 1: Maintain these bits clear in I^2C mode.

11.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD, as described in Section 11.4. A maximum rise time for VDD is specified. See Section 14.0, Electrical Characteristics for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For more information, see Application Note, *AN607- Power-up Trouble Shooting* (DS00607).

11.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

11.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

11.8 Brown-out Reset (BOR)

The configuration bit, BOREN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ s), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 ms). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

11.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F72 device operating in parallel.

Table 11-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 11-6 shows the RESET conditions for all the registers.

11.10 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has two bits to indicate the type of RESET that last occurred.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if bit BOR cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the BOR bit is unpredictable.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

12.0 INSTRUCTION SET SUMMARY

Each PIC16F72 instruction is a 14-bit word divided into an OPCODE that specifies the instruction type and one or more operands that further specify the operation of the instruction. The PIC16F72 instruction set summary in Table 12-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 12-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven-bit constant or literal value.

TABLE 12-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles, with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 12-2 lists the instructions recognized by the MPASMTM assembler.

Figure 12-1 shows the general formats that the instructions can have.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 12-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

Mne	monic,	Description	Cucles		14-Bit	Opcod	Status	Notos		
Оре	rands	Description	Cycles	MSb)		LSb	Affected	Notes	
	BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	z	1,2	
		BIT-ORIENTED FILE R	EGISTER OPER	ATIO	NS					
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
			NTROL OPERATI	ONS						
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT		Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		
Note 1:	When an I	/O register is modified as a function of itself (e.g., MOVF PORTH	3, 1).	, the val	ue used	will be	that value pr	esent on	
	the pins th	emselves. For example, if the data latch is "	1' for a pin configu	ired a	s input a	and is d	riven lo	w by an exte	rnal	
	device, the	e data will be written back with a '0'.	. 0		•			-		

TABLE 12-2: PIC16F72 INSTRUCTION SET

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

IORLW	Inclusive OR Literal with W	M
Syntax:	[<i>label</i>] IORLW k	Sy
Operands:	$0 \le k \le 255$	O
Operation:	(W) .OR. $k \rightarrow$ (W)	0
Status Affected:	Z	St
Description:	The contents of the W register are OR'd with the eight-bit literal 'k'. The result is placed in the W register.	D

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as '0's.

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'.

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are moved to a destination dependant upon the status of 'd'. If 'd' = '0', the destination is W register. If 'd' = '1', the destination is file reg- ister 'f' itself. 'd' = '1' is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

PIC16F72

14.2 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	VIL	Input Low Voltage					
		I/O ports					
D030		with TTL buffer	Vss	—	0.15 Vdd	V	For entire VDD range
D030A			Vss	_	0.8V	V	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss	—	0.2 Vdd	V	
D033		OSC1 (in XT and LP mode)	Vss	—	0.3V	V	(Note 1)
		OSC1 (in HS mode)	Vss	—	0.3 Vdd	V	(Note 1)
	Vih	Input High Voltage					
		I/O ports					
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \leq VDD \leq 5.5V$
D040A			0.25 VDD + 0.8V	—	Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8 VDD	_	VDD	V	For entire VDD range
D042		MCLR	0.8 Vdd	—	Vdd	V	
D042A		OSC1 (in XT and LP mode)	1.6V	—	Vdd	V	(Note 1)
		OSC1 (in HS mode)	0.7 Vdd	_	Vdd	V	(Note 1)
D043		OSC1 (in RC mode)	0.9 Vdd		Vdd	V	
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	I⊫ Input Leakage Current (Notes 2, 3)						
D060		I/O ports	_	—	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-impedance
D061		MCLR, RA4/T0CKI	—	_	±5	μΑ	$Vss \leq VPIN \leq VDD$
D063		OSC1	—	_	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC16F72 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Param No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock High Time	100 kHz mode	4.0	1	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY			
101*	TLOW	Clock Low Time	100 kHz mode	4.7		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY			
102*	Tr	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 - 400 pF
103*	Tf	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 - 400 pF
90*	TSU:STA	START Condition	100 kHz mode	4.7		μs	Only relevant for
		Setup Time	400 kHz mode	0.6		μs	Repeated START condition
91*	THD:STA	START Condition	100 kHz mode	4.0	_	μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated
106*	THD:DAT	Data Input Hold	100 kHz mode	0	_	ns	4
		Time	400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		Time	400 kHz mode	100	—	ns	
92*	Tsu:sto	STOP Condition	100 kHz mode	4.7	—	μs	4
		Setup Time	400 kHz mode	0.6	—	μs	
109*	ΤΑΑ	Output Valid from	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110*	110* TBUF Bus Free Time	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	can start
	Св	Bus Capacitive Load	ling	—	400	pF	

TABLE 14-8:	I ² C BUS DATA REQUIREMENTS
--------------------	--

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

FIGURE 15-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

F

FLA	SH Program Memory	
	Associated Registers	28
	Operation During Code Protect	28
	Reading	28
FSR	Register9,	10
1		
-	Porto	21
1/U I	-0115 ΡΩΡΤΔ	21
	PORTB	23
	PORTC	25
I ² C		
	Associated Registers	51
	Master Mode	51
	Mode Selection	48
	Multi-Master Mode	51
	SCL and SDA pins	48
	Slave Mode	48
ICEI	PIC In-Circuit Emulator	82
	OCATIONS	72
	E Pogistor	10
Indir	r Regisier	20
mun	FSR Register	19
	INDE Register	19
Instr	ruction Format	73
Instr	ruction Set	73
	ADDLW	75
	ADDWF	75
	ANDLW	75
	ANDWF	75
	BCF	75
	BSF	75
	BTFSC	76
	BIFSS	76
		76
		76
	CLRWDT	76
	COME	77
	DECE	77
	DECFSZ	77
	GOTO	77
	INCF	77
	INCFSZ	77
	IORLW	78
	IORWF	78
	MOVF	78
	MOVLW	78
		78
		78
		79
		70
	RIF	79
	RRF	79
	SLEEP	79
	SUBLW	80
	SUBWF	80
	Summary Table	74
	SWAPF	80
	XORLW	80
	XORWF	80

INT Interrupt (RB0/INT). See Interrupt Sources	
INTCON Register	
GIE bit	14
INTE bit	14
INTF bit	14
RBIF bit	14
TMR0IE bit	14
Internal Sampling Switch (Rss) Impedance	56
Interrupt Sources	66
RB0/INT Pin, External6	66
TMR0 Overflow6	66
Interrupts	
RB7:RB4 Port Change2	23
Synchronous Serial Port Interrupt	16
Interrupts, Context Saving During	66
Interrupts, Enable Bits	
Global Interrupt Enable (GIE bit) 14, 6	66
Interrupt-on-Change (RB7:RB4)	
Enable (RBIE bit)6	66
RB0/INT Enable (INTE bit) 1	14
TMR0 Overflow Enable (TMR0IE bit) 1	14
Interrupts, Flag bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF bit) 1	14
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF bit)14, 6	66
RB0/INT Flag (INTF bit)1	14
TMR0 Overflow Flag (TMR0IF bit)6	66
V.	
ĸ	
KEELOQ Evaluation and Programming Tools	34
L	

ading of PC 18

Μ

Master Clear (MCLR)	
MCLR Reset, Normal Operation	. 62, 65, 66
MCLR Reset, SLEEP	. 62, 65, 66
Operation and ESD Protection	63
Memory	
Data Memory	7
Program Memory	7
MPLAB C17 and MPLAB C18 C Compilers	81
MPLAB ICD In-Circuit Debugger	83
MPLAB ICE High Performance Universal	
In-Circuit Emulator with MPLAB IDE	82
MPLAB Integrated Development	
Environment Software	81
MPLINK Object Linker/MPLIB Object Librarian	82

0

On-Line Support	131
OPCODE Field Descriptions	73
OPTION_REG Register	
INTEDG bit	13
PS2:PS0 bits	13
PSA bit	13
RBPU bit	13
T0CS bit	13
T0SE bit	13

PIC16F72

Oscillator Configuration	59, 61
Crystal Oscillator/Ceramic Resonators	61
HS	61, 65
LP	61, 65
RC	61, 62, 65
XT	61, 65
Oscillator, WDT	70

Ρ

-
P
Package Marking Information117
PCFG0 bit54
PCFG1 bit
PCFG2 bit
PCL Register
PCLATH Register
PCON Register 64
POR bit 17
DICDEM 1 Low Cost DIC
PICDEINI I LOW COSI FIC
Demonstration Board
PICDEM 17 Demonstration Board
PICDEM 2 Low Cost PIC16CXX
Demonstration Board83
PICDEM 3 Low Cost PIC16CXXX
Demonstration Board84
PICSTART Plus Entry Level
Development Programmer
Pin Functions
MCLR//PP 6
0302/CLR00
RAU/ANU
RA1/AN1
RA2/AN26
RA3/AN3/VREF6
RA4/T0CKI6
RA5/AN4/SS6
RB0/INT6
RB16
RB26
RB3 6
RB4 6
DB5 6
RB7/PGD
RC0/110S0/11CKI
RC1/I10SI
RC2/CCP16
RC3/SCK/SCL6
RC4/SDI/SDA6
RC5/SDO6
RC66
RC76
VDD6
Vss6
Pinout Descriptions
PIC16E72 6
POP See Power on Poset
Associated Registers
Functions

PORTA Register	9
PORTB	
Associated Registers	24
Functions	24
Pull-up Enable (RBPU bit)	13
RB0/INT Edge Select (INTEDG bit)	13
RB0/INT Pin, External	69
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)	14
RB7:RB4 Interrupt-on-Change	69
RB7:RB4 Interrupt-on-Change Enable	
(RBIE bit)	69
RB7:RB4 Interrupt-on-Change Flag	
(RBIF bit)	14, 69
PORTB Register	9
PORTC	
Associated Registers	26
Functions	26
PORTC Register	9
Postscaler, WDT	
Assignment (PSA Bit)	13
Rate Select (PS2:PS0 bits)	13
Power-down Mode. See SLEEP	
Power-on Reset (POR) 59, 62, 64,	65, 66
Brown-out Reset (BOR)	64
Oscillator Start-up Timer (OST)	59, 64
POR Status (POR bit)	17
Power Control/Status Register (PCON)	64
Power-down (PD bit)	62
Power-up Timer (PWRT)	59, 64
Time-out (TO bit)	12, 62
Time-out Sequence	64
PR2 Register	35
Prescaler, Timer0	
Assignment (PSA bit)	13
Rate Select (PS2:PS0 bits)	13
PRO MATE II Universal Device Programmer	83
Product Identification System	133
Program Counter	
RESET Conditions	65
Program Memory	
Paging	19
Program Memory Map and Stack	7
Program Verification	72
PUSH	19

R

R/W	44
R/W bit	49
RBIF bit	23
Read/Write bit Information, R/W	44
Reader Response	132
Reading Program Memory	27
PMADR	27
PMCON1 Register	27
Receive Overflow Indicator bit, SSPOV	45
Register File Map	8

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820