

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf72-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 2											
100h ⁽¹⁾	INDF	Addressi	ng this locat	ion uses cor	ntents of FSR	to address of	data memory	/ (not a phys	ical register)	0000 0000	19
101h	TMR0	Timer0 M	lodule's Reg	gister						xxxx xxxx	27
102h ⁽¹	PCL	Program	Counter's (PC) Least Si	gnificant Byte	e				0000 0000	18
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12
104h ⁽¹⁾	FSR	Indirect D	Data Memor	y Address Po	ointer					xxxx xxxx	19
105h	_	Unimpler	mented							_	
106h	PORTB	PORTB I	Data Latch v	when written:	PORTB pins	s when read				xxxx xxxx	23
107h	_	Unimpler	mented							_	
108h	_	Unimpler	mented							_	
109h	_	Unimpler	mented							_	
10Ah (1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	18
10Bh (1)	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
10Ch	PMDATL	Data Reg	Data Register Low Byte								
10Dh	PMADRL	Address	ddress Register Low Byte								
10Eh	PMDATH	—	—	Data Regist	er High Byte					xx xxxx	35
10Fh	PMADRH	—	_		Address Re	gister High E	Byte			x xxxx	35
Bank 3	ank 3										
180h ⁽¹⁾	INDF	Addressi	ng this locat	ion uses cor	tents of FSR	to address of	data memory	/ (not a phys	ical register)	0000 0000	19
181h	OPTION	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13
182h ⁽¹⁾	PCL	Program	Counter's (PC) Least S	ignificant Byt	e				0000 0000	18
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12
184h ⁽¹⁾	FSR	Indirect D	Data Memor	y Address Po	ointer					xxxx xxxx	19
185h	—	Unimpler	mented							_	_
186h	TRISB	PORTB I	Data Directio	on Register						1111 1111	23
187h	_	Unimpler	mented							_	
188h	_	Unimpler	mented							_	
189h	_	Unimpler	mented							—	_
18Ah (1,2)	PCLATH	_	—	-	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	18
18Bh (1)	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
18Ch	PMCON1	(3)	—	_	—	—	—	_	RD	10	35
18Dh		Unimpler	mented							_	
18Eh	—	Reserve	d, maintain d	clear						0000 0000	—
18Fh	_	Reserved	d, maintain d	clear						0000 0000	_

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED))
------------	-----------------------------------	-------------	---

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: This bit always reads as a '1'.

2.2.2.3 INTCON Register

The INTCON Register is a readable and writable register that contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	
	bit 7							bit 0	
bit 7	GIE: Globa	al Interrupt Er	nable bit						
	1 = Enable 0 = Disabl	es all unmask es all interrup	ed interrupts	;					
bit 6	PEIE: Per	ipheral Interru	upt Enable bi	t					
	1 = Enables all unmasked peripheral interrupts0 = Disables all peripheral interrupts								
bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit									
	1 = Enable 0 = Disabl	es the TMR0 es the TMR0	interrupt interrupt						
bit 4	INTE: RB0/INT External Interrupt Enable bit								
	 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt 								
bit 3	RBIE: RB	Port Change	Interrupt Ena	able bit					
	1 = Enable 0 = Disabl	es the RB por es the RB po	t change inter t change int	errupt errupt					
bit 2	TMR0IF: 7	MR0 Overflo	w Interrupt F	lag bit					
	1 = TMR0 0 = TMR0	register has register did r	overflowed (not overflow	must be clear	red in softw	are)			
bit 1	INTF: RBC	/INT Externa	I Interrupt Fla	ag bit					
	1 = The R 0 = The R	B0/INT extern B0/INT extern	nal interrupt on al interrupt o	occurred (mu did not occur	st be cleare	ed in softwa	re)		
bit 0	RBIF: RB	Port Change	Interrupt Fla	g bit					
	A mismato condition a	h condition w and allow flag	ill continue to bit RBIF to b	o set flag bit F be cleared.	RBIF. Readi	ng PORTB	will end the	e mismatch	
	 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state 								
	Legend:								
	R = Reada	able bit	W = Wr	itable bit	U = Unim	plemented l	oit, read as	'0'	

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

- n = Value at POR

0101 EN 2-5.	1 11/1.1 -			I I LAO IN			.00 0011)			
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
		ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF		
	bit 7							bit 0		
bit 7	Unimplem	ented: Read	d as '0'							
bit 6	ADIF: A/D	ADIF: A/D Converter Interrupt Flag bit								
	1 = An A/E 0 = The A/	 1 = An A/D conversion completed 0 = The A/D conversion is not complete 								
bit 5-4	Unimplem	Unimplemented: Read as '0'								
bit 3	SSPIF: Sy	nchronous S	erial Port (S	SP) Interrup	t Flag bit					
	1 = The SS from th The cc 0 = No SS	 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are a transmission/reception has taken place. 0 = No SSP interrupt condition has occurred 								
bit 2	CCP1IF: C	CP1 Interru	pt Flag bit							
<u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred										
	<u>PWM mod</u> Unused in	<u>e:</u> this mode	-							
bit 1	TMR2IF: T	MR2 to PR2	2 Match Inter	rupt Flag bit						
	1 = TMR2 0 = No TM	to PR2 mato IR2 to PR2 n	ch occurred (natch occurr	must be clea	ared in softw	vare)				
bit 0	TMR1IF: T	MR1 Overflo	ow Interrupt	Flag bit						
	1 = TMR1 register overflowed (must be cleared in software)0 = TMR1 register did not overflow									
	Legend:									
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'		

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13-bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 2-3 shows the four situations for the loading of the PC.

- Example 1 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH).
- Example 2 shows how the PC is loaded during a GOTO instruction (PCLATH<4:3> \rightarrow PCH).
- · Example 3 shows how the PC is loaded during a CALL instruction (PCLATH<4:3> \rightarrow PCH), with the PC loaded (PUSH'd) onto the Top-of-Stack.
- Example 4 shows how the PC is loaded during one of the return instructions, where the PC is loaded (POP'd) from the Top-of-Stack.

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register, shown in Register 6-1. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 6-1 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

6.1 Timer2 Operation

Timer2 can be used as the PWM time-base for PWM mode of the CCP module.

The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

6.2 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMR2 register
- A write to the T2CON register
- Any device RESET (Power-on Reset, MCLR , WDT Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

6.3 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

6.4 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate a shift clock.

FIGURE 6-1: TIMER2 BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Valu all o RES	e on ther ETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1		ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
87h	TRISC	PORTO	PORTC Data Direction Register							1111	1111	1111	1111
0Eh	TMR1L	Holding	g Registe	er for the Le	ast Signific	ant Byte of	the 16-bit 7	FMR1 Regi	ster	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	g Registe	er for the M	ost Significa	ant Byte of t	he 16-bit T	MR1 Regis	ster	xxxx	xxxx	uuuu	uuuu
10h	T1CON			T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM Register1 (LSB)							xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)						xxxx	xxxx	uuuu	uuuu		
17h	CCP1CON			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 8.3.3.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 8-4: PWM OUTPUT

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the formula in Equation 8-1.

EQUATION 8-1: PWM PERIOD

 $PWM period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 6.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. Equation 8-2 is used to calculate the PWM duty cycle in time.

EQUATION 8-2: PWM DUTY CYCLE

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • TOSC • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

IER 9-1:	SSPSIAI	:SYNCHR	UNUUSS	ERIALPOR	ISTATUS	REGISTER		5594h)			
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
	SMP	CKE	D/A	Р	S	R/W	UA	BF			
	bit 7							bit 0			
bit 7	SMP: SPI I	SMP: SPI Data Input Sample Phase bits									
	SPI Master	<u>mode:</u>									
	1 = Input data sampled at end of data output time										
	0 = Input data sampled at middle of data output time (Microwire®)										
	SMP must be cleared when SPI is used in Slave mode										
	l^2C mode:										
	This bit mu	st be mainta	ined clear								
bit 6	CKE: SPI (Clock Edge S	Select bits (Figure 9-2, F	igure 9-3, a	and Figure 9-	4)				
	<u>SPI mode, CKP = 0:</u>										
	\perp = Data transmitted on rising edge of SCK (Microwire alternate) 0 = Data transmitted on falling edge of SCK										
	<u>SPI mode, CKP = 1:</u>										
	1 = Data transmitted on falling edge of SCK (Microwire default)										
	0 = Data transmitted on rising edge of SCK										
	This bit mu	st be mainta	ined clear								
bit 5	D/A: Data/Address bit (I ² C mode only)										
1 = Indicates that the last byte received or transmitted was data											
	0 = Indicates that the last byte received or transmitted was address										
bit 4 P: STOP bit (I ² C mode only) – This bit is cleared when the SSP module is disab the START bit is detected last. SSPEN is cleared.						le is disable	d, or when				
	 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last 										
bit 3	S: START I the STOP b	bit (I ² C mode bit is detecte	e only) – Tł d last. SSP	nis bit is clear EN is cleared	ed when th d.	e SSP modu	le is disable	d, or when			
	1 = Indicate 0 = START	es that a ST bit was not	ART bit has detected la	been detect st	ed last (this	bit is '0' on F	RESET)				
bit 2	R/W : Read ing the last STOP bit, c	/Write Inform address ma or ACK bit.	nation bit (I ² tch. This bi	C mode only t is only valid) – This bit ł from the ac	holds the R/W Idress match	/ bit information to the next s	tion follow- START bit,			
	1 = Read 0 = Write										
bit 1	UA: Update	e Address bi	t (10-bit I ² C	mode only)							
	1 = Indicate 0 = Addres	es that the u is does not r	ser needs t need to be u	o update the updated	address in	the SSPADD	register				
bit 0	BF: Buffer	Full Status b	oit								
	Receive (SPI and I ² C modes):										
	1 = Receive complete, SSPBUF is full										
	0 = Receive not complete, SSPBUF is empty Transmit (2 C mode only):										
	<u>Transmit (r⊂ mode only):</u> 1 = Transmit in progress, SSPBUF is full										
	0 = Transmit complete, SSPBUF is empty										
	Legend:										
	R = Reada	ble bit	VV = V	Vritable bit	U = Unii	mplemented	bit, read as	'0'			
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit	is cleared	x = Bit is u	Inknown			

11.13 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator that does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTEN (see Section 11.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 11-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 11-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BOREN ⁽¹⁾		CP	PWRTEN ⁽¹⁾	WDTEN	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 11-1 for operation of these bits.

Mne	monic,	Description	Cucles		14-Bit	Opcod	e	Status	Notos
Оре	rands	Description	Cycles	MSb)		LSb	Affected	Notes
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	z	1,2
		BIT-ORIENTED FILE R	EGISTER OPER	ATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
			NTROL OPERATI	ONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT		Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1:	When an I	/O register is modified as a function of itself (e.g., MOVF PORTH	3, 1).	, the val	ue used	will be	that value pr	esent on
	the pins th	emselves. For example, if the data latch is "	1' for a pin configu	ired a	s input a	and is d	riven lo	w by an exte	rnal
	device, the	e data will be written back with a '0'.	. 0		•			-	

TABLE 12-2: PIC16F72 INSTRUCTION SET

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

12.1 Instruction Descriptions

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \le k \le 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.				

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	AND the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.					

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

NOTES:

Param No.	Symbol	Charac	teristic	Min	Тур	Max	Units	Conditions	
90*	TSU:STA	START condition	100 kHz mode	4700	_	—	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	_		START condition	
91*	THD:STA	START condition	100 kHz mode	4000			ns	After this period, the first clock	
		Hold time	400 kHz mode	600				pulse is generated	
92*	Tsu:sto	STOP condition	100 kHz mode	4700			ns		
		Setup time	400 kHz mode	600					
93	THD:STO	STOP condition	100 kHz mode	4000	_	—	ns		
		Hold time	400 kHz mode	600	_	_			

TABLE 14-7: I²C BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

FIGURE 14-15: I²C BUS DATA TIMING

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	Tad	A/D Clock Period	PIC16F72	1.6	_	—	μs	Tosc based, VREF \geq 3.0V
			PIC16LF72	2.0	_	_	μs	Tosc based, $2.0V \le VREF \le 5.5V$
			PIC16F72	2.0	4.0	6.0	μs	A/D RC mode
			PIC16LF72	3.0	6.0	9.0	μs	A/D RC mode
131	Тслу	Conversion Time (not includi (Note 1)	ng S/H time)	9		9	Tad	
132	TACQ	Acquisition Time		5*	_		μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D Clock Start			Tosc/2			If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

FIGURE 15-1: TYPICAL IDD vs. Fosc OVER VDD (HS MODE)

FIGURE 15-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

APPENDIX A: REVISION HISTORY

Revision A (April 2002)

This is a new data sheet. However, this device is similar to the PIC16C72 device found in the PIC16C7X Data Sheet (DS30390), the PIC16C72A Data Sheet (DS35008) or the PIC16F872 device (DS30221).

Revision B (May 2002)

Final data sheet. Includes device characterization data. Minor typographic revisions throughout.

APPENDIX B: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table B-1.

TABLE B-1: CC	INVERSION CONSIDERATI	UNS	
Characteristic	PIC16C72/72A	PIC16F872	PIC16F72
Pins	28	28	28
Timers	3	3	3
Interrupts	8	10	8
Communication	Basic SSP/SSP (SPI, I ² C Slave)	MSSP (SPI, I ² C Master/Slave)	SSP (SPI, I ² C Slave)
Frequency	20 MHz	20 MHz	20 MHz
A/D	8-bit, 5 Channels	10-bit, 5 Channels	8-bit, 5 Channels
ССР	1	1	1
Program Memory	2K EPROM	2K FLASH (1,000 E/W cycles)	2K FLASH (1000 E/W cycles)
RAM	128 bytes	128 bytes	128 bytes
EEPROM Data	None	64 bytes	None
Other	_	In-Circuit Debugger, Low Voltage Programming	_
	·	·	•

CONVERSION CONSIDERATIONS

Revision C (January 2007)

This revision includes updates to the packaging diagrams.

F

FLA	SH Program Memory	
	Associated Registers	28
	Operation During Code Protect	28
	Reading	28
FSR	Register9,	10
1		
-	Porto	21
1/U I	-0115 ΡΩΡΤΔ	21
	PORTB	23
	PORTC	25
I ² C		
	Associated Registers	51
	Master Mode	51
	Mode Selection	48
	Multi-Master Mode	51
	SCL and SDA pins	48
	Slave Mode	48
ICEI	PIC In-Circuit Emulator	82
	OCATIONS	72
	E Pogistor	10
Indir	r Regisier	20
mun	FSR Register	19
	INDE Register	19
Instr	ruction Format	73
Instr	ruction Set	73
	ADDLW	75
	ADDWF	75
	ANDLW	75
	ANDWF	75
	BCF	75
	BSF	75
	BTFSC	76
	BIFSS	76
		76
		76
	CLRWDT	76
	COME	77
	DECE	77
	DECFSZ	77
	GOTO	77
	INCF	77
	INCFSZ	77
	IORLW	78
	IORWF	78
	MOVF	78
	MOVLW	78
		78
		78
		79
		70
	RIF	79
	RRF	79
	SLEEP	79
	SUBLW	80
	SUBWF	80
	Summary Table	74
	SWAPF	80
	XORLW	80
	XORWF	80

INT Interrupt (RB0/INT). See Interrupt Sources	
INTCON Register	
GIE bit	14
INTE bit	14
INTF bit	14
RBIF bit	14
TMR0IE bit	14
Internal Sampling Switch (Rss) Impedance	56
Interrupt Sources	66
RB0/INT Pin, External6	66
TMR0 Overflow6	66
Interrupts	
RB7:RB4 Port Change2	23
Synchronous Serial Port Interrupt	16
Interrupts, Context Saving During	66
Interrupts, Enable Bits	
Global Interrupt Enable (GIE bit) 14, 6	66
Interrupt-on-Change (RB7:RB4)	
Enable (RBIE bit)6	66
RB0/INT Enable (INTE bit) 1	14
TMR0 Overflow Enable (TMR0IE bit) 1	14
Interrupts, Flag bits	
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF bit) 1	14
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF bit)14, 6	66
RB0/INT Flag (INTF bit)1	14
TMR0 Overflow Flag (TMR0IF bit)6	66
V.	
ĸ	
KEELOQ Evaluation and Programming Tools	34
L	

ading of PC 18

Μ

Master Clear (MCLR)	
MCLR Reset, Normal Operation	. 62, 65, 66
MCLR Reset, SLEEP	. 62, 65, 66
Operation and ESD Protection	63
Memory	
Data Memory	7
Program Memory	7
MPLAB C17 and MPLAB C18 C Compilers	81
MPLAB ICD In-Circuit Debugger	83
MPLAB ICE High Performance Universal	
In-Circuit Emulator with MPLAB IDE	82
MPLAB Integrated Development	
Environment Software	81
MPLINK Object Linker/MPLIB Object Librarian	82

0

On-Line Support	131
OPCODE Field Descriptions	73
OPTION_REG Register	
INTEDG bit	13
PS2:PS0 bits	13
PSA bit	13
RBPU bit	13
T0CS bit	13
T0SE bit	13

Timing Diagrams
A/D Conversion105
Brown-out Reset96
Capture/Compare/PWM (CCP1)98
CLKO and I/O95
External Clock94
I ² C Bus Data102
I ² C Bus START/STOP bits101
I ² C Reception (7-bit Address) 50
I ² C Transmission (7-bit Address)
RESET, Watchdog Timer, Oscillator Start-up Timer
and Power-up Timer96
Slow Rise Time (MCLR Tied to VDD Through
RC Network)68
SPI Master Mode 47
SPI Master Mode (CKE = 0, SMP = 0)
SPI Master Mode (CKE = 1, SMP = 1)
SPI Slave Mode (CKE = 0) 47, 100
SPI Slave Mode (CKE = 1) 47, 100
Time-out Sequence on Power-up (MCLR Tied to
VDD Through Pull-up Resistor)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 1
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 2
Timer0 and Timer1 External Clock
Wake-up from SLEEP through Interrupt
Timing Parameter Symbology
TMR1H Register9
TMR1L Register9
TMR2 Register9
TMR2ON bit
TOUTPS0 bit
TOUTPS1 bit
TOUTPS2 bit
TOUTPS3 bit
TRISA Register 10, 21
TRISB Register 10, 23
TRISC Register 10, 25

U

0	
UA	44
Update Address bit, UA	44
W	
Wake-up from SLEEP	59, 71
Interrupts	65, 66
MCLR Reset	66
WDT Reset	
Watchdog Timer (WDT)	59, 70
Associated Registers	
Enable (WDTEN bit)	
Postscaler. See Postscaler, WDT	
Programming Considerations	
RC Oscillator	
Time-out Period	
WDT Reset. Normal Operation	62. 65. 66
WDT Reset. SLEEP	62, 65, 66
WCOL	
Write Collision Detect bit. WCOL	
WWW, On-Line Support	3