

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf72-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC16F72

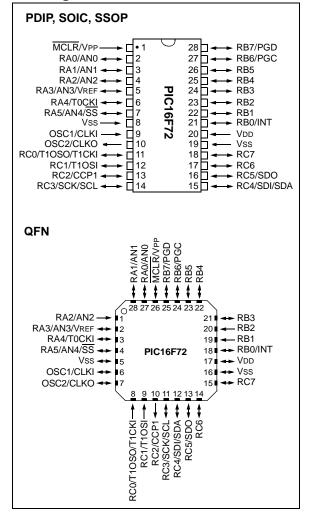
28-Pin, 8-Bit CMOS FLASH MCU with A/D Converter

Device Included:

• PIC16F72

High Performance RISC CPU:

- · Only 35 single word instructions to learn
- All single cycle instructions except for program branches, which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- 2K x 14 words of Program Memory, 128 x 8 bytes of Data Memory (RAM)
- Pinout compatible to PIC16C72/72A and PIC16F872
- Interrupt capability
- Eight-level deep hardware stack
- · Direct, Indirect and Relative Addressing modes


Peripheral Features:

- High Sink/Source Current: 25 mA
- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler.
- can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM (CCP) module
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 8-bit, 5-channel analog-to-digital converter
- Synchronous Serial Port (SSP) with SPI[™] (Master/Slave) and I²C[™] (Slave)
- Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:

- · Low power, high speed CMOS FLASH technology
- · Fully static design
- Wide operating voltage range: 2.0V to 5.5V
- Industrial temperature range
- Low power consumption:
 - < 0.6 mA typical @ 3V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - <1 μA typical standby current

Pin Diagrams

Special Microcontroller Features:

- 1,000 erase/write cycle FLASH program memory typical
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- · Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- In-Circuit Serial Programming[™] (ICSP[™]) via 2 pins
- Processor read access to program memory

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

	·-	0. 20./					· · ·		1	1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 0											
00h ⁽¹⁾	INDF	Addressi	ng this loca	tion uses cor	tents of FSR	to address of	data memor	/ (not a phys	ical register)	0000 0000	19
01h	TMR0	Timer0 N	lodule's Re	gister						xxxx xxxx	27,13
02h ⁽¹⁾	PCL	Program	Counter's (PC) Least S	ignificant By	te				0000 0000	18
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12
04h ⁽¹⁾	FSR	Indirect [Data Memo	ry Address P	ointer					xxxx xxxx	19
05h	PORTA	_		PORTA Dat	a Latch whe	n written: PC	ORTA pins w	hen read		0x 0000	21
06h	PORTB	PORTB I	Data Latch	when written	: PORTB pir	ns when read	ł			xxxx xxxx	23
07h	PORTC	PORTC I	Data Latch	when written	: PORTC pir	ns when read	b			xxxx xxxx	25
08h	_	Unimpler	mented								_
09h	—	Unimpler	Unimplemented							—	—
	PCLATH		—	—	Write Buffer	for the uppe	er 5 bits of th	ne Program	Counter	0 0000	18
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	16
0Dh	—	Unimpler	Unimplemented —								—
0Eh	TMR1L	Holding F	Register for	the Least Si	ignificant Byt	e of the 16-b	oit TMR1 Re	gister		XXXX XXXX	29
0Fh	TMR1H	Holding I	Register for	the Most Sig	gnificant Byte	e of the 16-b	it TMR1 Reg	gister	_	xxxx xxxx	29
10h	T1CON		—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	29
11h	TMR2	Timer2 N	Iodule's Re	gister						0000 0000	33
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	34
13h	SSPBUF	Synchror	nous Serial	Port Receive	e Buffer/Tran	smit Registe	er	-	_	xxxx xxxx	43,48
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	45
15h	CCPR1L	Capture/	Compare/P	WM Registe	r (LSB)					xxxx xxxx	38,39,41
16h	CCPR1H	Capture/	Compare/P	WM Registe	r (MSB)	-	-	-	_	xxxx xxxx	38,39,41
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	37
18h-1Dh	_	Unimpler	mented							_	_
1Eh	ADRES	A/D Resu	ult Register							XXXX XXXX	53
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	53

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: This bit always reads as a '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
Bank 1											
80h ⁽¹⁾	INDF	Addressi	Addressing this location uses contents of FSR to address data memory (not a physical regis								19
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	13
82h ⁽¹⁾	PCL	Program	Counter's	PC) Least S	ignificant By	te	-	-		0000 0000	18
83h (1)	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	12
84h (1)	FSR	Indirect [Data Memo	ry Address F	Pointer					xxxx xxxx	19
85h	TRISA		_	PORTA Dat	a Direction F	Register				11 1111	21
86h	TRISB	PORTB	Data Direct	on Register						1111 1111	23
87h	TRISC	PORTC	Data Direct	ion Register						1111 1111	25
88h	_	Unimple	mented							_	_
89h		Unimple	mented							_	_
8Ah ^(1,2)	PCLATH		—	_	Write Buffer	for the uppe	er 5 bits of th	ne PC		0 0000	18
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14
8Ch	PIE1		ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	15
8Dh	_	Unimple	Unimplemented								—
8Eh	PCON		_	_	—	_	_	POR	BOR	qq	17
8Fh		Unimple	Unimplemented								_
90h		Unimple	mented							_	_
91h		Unimple	mented							_	_
92h	PR2	Timer2 F	Period Regis	ster						1111 1111	41
93h	SSPADD	Synchro	nous Serial	Port (I ² C mo	ode) Address	Register	-	-		0000 0000	43,48
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	44
95h		Unimple	mented							_	—
96h	_	Unimple	mented							_	_
97h		Unimple	mented							_	—
98h	_	Unimple	Unimplemented							_	_
99h	_	Unimple	mented							_	_
9Ah	_	Unimple	mented							_	_
9Bh	_	Unimple	Unimplemented							_	_
9Ch		Unimplemented								_	_
9Dh		Unimple	mented							_	_
9Eh	_	Unimple	mented								
9Fh	ADCON1		_	_	_	_	PCFG2	PCFG1	PCFG0	000	54

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. \\ Shaded locations are unimplemented, read as '0'.$

Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: This bit always reads as a '1'.

IADLE J-J.						
Name	Bit#	Buffer	Function			
RB0/INT	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.			
RB1	bit 1	TTL	Input/output pin. Internal software programmable weak pull-up.			
RB2	bit 2	TTL	Input/output pin. Internal software programmable weak pull-up.			
RB3	bit 3	TTL	Input/output pin. Internal software programmable weak pull-up.			
RB4	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.			
RB5	bit 5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.			
RB6	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.			
RB7	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.			

TABLE 3-3:PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB	Data Direc	tion Reg		1111 1111	1111 1111				
81h, 181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register, shown in Register 6-1. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 6-1 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

6.1 Timer2 Operation

Timer2 can be used as the PWM time-base for PWM mode of the CCP module.

The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

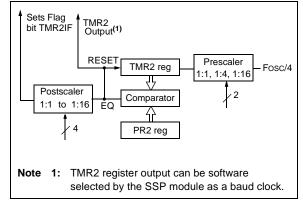
The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

6.2 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMR2 register
- A write to the T2CON register
- Any device RESET (Power-on Reset, MCLR , WDT Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.


6.3 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

6.4 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate a shift clock.

FIGURE 6-1: TIMER2 BLOCK DIAGRAM

PIC16F72

REGISTER 6-1:	T2CON:	TIMER2 CO	ONTROL R	EGISTER (A	ADDRESS	12h)			
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
	bit 7							bit 0	
bit 7	Unimple	nented: Rea	ad as '0'						
bit 6-3	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits								
		1 Postscale							
	0001 = 1:	2 Postscale							
	0010 = 1:	3 Postscale							
	•								
	•								
	1111 = 1 :	16 Postscale	9						
bit 2	TMR2ON	: Timer2 On	bit						
	1 = Timei	2 is on							
	0 = Time	2 is off							
bit 1-0	T2CKPS	I:T2CKPS0:	Timer2 Cloc	k Prescale S	elect bits				
	00 = Pre:	scaler is 1							
		scaler is 4							
	1x = Pres	scaler is 16							
	Legend:								
	R = Read	able bit	W = V	Vritable bit	U = Unim	plemented	bit, read as	'0'	

TABLE 6-1:	REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

- n = Value at POR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all c RES	other
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1		ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	_	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
11h	TMR2	Timer	Timer2 Module Register								0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	92h PR2 Timer2 Period Register									1111	1111	1111	1111

'1' = Bit is set

'0' = Bit is cleared

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

x = Bit is unknown

9.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

9.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

An overview of I²C operations and additional information on the SSP module can be found in the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

9.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) RA5/AN4/SS

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (IDLE state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

11.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving Operating modes and offer code protection:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

These devices have a Watchdog Timer, which can be enabled or disabled using a configuration bit. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes, and is enabled or disabled using a configuration bit. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the PIC[™] Mid-Range Reference Manual (DS33023).

11.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

TABLE 11-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA	0x 0000	Ou 0000	uu uuuu
PORTB	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	x000 0000 x	0000 000u	uuuu uuuu (1)
PIR1	-0 0000	-0 0000	-u uuuu (1)
TMR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
SSPBUF	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	0000 0000	0000 0000	uuuu uuuu
CCPR1L	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	xxxx xxxx	uuuu uuuu	սսսս սսսս
CCP1CON	00 0000	00 0000	uu uuuu
ADRES	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	0000 00-0	0000 00-0	uuuu uu-u
OPTION	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
TRISC	1111 1111	1111 1111	uuuu uuuu
PIE1	-0 0000	-0 0000	-u uuuu
PCON	dd	uu	uu
PR2	1111 1111	1111 1111	1111 1111
SSPADD	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	00 0000	00 0000	uu uuuu
ADCON1	000	000	uuu
PMDATL	0 0000	0 0000	u uuuu
PMADRL	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMDATH	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMADRH	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMCON1	1 0	1 0	1u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear.

Note 1: One or more bits in INTCON, PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 11-5 for RESET value for specific condition.

Mnemonic, Operands		Description	Cycles		14-Bit	Opcod	е	Status	Note
		Description	Cycles	MSb			LSb	Affected	Note
		BYTE-ORIENTED FILE	REGISTER OPEI	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff			-
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110		ffff	z	1,2
	,	BIT-ORIENTED FILE			NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01		bfff			3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
	,	LITERAL AND CO		ONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000			
RETLW	k	Return with literal in W	2	11		kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110		TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z	
					7070			1 -	

TABLE 12-2: PIC16F72 INSTRUCTION SET

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow \text{GIE}$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is stored back in register 'f'. -C Register f

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le k \le 255$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'. Register f

RETURN	Return from Subroutine	SLEEP			
Syntax:	[label] RETURN	Syntax:	[label] SLEEP		
Operands:	None	Operands:	None		
Operation:	$TOS\toPC$	Operation:	00h \rightarrow WDT, 0 \rightarrow WDT prescaler, 1 \rightarrow TO,		
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program		$0 \rightarrow PD$		
		Status Affected:	TO, PD		
	counter. This is a two-cycle instruction.	Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP		

mode with the oscillator stopped.

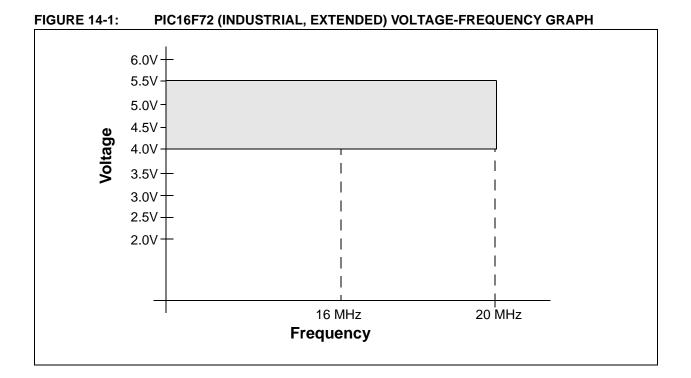
SUBLW	Subtract W from Literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \text{ - (W)} \rightarrow (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.				

XORLW	Exclusive OR Literal with W				
Syntax:	[label] XORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.				

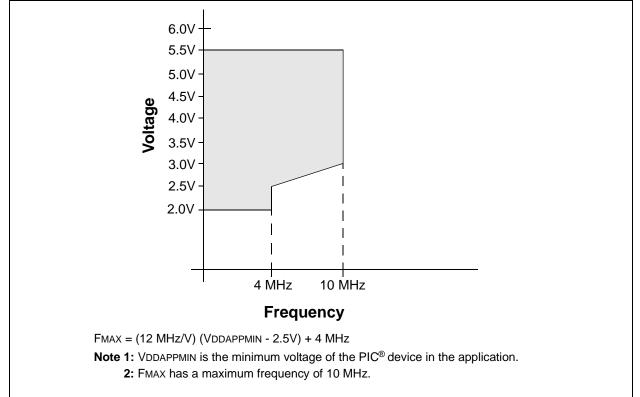
SUBWF	Subtract W from f				
Syntax:	[label] SUBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	(f) - (W) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.				

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.				

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' = '0', the result is placed in W register. If 'd' = '1', the result is placed in register 'f'.


14.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †


Ambient temperature under bias55 to +1	25°C
Storage temperature	50°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)0.3V to (VDD + 0	0.3V)
Voltage on VDD with respect to Vss	+6.5V
Voltage on MCLR with respect to Vss (Note 2)0 to +1	
Voltage on RA4 with respect to Vss0 to -	+12V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	0 mA
Maximum current into VDD pin	0 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	0 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	0 mA
Maximum output current sunk by any I/O pin2	5 mA
Maximum output current sourced by any I/O pin	5 mA
Maximum current sunk by PORTA, PORTB	0 mA
Maximum current sourced by PORTA, PORTB	0 mA
Maximum current sunk by PORTC	0 mA
Maximum current sourced by PORTC	0 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x	x Iol)
2: Voltage spikes at the MCLR pin may cause unpredictable results. A series resistor of greater than should be used to pull MCLR to VDD, rather than tying the pin directly to VDD.	1 kΩ

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

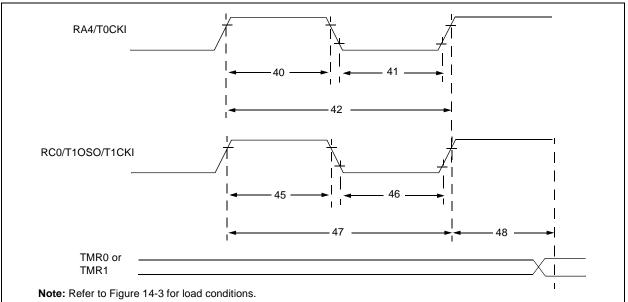

PIC16F72

TABLE 14-4 :	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5 TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5 TCY + 20	_	_	ns	Must also meet
				With Prescaler	10	—		ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—		ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, Pr	escaler = 1	0.5 TCY + 20	—	_	ns	Must also meet
			Synchronous,	Standard(F)	15	—	_	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25	—	_	ns	
			Asynchronous	Standard(F)	30	—		ns	
				Extended(LF)	50	—		ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Pr	escaler = 1	0.5 TCY + 20	—	_	ns	Must also meet
			Synchronous,	Standard(F)	15		_	ns	parameter 47
			Prescaler = 2,4,8	Extended(LF)	25		_	ns	
			Asynchronous	Standard(F)	30		_	ns	
				Extended(LF)	50	_	-	ns	
47*	Tt1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
				Extended(LF)	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	Standard(F)	60		_	ns	
			Extended(LF)	100	—	—	ns		
	Ft1	Timer1 Oscillator I (oscillator enabled			DC	—	200	kHz	
48	TCKEZtmr1	Delay from Extern	al Clock Edge to T	Timer Increment	2 Tosc	—	7 Tosc		

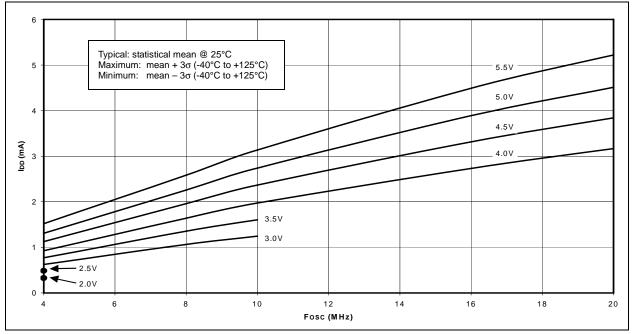
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.



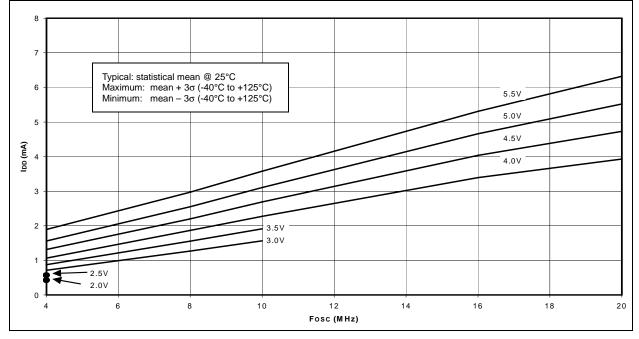
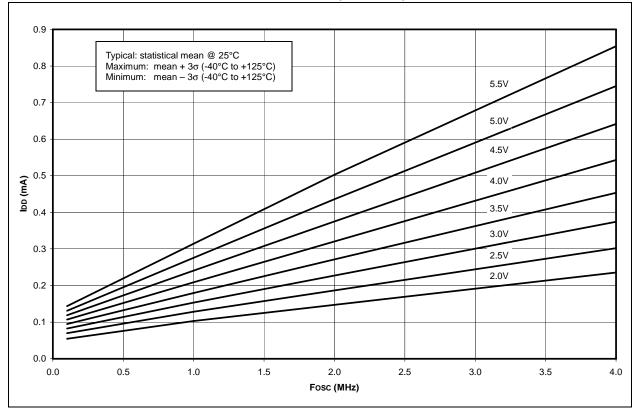
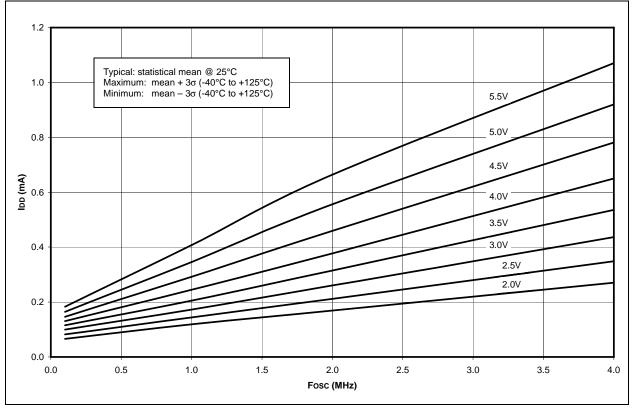
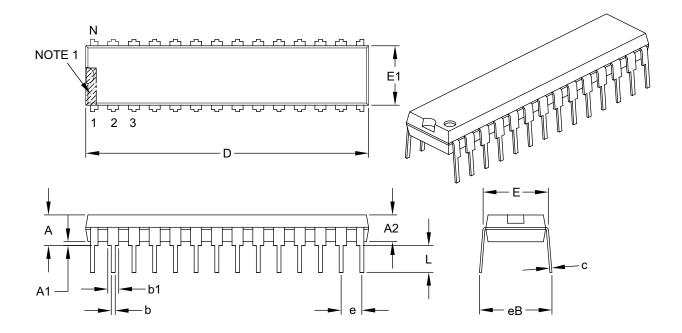



FIGURE 15-1: TYPICAL IDD vs. Fosc OVER VDD (HS MODE)




FIGURE 15-3: TYPICAL IDD vs. Fosc OVER VDD (XT MODE)

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		.100 BSC			
Top to Seating Plane	Α	-	-	.200		
Molded Package Thickness	A2	.120	.135	.150		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.290	.310	.335		
Molded Package Width	E1	.240	.285	.295		
Overall Length	D	1.345	1.365	1.400		
Tip to Seating Plane	L	.110	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.040	.050	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eВ	-	-	.430		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Timing Diagrams
A/D Conversion105
Brown-out Reset96
Capture/Compare/PWM (CCP1)98
CLKO and I/O95
External Clock94
I ² C Bus Data102
I ² C Bus START/STOP bits101
I ² C Reception (7-bit Address) 50
I ² C Transmission (7-bit Address)
RESET, Watchdog Timer, Oscillator Start-up Timer
and Power-up Timer96
Slow Rise Time (MCLR Tied to VDD Through
RC Network)68
SPI Master Mode 47
SPI Master Mode (CKE = 0, SMP = 0)
SPI Master Mode (CKE = 1, SMP = 1)
SPI Slave Mode (CKE = 0) 47, 100
SPI Slave Mode (CKE = 1)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through Pull-up Resistor)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 1
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 2
Timer0 and Timer1 External Clock
Wake-up from SLEEP through Interrupt
Timing Parameter Symbology
TMR1H Register9
TMR1L Register9
TMR2 Register9
TMR2ON bit
TOUTPS0 bit
TOUTPS1 bit
TOUTPS2 bit
TOUTPS3 bit
TRISA Register 10, 21
TRISB Register 10, 23
TRISC Register 10, 25

U

0	
UA	44
Update Address bit, UA	44
W	
Wake-up from SLEEP	59, 71
Interrupts	
MCLR Reset	66
WDT Reset	
Watchdog Timer (WDT)	59, 70
Associated Registers	
Enable (WDTEN bit)	
Postscaler. See Postscaler, WDT	
Programming Considerations	
RC Oscillator	
Time-out Period	
WDT Reset, Normal Operation	
WDT Reset, SLEEP	
WCOL	, ,
Write Collision Detect bit, WCOL	
WWW, On-Line Support	