

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf72-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Memory Organization	7
3.0	I/O Ports	
4.0	Reading Program Memory	27
5.0	Timer0 Module	
6.0	Timer1 Module	31
7.0	Timer2 Module	35
8.0	Capture/Compare/PWM (CCP) Module	37
9.0	Synchronous Serial Port (SSP) Module	
10.0	Analog-to-Digital Converter (A/D) Module	
11.0	Special Features of the CPU	59
12.0	Instruction Set Summary	
13.0	Development Support	81
14.0	Electrical Characteristics	87
15.0	DC and AC Characteristics Graphs and Tables1	07
16.0	Package Marking Information1	17
Appe	ndix A: Revision History1	23
	ndix B: Conversion Considerations1	
Index		25
On-Li	ne Support1	31
	er Response 1	
Produ	ict Identification System 1	33

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

	·-						· · ·		1	1			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:		
Bank 0													
00h ⁽¹⁾	INDF	Addressi	dressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000										
01h	TMR0	Timer0 N	lodule's Re	gister						xxxx xxxx	27,13		
02h ⁽¹⁾	PCL	Program	Counter's (PC) Least S	ignificant By	te				0000 0000	18		
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	12		
04h ⁽¹⁾	FSR	Indirect [Data Memo	ry Address P	ointer					xxxx xxxx	19		
05h	PORTA	_		PORTA Dat	a Latch whe	n written: PC	ORTA pins w	hen read		0x 0000	21		
06h	PORTB	PORTB I	Data Latch	when written	: PORTB pir	ns when read	ł			xxxx xxxx	23		
07h	PORTC	PORTC I	Data Latch	when written	: PORTC pir	ns when read	b			xxxx xxxx	25		
08h	_	Unimpler	mented								_		
09h	—	Unimpler	Jnimplemented								—		
	PCLATH		—	—	Write Buffer	for the uppe	er 5 bits of th	ne Program	Counter	0 0000	18		
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	14		
0Ch	PIR1	—	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	16		
0Dh	—	Unimpler	mented							—	—		
0Eh	TMR1L	Holding F	Register for	the Least Si	ignificant Byt	e of the 16-b	oit TMR1 Re	gister		XXXX XXXX	29		
0Fh	TMR1H	Holding I	Register for	the Most Sig	gnificant Byte	e of the 16-b	it TMR1 Reg	gister	_	xxxx xxxx	29		
10h	T1CON		—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	29		
11h	TMR2	Timer2 N	Iodule's Re	gister						0000 0000	33		
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	34		
13h	SSPBUF	Synchror	nous Serial	Port Receive	e Buffer/Tran	smit Registe	er	-	_	xxxx xxxx	43,48		
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	45		
15h	CCPR1L	Capture/Compare/PWM Register (LSB)								xxxx xxxx	38,39,41		
16h	CCPR1H	Capture/Compare/PWM Register (MSB)							xxxx xxxx	38,39,41			
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	37		
18h-1Dh	_	Unimpler	mented	_	_								
1Eh	ADRES	A/D Resu	ult Register							XXXX XXXX	53		
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	53		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.Note 1: These registers can be addressed from any bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: This bit always reads as a '1'.

2.2.2.2 **OPTION Register**

The OPTION register is a readable and writable register that contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

Note:	To achieve a 1:1 prescaler assignment for							
	the TMR0 register, assign the prescaler to							
	the Watchdog Timer.							

REGISTER 2-2:	ER 2-2: OPTION REGISTER (ADDRESS 81h, 181h)									
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7	RBPU: PC	RTB Pull-u	p Enable bit							
			are disabled							
				by individual po	ort latch valu	les				
bit 6		-	ge Select bit							
			edge of RB(edge of RB	•						
bit 5			ource Select	-						
			/T0CKI pin							
	0 = Interna	al instructio	n cycle clock	(CLKO)						
bit 4	TOSE: TM	R0 Source	Edge Select	bit						
				ition on RA4/1						
				ition on RA4/1	OCKI pin					
bit 3		caler Assig								
		-	ned to the W ned to the Ti	mer0 module						
bit 2-0			Rate Select b							
	I	Bit Value 1	MR0 Rate \	VDT Rate						
	_	000	1:2	1:1						
		001 010	1:4	1:2 1:4						
		010	1:8 1:16	1:8						
		100	1:32	1:16						
		101 110	1 : 64 1 : 128	1 : 32 1 : 64						
	111 1 : 256 1 : 128									
	Legend:									
	R = Reada	able bit	VV = V	Vritable bit	U = Unimp	plemented	bit, read as	'0'		
	- n = Value	e at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	Inknown		

F

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register, reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note:	On a Power-on Reset, these pins are con-
	figured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1:	INITIALIZING PORTA

BANKSEL CLRF	PORTA PORTA	; select bank for PORTA ; Initialize PORTA by ; clearing output ; data latches
BANKSEL MOVLW	ADCON1 0x06	; Select Bank for ADCON1 ; Configure all pins
MOVWF MOVLW	ADCON1 0xCF	; as digital inputs ; Value used to
		; initialize data ; direction
MOVWF	TRISA	; Set RA<3:0> as inputs ; RA<5:4> as outputs ; TRISA<7:6> are always ; read as `0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

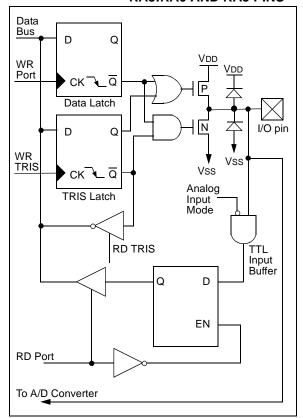
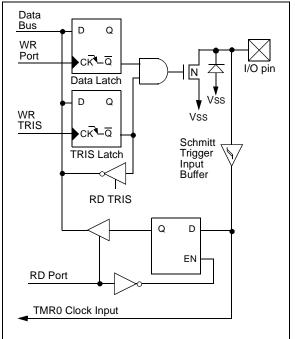



FIGURE 3-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2	bit 2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit 4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/AN4/SS	bit 5	TTL	Input/output or analog input or slave select input for synchronous serial port.

TABLE 3-1:PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA I	PORTA Data Direction Register						11 1111
9Fh	ADCON1	_	—	—	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D Port Configuration Control bits (PCFG2:PCFG0) in the A/D Control Register (ADCON1) must be set to one of the following configurations: 100, 101, 11x.

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit 0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI	bit 1	ST	Input/output port pin or Timer1 oscillator input.
RC2/CCP1	bit 2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	bit 3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit 4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit 5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6	bit 6	ST	Input/output port pin.
RC7	bit 7	ST	Input/output port pin.

TABLE 3-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 3-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	PORTC Data Direction Register								1111 1111

Legend: x = unknown, u = unchanged

5.5 Timer1 Operation in Asynchronous Counter Mode

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, that will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 5.5.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time base for capture or compare operations.

5.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register. Data in the Timer1 register (TMR1) may become corrupted. Corruption occurs when the timer enable is turned off at the same instant that a ripple carry occurs in the timer module.

Reading the 16-bit value requires some care. Examples 12-2 and 12-3 in the PIC[™] Mid-Range MCU

Family Reference Manual (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

5.6 Timer1 Oscillator

A crystal oscillator circuit is built between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	33 pF	33 pF
	100 kHz	15 pF	15 pF
	200 kHz	15 pF	15 pF
These v	alues are for	design guidar	ice only.
c	ligher capacita of oscillator, bu ime.		-
c ti a	Since each res haracteristics he resonator oppropriate components.	, the user sh	ould consult ufacturer for

5.7 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/ clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.8 Resetting Timer1 Using a CCP Trigger Output

If the CCP module is configured in Compare mode to generate a "special event trigger" signal (CCP1M3:CCP1M0 = 1011), the signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note: The special event triggers from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

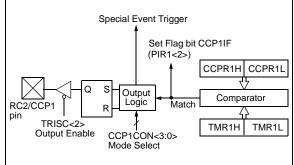
In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.


The output may become inverted when the mode of the module is changed from Compare/Clear on Match (CCPxM<3:0> = '1001') to Compare/Set on Match (CCPxM<3:0> = '1000'). This may occur as a result of any operation that selectively clears bit CCPxM0, such as a BCF instruction.

When this condition occurs, the output becomes inverted when the instruction is executed. It will remain inverted for all following Compare operations, until the module is reset.

FIGURE 8-2: COMPARE MODE OPERATION BLOCK DIAGRAM

Special event trigger will:

- RESET Timer1, but not set interrupt flag bit TMR1IF (PIR1<0>)
- Set bit GO/DONE (ADCON0<2>) bit, which starts an A/D conversion

8.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

8.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated that may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 module will not set interrupt flag bit TMR1IF (PIR1<0>).

10.0 ANALOG-TO-DIGITAL **CONVERTER (A/D) MODULE**

The analog-to-digital (A/D) converter module has five inputs for the PIC16F72.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The A/D module has three registers:

- A/D Result Register ADRES
- A/D Control Register 0 ADCON0
- ADCON1 A/D Control Register 1

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

The ADCON0 register, shown in Register 10-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 10-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or a digital I/O.

For more information on use of the A/D Converter, see AN546 - Use of A/D Converter, or refer to the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 10-1: ADCON0: A/D CONTROL REGISTER 0 (ADDRESS 1Fh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON
	bit 7							bit 0
bit 7-6	ADCS<1:0	>: A/D Conv	ersion Cloc	k Select bits				
	00 = Fosc	-						
	01 = Fosc 10 = Fosc							
			d from the in	iternal A/D m	nodule RC o	oscillator)		
bit 5-3		: Analog Ch				,		
	000 = Ch a	annel 0, (RA)/AN0)					
		annel 1, (RA						
		annel 2, (RA2 annel 3, (RA3	,					
		annel 4, (RA						
bit 2	GO/DONE	A/D Conve	rsion Status	bit				
	If ADON =							
				•		/D conversion	,	
		rsion is com		(this dit is al	Itomatically	cleared by ha	roware whe	n the A/D
bit 1	Unimplem	nented: Rea	d as '0'					
bit 0	ADON: A/	D On bit						
		onverter mod	•	•				
	0 = A/D cc	onverter mod	ule is shut-o	off and consu	mes no ope	erating current		
	Legend:							
	R = Reada			/ritable bit		mplemented bi		
	- n = Value	e at POR	'1' = B	it is set	'0' = Bit	is cleared	x = Bit is ur	nknown

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' = '0', the next instruction is executed. If bit 'b' = '1', then the next instruction is discarded and a NOP is executed instead, making this a 2 TCY instruction.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' = '1', the next instruction is executed. If bit 'b' in register 'f' = '0', the next instruction is discarded, and a NOP is executed instead, making this a 2 TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC) + 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \end{array}$
Status Affected:	None		$1 \rightarrow PD$
Description:	Call Subroutine. First, return	Status Affected:	TO, PD
	address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.	Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow \text{GIE}$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is stored back in register 'f'. -C Register f

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le k \le 255$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' = '0', the result is placed in the W register. If 'd' = '1', the result is placed back in register 'f'. Register f

RETURN	Return from Subroutine	SLEEP	
Syntax:	[label] RETURN	Syntax:	[label] SLEEP
Operands:	None	Operands:	None
Operation:	$TOS\toPC$	Operation:	00h \rightarrow WDT,
Status Affected:	None		$0 \rightarrow WDT$ prescaler, 1 $\rightarrow TO$,
Description:	Return from subroutine. The stack		$0 \rightarrow PD$
	is POPed and the top of the stack (TOS) is loaded into the program	Status Affected:	TO, PD
	counter. This is a two-cycle instruction.	Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP

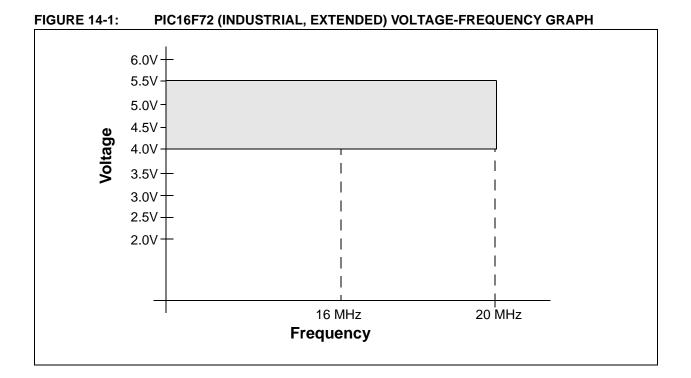
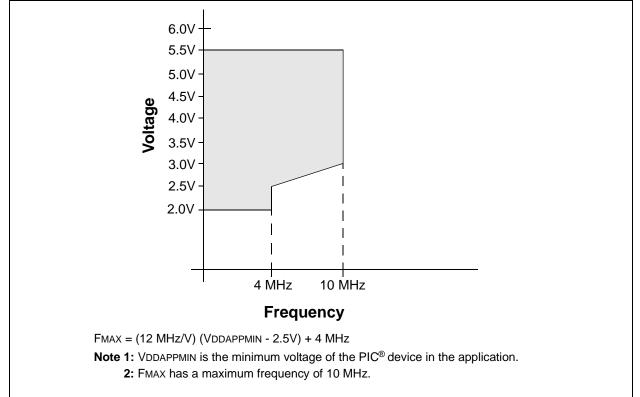

mode with the oscillator stopped.

TABLE 13-1: DEVELOPMENT TOOLS FROM MICROCHIP


	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	VXX381219	PIC16F62X	X7Oði Olq	(X7O81OI9	PIC16C8X/ PIC16C8X	PIC16F8X	(X6D81DI9	X43713I9	(XTOTIOI9	PIC18CXX	PIC18FXX	83CXX 52CXX/ 54CXX/	хххэн	МСКFXXX	MCP2510
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler				1								>	>						
MPLAB [®] C18 C Compiler														>	>				
MPLINK TM Assembler/ MPLINK TM Object Linker	>	>	>	>	^	~	>	>	>	>	>	>	>	>	>	>	>		
MPLAB® ICE In-Circuit Emulator	~	~	>	>	~	×*`	>	>	>	~	>	>	>	~	~				
ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
MPLAB® ICD In-Circuit Debugger				*>			* >			>					>				
PICSTART [®] Plus Entry Level Development Programmer	>	>	>	>	>	**^	>	`	`	`	>	>	>	>	>				
PRO MATE® II Universal Device Programmer	>	>	>	>	>	**/	^	^	^	^	>	>	>	>	>	>	>		
PICDEM TM 1 Demonstration Board			>		>		÷+		>			>							
PICDEM [™] 2 Demonstration Board				.≁			.↓							>	>				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board		>																	
PICDEM TM 17 Demonstration Board													>						
KEELoQ [®] Evaluation Kit																	>		
KEELoq® Transponder Kit																	>		
microlD™ Programmer's Kit																		~	
125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit																		`	
13.56 MHz Anticollision microlD TM Developer's Kit																		>	
MCD0610 CAN Barrelande Kit																			>

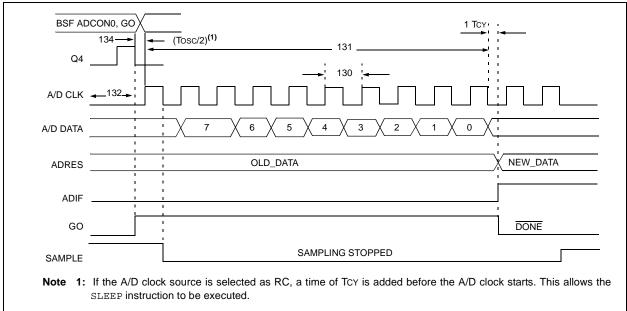
** Contact Microchip Technology Inc. for availability date.
[†] Development tool is available on select devices.

PIC16F72

14.1 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial)

PIC16LF72 (Industrial)				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC16F72 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Sym	Characteristic	Min	Min Typ† Max Units Conditions			Conditions		
	Vdd	Supply Voltage							
D001		PIC16LF72	2.0 2.5 2.2		5.5 5.5 5.5	V V V	A/D not used, -40°C to +85°C A/D in use, -40°C to +85°C A/D in use, 0°C to +85°C		
D001 D001A		PIC16F72	4.0 Vbor*	_	5.5 5.5	V V	All configurations BOR enabled (Note 7)		
D002*	Vdr	RAM Data Retention Voltage (Note 1)	—	1.5	—	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V	BOREN bit in configuration word enabled		

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

Param No.	Sym	Characteristic		Min	Тур†	「yp† Max		Conditions	
130	Tad	A/D Clock Period	PIC16F72	1.6	—	-	μs	Tosc based, VREF \geq 3.0V	
			PIC16LF72	2.0	—	—	μs	Tosc based, 2.0V ≤ VREF ≤ 5.5V	
			PIC16F72	2.0	4.0	6.0	μs	A/D RC mode	
			PIC16LF72	3.0	6.0	9.0	μs	A/D RC mode	
131	TCNV	Conversion Time (not including S/H time) (Note 1)		9	—	9	TAD		
132	TACQ	Acquisition Time		5*		_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).	
134	TGO	Q4 to A/D Clock Start		_	Tosc/2	_		If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

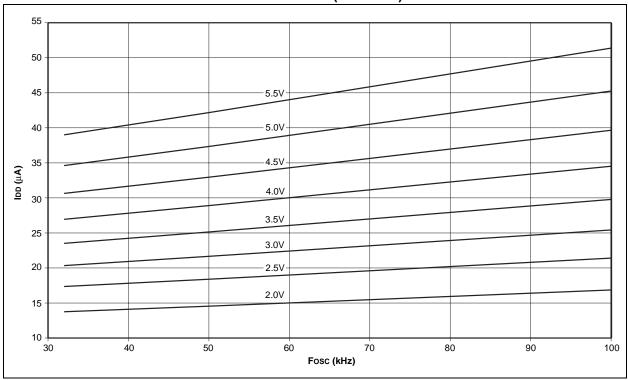
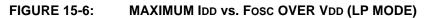
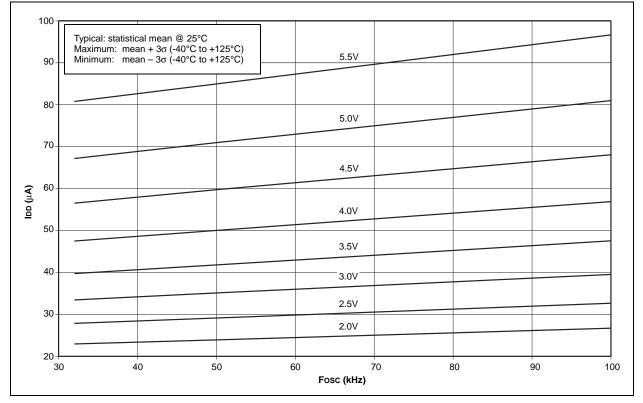
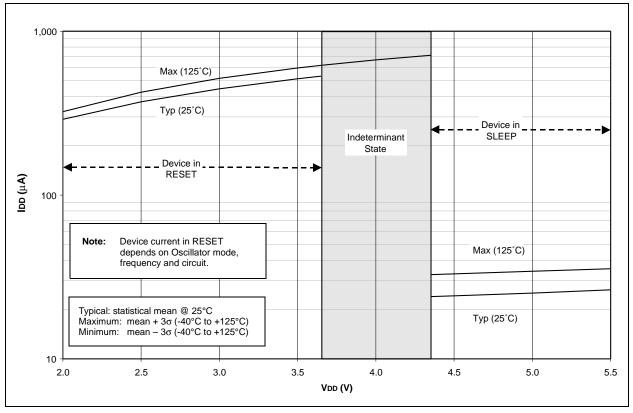





FIGURE 15-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

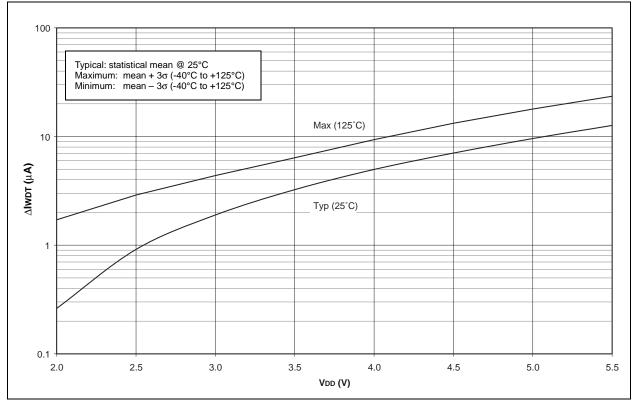
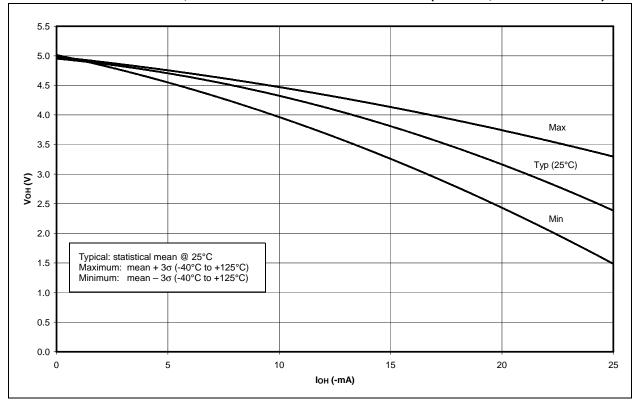
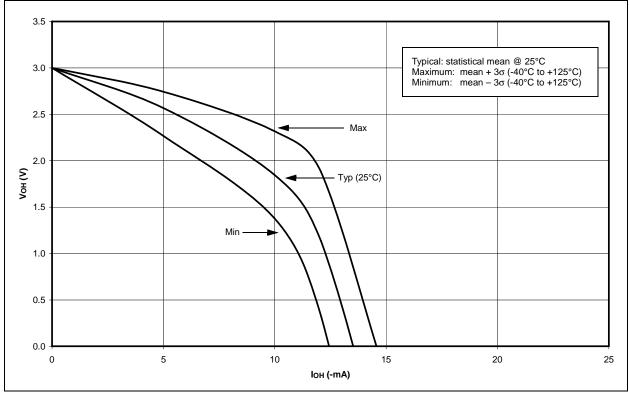
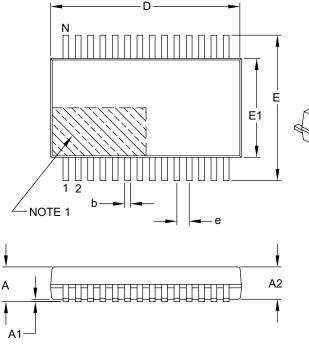
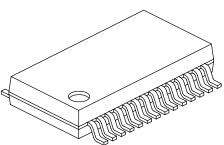
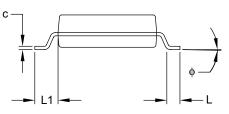


FIGURE 15-11: △IBOR vs. VDD OVER TEMPERATURE


FIGURE 15-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)





28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

Timing Diagrams
A/D Conversion105
Brown-out Reset96
Capture/Compare/PWM (CCP1)98
CLKO and I/O95
External Clock94
I ² C Bus Data102
I ² C Bus START/STOP bits101
I ² C Reception (7-bit Address) 50
I ² C Transmission (7-bit Address)
RESET, Watchdog Timer, Oscillator Start-up Timer
and Power-up Timer96
Slow Rise Time (MCLR Tied to VDD Through
RC Network)68
SPI Master Mode 47
SPI Master Mode (CKE = 0, SMP = 0)
SPI Master Mode (CKE = 1, SMP = 1)
SPI Slave Mode (CKE = 0) 47, 100
SPI Slave Mode (CKE = 1)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through Pull-up Resistor)
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 1
Time-out Sequence on Power-up (MCLR Tied to
VDD Through RC Network): Case 2
Timer0 and Timer1 External Clock
Wake-up from SLEEP through Interrupt
Timing Parameter Symbology93
TMR1H Register9
TMR1L Register9
TMR2 Register9
TMR2ON bit
TOUTPS0 bit
TOUTPS1 bit
TOUTPS2 bit
TOUTPS3 bit
TRISA Register 10, 21
TRISB Register 10, 23
TRISC Register 10, 25

U

0	
UA	44
Update Address bit, UA	44
W	
Wake-up from SLEEP	59, 71
Interrupts	
MCLR Reset	66
WDT Reset	
Watchdog Timer (WDT)	59, 70
Associated Registers	
Enable (WDTEN bit)	
Postscaler. See Postscaler, WDT	
Programming Considerations	
RC Oscillator	
Time-out Period	
WDT Reset, Normal Operation	
WDT Reset, SLEEP	
WCOL	, ,
Write Collision Detect bit, WCOL	
WWW, On-Line Support	