Microchip Technology - PIC16LF72T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf72t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.4 PIE1 Register

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

- n = Value at POR

REGISTER 2-4: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS 8Ch)

ER 2-4:	PIET: PER	IPHERAL	INTERRU		REGISTI		KE33 00	n)
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	Unimpleme	ented: Rea	d as '0'					
bit 6	•		nterrupt Enal	hla hit				
DILO			onverter inter					
			onverter inte					
bit 5-4	Unimpleme	ented: Rea	d as '0'					
bit 3	SSPIE: Syr	nchronous S	Serial Port Int	terrupt Enabl	e bit			
	1 = Enables							
	0 = Disable	es the SSP i	nterrupt					
bit 2	CCP1IE: C	CP1 Interru	pt Enable bit					
	1 = Enables							
	0 = Disables the CCP1 interrupt							
bit 1	TMR2IE: TI	MR2 to PR2	2 Match Inter	rupt Enable b	oit			
			to PR2 mate					
	0 = Disable	es the TMR2	2 to PR2 mat	ch interrupt				
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit							
	1 = Enables the TMR1 overflow interrupt							
	0 = Disable	es the TMR1	l overflow int	terrupt				
	Legend:							
	R = Readab	ole bit	W = W	/ritable bit	U = Unim	plemented I	oit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the Peripheral interrupts.

- n = Value at POR

EGISTER 2-5:	PIR1: PEI	RIPHERAL	INTERRUI	PT FLAG R	EGISTER	1 (ADDRE	SS 0Ch)	
	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
		ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF
	bit 7							bit 0
bit 7	Unimplem	ented: Read	d as '0'					
bit 6			nterrupt Flag	bit				
) conversion /D conversio	completed	olete				
bit 5-4	Unimplem	ented: Read	d as '0'					
bit 3	SSPIF: Sy	nchronous S	Serial Port (S	SP) Interrupt	Flag bit			
	from th The co 0 = No SS	ne Interrupt S onditions that P interrupt c	condition has Service Routi t will set this condition has	ine. bit are a tran				Ū
bit 2	bit 2 CCP1IF: CCP1 Interrupt Flag bit							
		R1 register ca	apture occurr capture occu		cleared in s	oftware)		
		R1 register co	ompare matc compare mat		must be clea	ared in softv	vare)	
	<u>PWM mod</u> Unused in							
bit 1	TMR2IF: T	MR2 to PR2	2 Match Inter	rupt Flag bit				
			ch occurred (natch occurr		ared in softw	/are)		
bit 0	TMR1IF: T	MR1 Overflo	ow Interrupt	Flag bit				
	1 = TMR1	register ove	rflowed (mus not overflow	-	in software))		
	Legend:]
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	'0'
	1							

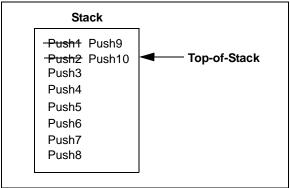
'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note, *"Implementing a Table Read"* (AN556).


2.3.2 STACK

The stack allows a combination of up to eight program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSH'd onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POP'd in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSH'd or POP'd.

After the stack has been PUSH'd eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). An example of the overwriting of the stack is shown in Figure 2-4.

FIGURE 2-4: STACK MODIFICATION

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper two bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> bits is not required for the return instructions (which POPs the address from the stack).

Note:	The PIC16F72 device ignores the paging					
	bit PCLATH<4:3>. The use of					
	PCLATH<4:3> as a general purpose read/					
	write bit is not recommended, since this					
	may affect upward compatibility with future					
	products.					

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1:	INDIRECT	ADDRESSING

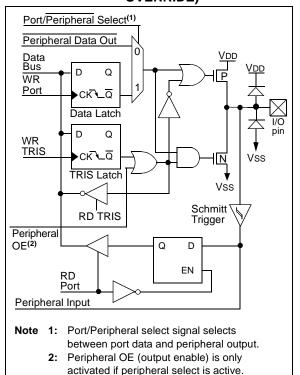
NEXT	movwf clrf incf btfss	FSR INDF FSR FSR,4	<pre>;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;NO, clear next</pre>
CONTINUE	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.


When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 3-3: INITIALIZING PORTC

BANKSEL	PORTC	; Select Bank for PORTC
CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
BANKSEL	TRISC	; Select Bank for TRISC
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

FIGURE 3-5:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

7.0 READING PROGRAM MEMORY

The FLASH Program Memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit wide numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory:

- PMCON1
- PMDATL
- PMDATH
- PMADRL
- PMADRH

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATL registers form a two-byte word, which holds the 14-bit data for reads. The PMADRH:PMADRL registers form a two-byte word, which holds the 13-bit address of the FLASH location being accessed. This device has up to 2K words of program FLASH, with an address range from 0h to 07FFh. The unused upper bits PMDATH<7:6> and PMADRH<7:5> are not implemented and read as zeros.

R = Readable bit

'1' = Bit is set

7.1 PMADR

The address registers can address up to a maximum of 8K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the PMADRH register and the LSByte is written to the PMADRL register. The upper MSbits of PMADRH must always be clear.

7.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit RD initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 7-1: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1 (ADDRESS 18Ch)

			•••••				···,
R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0
reserved	_	—	_	—	—	—	RD
bit 7							bit 0
Reserved:	Read as '1'						
Unimplemented: Read as '0'							
RD: Read Control bit							
1 = Initiates a FLASH read, RD is cleared in hardware. The RD bit can only be set (not cleared) in software.							
0 = Does not initiate a FLASH read							
Legend:							
W = Writab	le bit	U = l	Jnimplement	ed bit, read	as '0'		

S = Settable bit

'0' = Bit is cleared

bit 7 bit 6-1 bit 0

-n = Value at POR

x = Bit is unknown

8.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a:

- 16-bit capture register
- 16-bit compare register
- PWM master/slave duty cycle register.

Table 8-1 shows the timer resources of the CCP Module modes.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[™] Mid-Range MCU Reference Manual, (DS33023).

TABLE 8-1:CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

REGISTER 8-1: CCPCON1: CAPTURE/COMPARE/PWM CONTROL REGISTER 1 (ADDRESS 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCPxX:CCPxY: PWM Least Significant bits Capture mode:

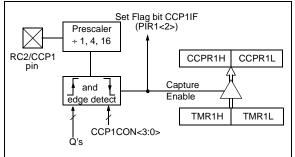
	Capture mode:
	Unused
	Compare mode:
	Unused
	PWM mode:
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0	CCPxM3:CCPxM0: CCPx Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode, set output on match (CCPxIF bit is set)
	1001 = Compare mode, clear output on match (CCPxIF bit is set)
	1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set,
	CCPx pin is unaffected)
	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1 and starts an A/D conversion (if A/D module is enabled)
	11xx = PWM mode
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

8.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in Operating mode.

8.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	; Turn CCP module off
MOVLW	NEW_CAPT_PS	; Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	; Load CCP1CON with
		; this value

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	all o	e on other SETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	—	ADIF	—		SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	—	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
87h	TRISC	PORTC	PORTC Data Direction Register							1111	1111	1111	1111
0Eh	TMR1L	Holding	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						xxxx	uuuu	uuuu		
0Fh	TMR1H	Holding	Registe	er for the M	ost Significa	ant Byte of t	he 16-bit T	MR1 Regis	ster	xxxx	xxxx	uuuu	uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture	Capture/Compare/PWM Register1 (LSB)					uuuu					
16h	CCPR1H	Capture	Capture/Compare/PWM Register1 (MSB)					uuuu					
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Maximum PWM resolution (bits) for a given PWM frequency is calculated using Equation 8-3.

EQUATION 8-3: PWM MAX RESOLUTION

PWM Maximum Resolution = $\frac{\log{(\frac{Fosc}{FpWM})}}{\log(2)}$ bits

Note:	If the PWM duty cycle value is longer than
	the PWM period, the CCP1 pin will not be
	cleared.

For a sample PWM period and duty cycle calculation, see the PIC[™] Mid-Range MCU Reference Manual (DS33023).

8.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-3 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 8-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR		e on ther ETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	0000	0000
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	0000	0000
87h	TRISC	PORT	PORTC Data Direction Register							1111	1111	1111	1111
11h	TMR2	Timer2	Timer2 Module Register							0000	0000	0000	0000
92h	PR2	Timer2	Timer2 Module Period Register						1111	1111	1111	1111	
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Captur	Capture/Compare/PWM Register1 (LSB)						xxxx	uuuu	uuuu		
16h	CCPR1H	Captur	Capture/Compare/PWM Register1 (MSB)					uuuu					
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

10.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

10.6 Effects of a RESET

A device RESET forces all registers to their RESET state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRES register will contain unknown data after a Power-on Reset.

10.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done_before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	ult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	—	_	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA D	Data Dire	ection Re	gister			11 1111	11 1111

TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

12.0 INSTRUCTION SET SUMMARY

Each PIC16F72 instruction is a 14-bit word divided into an OPCODE that specifies the instruction type and one or more operands that further specify the operation of the instruction. The PIC16F72 instruction set summary in Table 12-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 12-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven-bit constant or literal value.

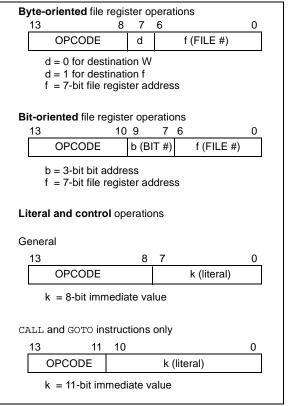
TABLE 12-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles, with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 12-2 lists the instructions recognized by the MPASMTM assembler.


Figure 12-1 shows the general formats that the instructions can have.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 12-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC[™] Mid-Range MCU Family Reference Manual (DS33023).

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k \text{ - (W)} \rightarrow (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

XORLW	Exclusive OR Literal with W					
Syntax:	[label] XORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

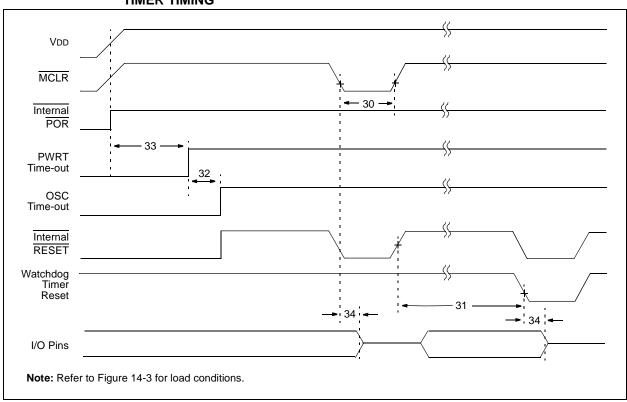
SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' = '0', the result is stored in the W register. If 'd' = '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' = '0', the result is placed in W register. If 'd' = '1', the result is placed in register 'f'.

14.1 DC Characteristics: PIC16F72 (Industrial, Extended) PIC16LF72 (Industrial)

					Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC16F (Indus	72 strial, Ex	tended)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	Vdd	Supply Voltage								
D001		PIC16LF72	2.0 2.5 2.2		5.5 5.5 5.5	V V V	A/D not used, -40°C to +85°C A/D in use, -40°C to +85°C A/D in use, 0°C to +85°C			
D001 D001A		PIC16F72	4.0 Vbor*	_	5.5 5.5	V V	All configurations BOR enabled (Note 7)			
D002*	Vdr	RAM Data Retention Voltage (Note 1)		1.5	—	V				
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details			
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details			
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V	BOREN bit in configuration word enabled			


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- **4:** For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

FIGURE 14-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 14-7: BROWN-OUT RESET TIMING

TABLE 14-3:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_	-	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	_	—	Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	$VDD \le VBOR (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Sym	Characte	eristic	Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution	PIC16F72	_	_	8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16LF72	—	_	8 bits	bit	VREF = VDD = 2.2V
A02	Eabs	Total Absolute Er	ror	_	_	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral Linearity	Error	—	_	< ± 1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A04	Edl	Differential Linearity Error		—	_	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	Efs	Full Scale Error		—	_	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset Error		—	—	< ± 1	LSb	$\begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity (Note 3)		—	guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference Voltage		2.5 2.2	_	Vdd+0.3 Vdd+0.3	V V	-40°C to +85°C 0°C to +85°C
A25	VAIN	Analog Input Volt	age	Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source		—	_	10.0	kΩ	
A40	IAD	A/D Conversion	PIC16F72	—	180	—	μΑ	Average current
		Current (VDD)	PIC16LF72	—	90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input currer	nt (Note 2)	N/A —		± 5 500	μΑ μΑ	During VAIN acquisition. During A/D Conversion cycle.

TABLE 14-9: A/D CONVERTER CHARACTERISTICS: PIC16F72 (INDUSTRIAL) PIC16LF72 (INDUSTRIAL)

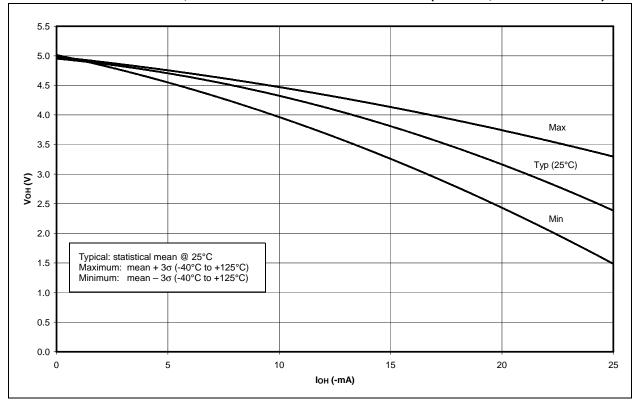
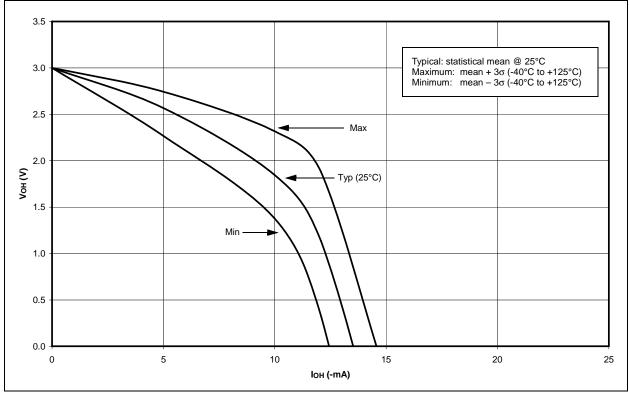
* These parameters are characterized but not tested.

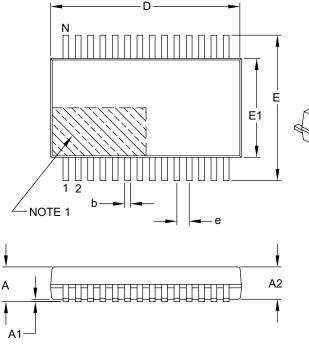
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

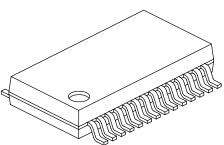
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

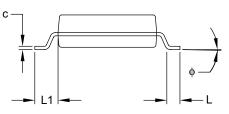
2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.


FIGURE 15-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)





28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	А	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	с	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

PIC16F72

Oscillator Configuration	59, 61
Crystal Oscillator/Ceramic Resonators	61
HS	61, 65
LP	61, 65
RC	61, 62, 65
XT	61, 65
Oscillator, WDT	70

Ρ

-
P44
Package Marking Information117
PCFG0 bit54
PCFG1 bit
PCFG2 bit
PCL Register
PCLATH Register
PCON Register
POR bit
PICDEM 1 Low Cost PIC
Demonstration Board
PICDEM 17 Demonstration Board
PICDEM 2 Low Cost PIC16CXX
Demonstration Board83
PICDEM 3 Low Cost PIC16CXXX
Demonstration Board84
PICSTART Plus Entry Level
Development Programmer83
Pin Functions
MCLR/VPP
OSC1/CLKI
OSC2/CLKO
RA0/AN0
RA1/AN1
RA2/AN26
RA3/AN3/VREF6
RA4/T0CKI
RA5/AN4/SS6
RB0/INT6
RB16
RB26
RB3
RB4
RB5
RB6/PGC
RB7/PGD
RC0/T1OSO/T1CKI
RC1/T10SI6
RC2/CCP16
RC3/SCK/SCL6
RC4/SDI/SDA6
RC5/SDO6
RC66
RC76
VDD6
Vss6
Pinout Descriptions
PIC16F72
POP
POP
PORTA
Associated Registers
Functions22

PORTA Register PORTB		9
Associated Registers		24
Functions		
Pull-up Enable (RBPU bit)		13
RB0/INT Edge Select (INTEDG bit)		13
RB0/INT Pin, External		
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)		14
RB7:RB4 Interrupt-on-Change		69
RB7:RB4 Interrupt-on-Change Enable		
(RBIE bit)		69
RB7:RB4 Interrupt-on-Change Flag		
(RBIF bit)	. 14,	69
PORTB Register		9
Associated Registers		26
Functions		26
PORTC Register		9
Postscaler, WDT		
Assignment (PSA Bit)		13
Rate Select (PS2:PS0 bits)		13
Power-down Mode. See SLEEP		
Power-on Reset (POR) 59, 62, 64	, 65,	66
Brown-out Reset (BOR)		64
Oscillator Start-up Timer (OST)	. 59,	64
POR Status (POR bit)		
Power Control/Status Register (PCON)		64
Power-down (PD bit)		
Power-up Timer (PWRT)		
Time-out (TO bit)		
Time-out Sequence		
PR2 Register		
Prescaler, Timer0		
Assignment (PSA bit)		13
Rate Select (PS2:PS0 bits)		13
PRO MATE II Universal Device Programmer		
Product Identification System	1	33
Program Counter		
RESET Conditions		65
Program Memory		
Paging		19
Program Memory Map and Stack		. 7
Program Verification		
PUSH		

R

R/W	44
R/W bit	49
RBIF bit	
Read/Write bit Information, R/W	44
Reader Response	132
Reading Program Memory	27
PMADR	27
PMCON1 Register	27
Receive Overflow Indicator bit, SSPOV	45
Register File Map	8

Registers	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	54
CCPCON1 (Capture/Compare/PWM Control 1)	37
Initialization Conditions (table)	
INTCON (Interrupt Control)	
OPTION	
PCON (Power Control)	
PIE1 (Peripheral Interrupt Enable 1)	
PIR1 (Peripheral Interrupt Flag 1)	
PMCON1 (Program Memory Control 1)	
SSPCON (Sync Serial Port Control)	
SSPSTAT (Synchronous Serial Port Status)	44
STATUS	12
Summary	
T1CON (Timer1 Control)	
RESET	
Brown-out Reset (BOR). See Brown-out Reset (BOR)	
MCLR RESET. See MCLR	
Power-on Reset (POR). See Power-on Reset (POR)	
RESET Conditions for All Registers	
RESET Conditions for PCON Register	65
RESET Conditions for Program Counter	
RESET Conditions for STATUS Register	65
WDT Reset. See Watchdog Timer (WDT)	
Revision History12	23
RP0, RP1 bit	
	••
S	
S	11
Sales and Support1	33
Slave Mode	
SCL	-
SDA	48
SLEEP	71
SMP	44
Software Simulator (MPLAB SIM)	82
Special Event Trigger	
Special Features of the CPU	
Special Function Registers	
PMADRH	77
PMADRL	
PMCON1	
PMDATH	
PMDATL	27
SPI	
Associated Registers	46
SPI Clock Edge Select bit, CKE	
SPI Data Input Sample Phase Select bit, SMP	
SPI Mode	•••
Serial Clock	<u>4</u> 2
Serial Data In	-
	+0

	Serial Data In	
	Serial Data Out	
	Slave Select	
SSP		
	ACK	
	Addressing	
	BF bit	
	I ² C Mode Operation	
	R/W bit	
	Reception	
	SCL Clock Input	
	SSPOV bit	
	Transmission	-

SSPADD Register	. 10
SSPEN	. 45
SSPIF	. 16
SSPM3:SSPM0	. 45
SSPOV	
SSPSTAT Register	
Stack	
Overflows	
Underflow	. 19
START bit, S	
STATUS Register	
DC bit	. 12
IRP bit	. 12
PD bit	. 62
TO bit 12,	, 62
STOP bit, P	. 44
Synchronous Serial Port (SSP)	
Overview	. 43
SPI Mode	. 43
Synchronous Serial Port Enable bit, SSPEN	. 45
Synchronous Serial Port Interrupt	. 16
Synchronous Serial Port Mode Select bits,	
SSPM3:SSPM0	. 45

Т

T2CKPS0 bit	. 36
T2CKPS1 bit	. 36
T2CON (Timer2 Control)	. 36
Tad	
Timer0	. 29
Clock Source Edge Select (T0SE bit)	. 13
Clock Source Select (T0CS bit)	
External Clock	. 30
Interrupt	. 29
Operation	. 29
Overflow Enable (TMR0IE bit)	. 14
Overflow Flag (TMR0IF bit)	
Overflow Interrupt	
Prescaler	. 30
ТОСКІ	. 30
Timer1	
Associated Registers	. 34
Asynchronous Counter Mode	. 33
Capacitor Selection	
Counter Operation	. 32
Interrupt	. 33
Operation in Timer Mode	. 32
Oscillator	. 33
Prescaler	. 34
Resetting TMR1H, TMR1L Register Pair	. 34
Resetting Using a CCP Trigger Output	
Synchronized Counter Mode	
Timer2	. 35
Interrupt	. 35
Operation	. 35
Output	. 35
Prescaler, Postscaler	. 35

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	a) PIC16F72-04I/SO = Industrial Temp., SOIC package, normal VDD limits
Device	PIC16F72: Standard VDD range PIC16F72T: (Tape and Reel) PIC16LF72: Extended VDD range	 b) PIC16LF72-20I/SS = Industrial Temp., SSOP package, extended VDD limits c) PIC16F72-20I/ML = Industrial Temp., QFN package, normal VDD limits
Temperature Range	$- = 0^{\circ}C \text{ to } +70^{\circ}C$ I = -40^{\circ}C to +85^{\circ}C	
Package	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Pattern	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices.	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.