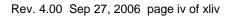


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFl

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	IrDA, SCI
Peripherals	POR, PWM, WDT
Number of I/O	74
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2144fa20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Page	Revision (See Manual for Details)					
22.4.2 Block Diagram	643	Figure 22.2 amended					
Figure 22.2 Block Diagram of Flash Memory	643	Figure 22.2 amended Internal address bus Internal data bus (16 bits) FLMCR1* Bus interface/controller Operating mode Mode pins EBR1* Flash memory (128 kbytes/64 kbytes)					
22.5.3 Erase Block Registers 1 and 2 (EBR1, EBR2)	653	Bit figure amended Read/Write description of bits 7 to 2 (Before) — *2 \rightarrow (After) —					
22.10.1 Programmer Mode Setting	671	Note amended In programmer mode, Renesas Technology microcomputer device types with 128-kbyte ^{*1*3} or 64-kbyte ^{*2*3} on-chip flash memory Note: 3. Use products other than the A-mask version of the					
		H8S/2148, H8S/2147N, H8S/2144, and H8S/2142					
22.10.4 Memory Read Mode Figure 22.17 Timing Waveforms when Entering Another Mode from Memory Read Mode	675	FA17 to FA0 We mory read mode CE OE WE FO7 to FO0 Data CE CE CE CE CE CE CE CE CE CE					

	Pin Name							
Pin No.	Expan	ded Modes	Single-Chip Modes					
FP-100B TFP-100B	Mode 1	Mode 2 (EXPE = 1) Mode 3 (EXPE = 1)	Mode 2 (EXPE = 0) Mode 3 (EXPE = 0)	Flash Memory Writer Mode				
22	RD	RD	P93/IOR	WE				
23	P92/IRQ0	P92/IRQ0	P92/IRQ0	VSS				
24	P91/IRQ1	P91/IRQ1	P91/IRQ1	VCC				
25	LWR/P90/IRQ2/ ADTRG	LWR/P90/IRQ2/ ADTRG	P90/IRQ2/ADTRG/ ECS2	VCC				
26	P60/FTCI/CIN0/ KIN0/TMIX/ HFBACKI	P60/FTCI/CIN0/ KIN0/TMIX/ HFBACKI	P60/FTCI/CIN0/ KIN0/TMIX/ HFBACKI	NC				
27	P61/FTOA/CIN1/ KIN1/VSYNCO	P61/FTOA/CIN1/ KIN1/VSYNCO	P61/FTOA/CIN1/ KIN1/VSYNCO	NC				
28	P62/FTIA/CIN2/ KIN2/TMIY/ VSYNCI	P62/FTIA/CIN2/ KIN2/TMIY/ VSYNCI	P62/FTIA/CIN2/ KIN2/TMIY/ VSYNCI	NC				
29	P63/FTIB/CIN3/ KIN3/VFBACKI	P63/FTIB/CIN3/ KIN3/VFBACKI	P63/FTIB/CIN3/ KIN3/VFBACKI	NC				
30	PA3/CIN11/ KIN11/PS2AD	A19/PA3/CIN11/ KIN11/PS2AD	PA3/CIN11/ KIN11/PS2AD	NC				
31	PA2/CIN10/ KIN10/PS2AC	A18/PA2/CIN10/ KIN10/PS2AC	PA2/CIN10/ KIN10/PS2AC	NC				
32	P64/FTIC/CIN4/ KIN4/CLAMPO	P64/FTIC/CIN4/ KIN4/CLAMPO	P64/FTIC/CIN4/ KIN4/CLAMPO	NC				
33	P65/FTID/CIN5/ KIN5	P65/FTID/CIN5/ KIN5	P65/FTID/CIN5/ KIN5	NC				
34	P66/FTOB/CIN6/ KIN6/IRQ6	P66/FTOB/CIN6/ KIN6/IRQ6	P66/FTOB/CIN6/ KIN6/IRQ6	NC				
35	P67/TMOX/CIN7/ KIN7/IRQ7	P67/TMOX/CIN7/ KIN7/IRQ7	P67/TMOX/CIN7/ KIN7/IRQ7	VSS				
36	AVref	AVref	AVref	VCC				
37	AVCC	AVCC	AVCC	VCC				
38	P70/AN0	P70/AN0	P70/AN0	NC				
39	P71/AN1	P71/AN1	P71/AN1	NC				
40	P72/AN2	P72/AN2	P72/AN2	NC				
41	P73/AN3	P73/AN3	P73/AN3	NC				

2.8.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which the CPU does not stop. There are five modes in which the CPU stops operating: sleep mode, software standby mode, hardware standby mode, subsleep mode, and watch mode. There are also three other power-down modes: medium-speed mode, module stop mode, and subactive mode. In medium-speed mode, the CPU and other bus masters operate on a medium-speed clock. Module stop mode permits halting of the operation of individual modules, other than the CPU. Subactive mode, subsleep mode, and watch mode are power-down modes that use subclock input. For details, refer to section 25, Power-Down State.

Sleep Mode

A transition to sleep mode is made if the SLEEP instruction is executed while the software standby bit (SSBY) in the standby control register (SBYCR) and the LSON bit in the low-power control register (LPWRCR) are both cleared to 0. In sleep mode, CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU registers are retained.

Software Standby Mode

A transition to software standby mode is made if the SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1 and the LSON bit in LPWRCR and the PSS bit in the WDT1 timer control/status register (TCSR) are both cleared to 0. In software standby mode, the CPU and clock halt and all MCU operations stop. As long as a specified voltage is supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain in their existing states.

Hardware Standby Mode

A transition to hardware standby mode is made when the STBY pin goes low. In hardware standby mode, the CPU and clock halt and all MCU operations stop. The on-chip supporting modules are reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

Renesas

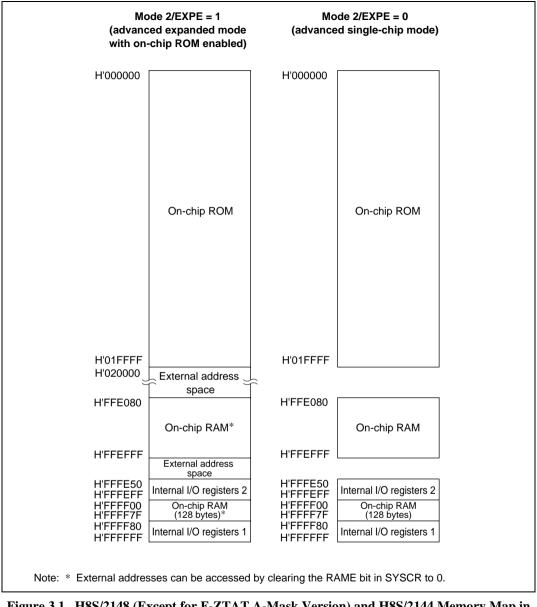


Figure 3.1 H8S/2148 (Except for F-ZTAT A-Mask Version) and H8S/2144 Memory Map in Each Operating Mode (cont)

5.3 Interrupt Sources

Interrupt sources comprise external interrupts (NMI and IRQ7 to IRQ0) and internal interrupts.

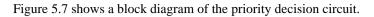
5.3.1 External Interrupts

There are nine external interrupt sources from 25 input pins (23 actual pins): NMI, $\overline{IRQ7}$ to $\overline{IRQ0}$, and $\overline{KIN15}$ to $\overline{KIN0}$. KIN15 to KIN8 share the IRQ7 interrupt source, and KIN7 to KIN0 share the IRQ6 interrupt source. Of these, NMI, IRQ7, IRQ6, and IRQ2 to IRQ0 can be used to restore the H8S/2148 Group or H8S/2144 Group chip from software standby mode.

NMI Interrupt

NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the interrupt control mode and the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin.

The vector number for NMI interrupt exception handling is 7.


IRQ7 to IRQ0 Interrupts

Interrupts IRQ7 to IRQ0 are requested by an input signal at pins $\overline{IRQ7}$ to $\overline{IRQ0}$. Interrupts IRQ7 to IRQ0 have the following features:

- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins IRQ7 to IRQ0.
- Enabling or disabling of interrupt requests IRQ7 to IRQ0 can be selected with IER.
- The interrupt control level can be set with ICR.
- The status of interrupt requests IRQ7 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

A block diagram of interrupts IRQ7 to IRQ0 is shown in figure 5.3.

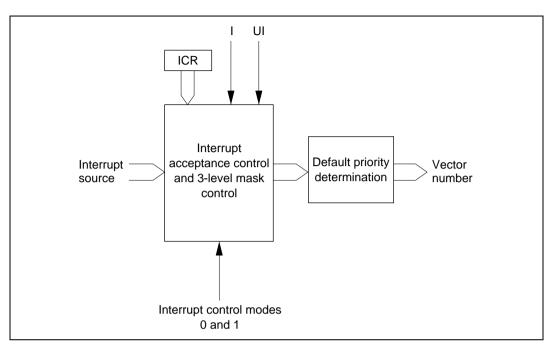


Figure 5.7 Block Diagram of Interrupt Control Operation

Interrupt Acceptance Control and 3-Level Control

In interrupt control modes 0 and 1, interrupt acceptance control and 3-level mask control is performed by means of the I and UI bits in CCR, and ICR (control level).

Table 5.6 shows the interrupts selected in each interrupt control mode.

Pin	Selection Method and Pin Functions							
P94/HWR/IOW	The pin function is switched as shown below according to the combination of operating mode, bit HI12E in SYSCR2, and bit P94DDR.							
	Operating mode	Modes 1, 2, 3 (EXPE = 1)	Мо	= 0)				
	HI12E			0	1			
	P94DDR	_	0	1				
	Pin function	HWR output pin	P94 input pin	P94 output pin	IOW input pin			
P93/RD/IOR		on is switched a de, bit HI12E in \$		according to the o	combination of			
	Operating mode	Modes 1, 2, 3 (EXPE = 1) Modes 2, 3 (EXPE		des 2, 3 (EXPE :	= 0)			
	HI12E	—		0	1			
	P93DDR	—	0	0 1				
	Pin function	RD output pin	P93 input pin	P93 output pin	IOR input pin			
P92/IRQ0	P92DDR	()	1				
	Pin function	P92 in	put pin P92 output pin					
		IRQ0 input pin						
	When bit IRQ0E in IER is set to 1, this pin is used as the $\overline{IRQ0}$ input pin.							
P91/IRQ1	P91DDR	()	1				
	Pin function	P91 input pin		P91 output pin				
		IRQ1 input pin						
	When bit IRQ	1E in IER is set	to 1, this pin is u	sed as the IRQ1	input pin.			

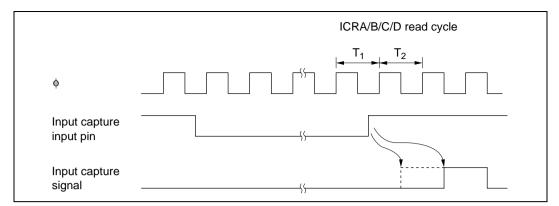
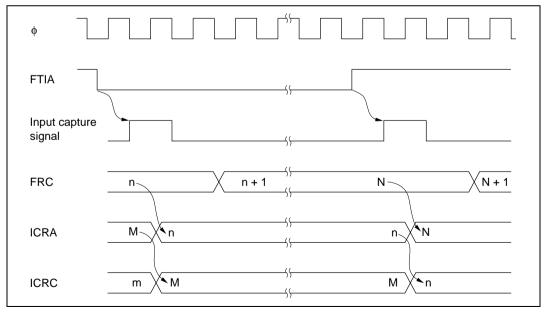



Figure 11.8 Input Capture Signal Timing (Input Capture Input when ICRA/B/C/D Is Read)

Buffered Input Capture Input Timing

ICRC and ICRD can operate as buffers for ICRA and ICRB.

Figure 11.9 shows how input capture operates when ICRA and ICRC are used in buffer mode and IEDGA and IEDGC are set to different values (IEDGA = 0 and IEDGC = 1, or IEDG A = 1 and IEDGC = 0), so that input capture is performed on both the rising and falling edges of FTIA.

Contention between FRC Write and Increment

If an FRC increment pulse is generated during the state after an FRC write cycle, the write takes priority and FRC is not incremented.

Figure 11.19 shows this type of contention.

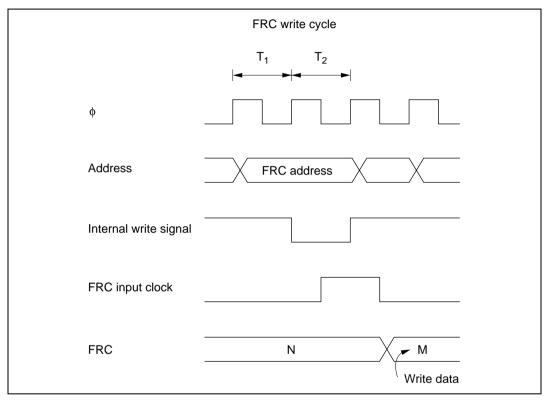


Figure 11.19 FRC Write-Increment Contention

Contention between OCR Write and Compare-Match

If a compare-match occurs during the state after an OCRA or OCRB write cycle, the write takes priority and the compare-match signal is inhibited.

Figure 11.20 shows this type of contention.

Clock

Either an internal clock generated by the built-in baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 15.9.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is at the center of each transmit data bit, as shown in figure 15.3.

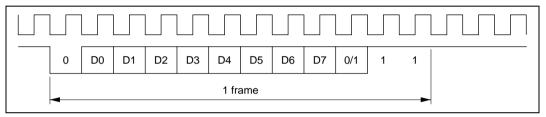


Figure 15.3 Relation between Output Clock and Transfer Data Phase (Asynchronous Mode)

Data Transfer Operations

SCI Initialization (Asynchronous Mode): Before transmitting and receiving data, first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation is uncertain.

Renesas

ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive data register when receiving. ICDR is divided internally into a shift register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). ICDRS cannot be read or written by the CPU, ICDRR is read-only, and ICDRT is write-only. Data transfers among the three registers are performed automatically in coordination with changes in the bus state, and affect the status of internal flags such as TDRE and RDRF.

If IIC is in transmit mode and the next data is in ICDRT (the TDRE flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRT to ICDRS. If IIC is in receive mode and no previous data remains in ICDRR (the RDRF flag is 0) following transmission/reception of one frame of data using ICDRS, data is transferred automatically from ICDRS to ICDRR.

If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.

ICDR is assigned to the same address as SARX, and can be written and read only when the ICE bit is set to 1 in ICCR.

The value of ICDR is undefined after a reset.

The TDRE and RDRF flags are set and cleared under the conditions shown below. Setting the TDRE and RDRF flags affects the status of the interrupt flags.

Renesas

Bit 7—Error Stop Condition Detection Flag (ESTP): Indicates that a stop condition has been detected during frame transfer in I^2C bus format slave mode.

Bit 7

ESTP	Description	
0	No error stop condition	(Initial value)
	[Clearing conditions]	
	1. When 0 is written in ESTP after reading ESTP = 1	
	2. When the IRIC flag is cleared to 0	
1	In I ² C bus format slave mode	
	Error stop condition detected	
	[Setting condition]	
	When a stop condition is detected during frame transfer	
	In other modes	
	No meaning	

Bit 6—Normal Stop Condition Detection Flag (STOP): Indicates that a stop condition has been detected after completion of frame transfer in I^2C bus format slave mode.

Bit 6

STOP	Description
0	No normal stop condition (Initial value)
	[Clearing conditions]
	1. When 0 is written in STOP after reading STOP = 1
	2. When the IRIC flag is cleared to 0
1	In I ² C bus format slave mode
	Normal stop condition detected
	[Setting condition]
	When a stop condition is detected after completion of frame transfer
	In other modes
	No meaning

Bit 5—I²C Bus Interface Continuous Transmission/Reception Interrupt Request Flag (**IRTR**): Indicates that the I²C bus interface has issued an interrupt request to the CPU, and the source is completion of reception/transmission of one frame in continuous transmission/reception for which DTC activation is possible. When the IRTR flag is set to 1, the IRIC flag is also set to 1 at the same time.

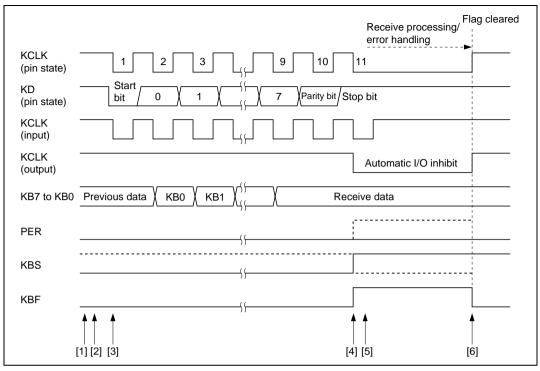


Figure 17.4 Receive Timing

17.3.2 Transmit Operation

In a transmit operation, KCLK (clock) is an output on the keyboard side, and KD (data) is an output on the H8S/2148 Group and H8S/2147N chip (system) side. KD outputs a start bit, 8 data bits (LSB-first), an odd parity bit, and a stop bit, in that order. The KD value is valid when KCLK is high. A sample transmit processing flowchart is shown in figure 17.5, and the transmit timing in figure 17.6.

26.2 Electrical Characteristics of H8S/2148 F-ZTAT

26.2.1 Absolute Maximum Ratings

Table 26.2 lists the absolute maximum ratings.

Table 26.2 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage*	V _{cc}	-0.3 to +7.0	V
Input/output buffer power supply (power supply for the port A)	V _{cc} B	-0.3 to +7.0	V
Input voltage (except ports 6, 7, and A)	V_{in}	–0.3 to V_{cc} +0.3	V
Input voltage (CIN input not selected for port 6)	V_{in}	–0.3 to V_{cc} +0.3	V
Input voltage (CIN input not selected for port A)	V_{in}	-0.3 to V _{cc} B +0.3	V
Input voltage (CIN input selected for port 6)	V_{in}	–0.3 V to lower of voltages $V_{\rm cc}$ +0.3 and AV_{\rm cc} +0.3	V
Input voltage (CIN input selected for port A)	V_{in}	–0.3 V to lower of voltages $V_{\rm cc}B$ +0.3 and $AV_{\rm cc}$ +0.3	V
Input voltage (port 7)	V _{in}	–0.3 to AV _{cc} +0.3	V
Reference supply voltage	AV_{ref}	–0.3 to AV _{cc} +0.3	V
Analog power supply voltage	AV_{cc}	-0.3 to +7.0	V
Analog input voltage	V _{AN}	–0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Operating temperature (flash	T _{opr}	Regular specifications: 0 to +75	°C
memory programming/erasing)		Wide-range specifications: 0 to +85	°C
Storage temperature	T _{stg}	–55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded. Note: * Power supply voltage for VCC1 and VCC2 pins.

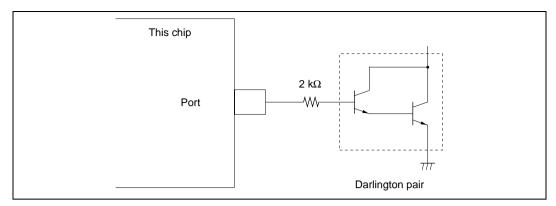


Figure 26.1 Darlington Pair Drive Circuit (Example)

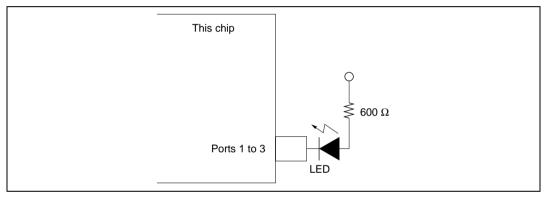


Figure 26.2 LED Drive Circuit (Example)

ltem		Symbol	Value	Unit
	temperature (flash	T _{opr}	Regular specifications: -20 to +75	°C
memory p	programming/erasing)		Wide-range specifications: -40 to +85	°C
Storage te	emperature	$T_{_{stg}}$	–55 to +125	°C
Caution:	exceeded.	than 7.0 V to	o may result if absolute maximum ratings are o any of the pins of the 5- or 4-V version or of the 3-V version	
		ximum rating C1 and VCL	g of $V_{_{\rm CL}}$ in the low-power version (3-V versio pins are connected to the $V_{_{\rm CC}}$ power supply	

Never apply power supply voltage to the VCL pin in the 5- or 4-V version. Always connect an external capacitor between the VCL pin and ground for internal voltage stabilization.

26.3.2 DC Characteristics

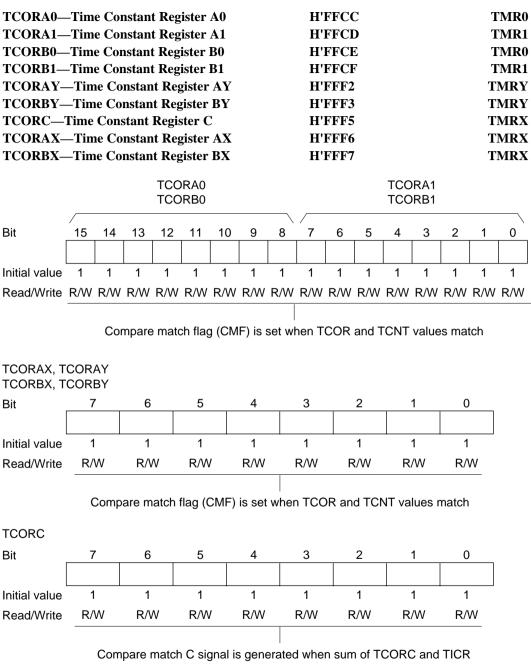

Table 26.17 lists the DC characteristics. Permitted output current values and bus drive characteristics are shown in tables 26.18 and 26.19, respectively.

Table 26.17 DC Characteristics (1)

Conditions: $V_{cc} = 5.0 V \pm 10\%$, $V_{cc}B = 5.0 V \pm 10\%$, $AV_{cc}^{*1} = 5.0 V \pm 10\%$, $AV_{ref}^{*1} = 4.5 V$ to AV_{cc} , $V_{ss} = AV_{ss}^{*1} = 0 V$, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)

ltem			Symbol	Min	Тур	Мах	Unit	Test Conditions
	P67 to P60(KWUL = $00)^{*2*6}$, KIN15 to KIN8 ^{*7*8} ,	(1)	V _T ⁻	1.0	_		V	
voltage			V_{T}^{+}	_	—	$V_{cc} \times 0.7$ $V_{cc} B \times 0.7$		
	$\overline{\text{IRQ2}}$ to $\overline{\text{IRQ0}}^{*3}$, IRQ5 to IRQ3		$V_{T}^{+} - V_{T}^{-}$	0.4	—	_	_	
Schmitt	P67 to P60	-	V _T	$V_{cc} imes 0.3$		_	V	
trigger input voltage	(KWUL = 01)		V_{T}^{+}	_		$V_{cc} imes 0.7$	=	
(in level		_	$V_{_{T}}^{^{+}}-V_{_{T}}^{^{-}}$	$V_{cc} imes 0.05$	—		_	
switching)*6	P67 to P60		V_{T}^{-}	$V_{cc} imes 0.4$		_	_	
	(KWUL = 10)		V_{T}^{+}	_		$V_{cc} imes 0.8$		
		_	$V_{_{T}}^{^{+}}-V_{_{T}}^{^{-}}$	$V_{cc} imes 0.03$			_	
	P67 to P60 (KWUL = 11)		V_{T}^{-}	$V_{cc} imes 0.45$		_	_	
			V_{T}^{+}	_		$V_{cc} imes 0.9$	_	
			$V_{T}^{+}-V_{T}^{-}$	0.05	—	_		
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	V _{IH}	V _{cc} –0.7	_	V _{cc} +0.3	V	
	EXTAL	-		$V_{cc} imes 0.7$		V _{cc} +0.3	_	
	PA7 to PA0*7	-		$V_{cc}B \times 0.7$		V _{cc} B +0.3	-	
	Port 7			2.0	_	AV _{cc} +0.3	=	
	Input pins except (1) and (2) above		_	2.0		V _{cc} +0.3	_	

IER—IRQ Enable Register					H'FFC2	2	Interrup	t Controller
Bit	7	6	5	4	3	2	1	0
	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			IRC	27 to IRQ0	enable			
			0	IRQn int	errupt disa	abled		
		1 IRQn interrupt enabled						
(n = 7 to 0)								

contents match TCNT value