E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
	0 Dit
Core Size	o-Dit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6213pcax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM8AF6213/23/23A/26 block diagram1	1
Figure 2.	Flash memory organization1	4
Figure 3.	STM8AF6213/STM8AF6223 TSSOP20 pinout	2
Figure 4.	STM8AF6223A TSSOP20 pinout	3
Figure 5.	STM8AF6226 LQFP32/VFQPN32 pinout	8
Figure 6.	Memory map	3
Figure 7.	Pin loading conditions	2
Figure 8.	Pin input voltage	3
Figure 9.	$f_{CPIImax}$ versus V_{DD}	6
Figure 10.	External capacitor C _{EXT}	7
Figure 11.	Typ I_{DD} vs. V. HSE user external clock. from = 16 MHz	3
Figure 12.	Typ $I_{DO}(RUN)$ vs. f _{CPU} HSE user external clock. V = 5 V 6	3
Figure 13.	Typ $I_{DD(RUN)}$ vs. V_{DD} HSEI RC osc., $f_{CPU} = 16$ MHz	4
Figure 14.	Typ $I_{DD(WEI)}$ vs. V_{DD} HSE user external clock. $f_{CPU} = 16$ MHz	4
Figure 15.	Typ $I_{DD}(WFI)$ vs. f_{CDI} HSE user external clock. $V_{DD} = 5 V$	5
Figure 16.	Typ $I_{DD(WEI)}$ vs. V_DD HSI RC osc., $f_{CDU} = 16$ MHz	5
Figure 17.	HSE external clock source	6
Figure 18.	HSE oscillator circuit diagram	7
Figure 19.	Typical V _{II} and V _{II} vs V _{DD} @ 4 temperatures	2
Figure 20.	Typical pull-up resistance R_{PI} vs V_{P} @ 4 temperatures	2
Figure 21.	Typical pull-up current I_{pul} vs $V_{\Box} @ 4$ temperatures	3
Figure 22.	Typ. $V_{OL} \otimes V_{OL} = 5 V$ (standard ports).	4
Figure 23.	Typ. Vol. $(0, V_{DD}) = 3.3 \text{ V}$ (standard ports).	4
Figure 24.	Typ. $V_{OL} \oslash V_{DD} = 5 V$ (true open drain ports).	5
Figure 25.	Typ. Vol. @ Vol. = 3.3 V (true open drain ports)	5
Figure 26.	Typ. V _{OL} \oslash V _{DD} = 5 V (high sink ports)	5
Figure 27.	Typ. V _{OL} $@$ V _D = 3.3 V (high sink ports)	6
Figure 28.	Typ. V_{DD} - V_{DH} @ V_{DD} = 5 V (standard ports).	6
Figure 29.	Typ. V_{DD} - $V_{OH} @ V_{DD} = 3.3 V (standard ports)$	6
Figure 30.	Typ. V_{DP} - $V_{\text{OH}} @ V_{\text{DP}} = 5 V$ (high sink ports)	7
Figure 31.	Typ. $V_{\Box\Box} = V_{\Box\Box} = 3.3 V$ (high sink ports)	7
Figure 32.	Typical NRST V _{II} and V _{II} vs V _{DD} \emptyset 4 temperatures	8
Figure 33.	Typical NRST pull-up resistance vs V and 4 temperatures	9
Figure 34.	Typical NRST pull-up current vs V @ 4 temperatures	9
Figure 35.	Recommended reset pin protection	0
Figure 36.	SPI timing diagram - slave mode and CPHA = 0	1
Figure 37.	SPI timing diagram - slave mode and CPHA = 1	2
Figure 38.	SPI timing diagram - master mode ⁽¹⁾	2
Figure 39.	Typical application with I2C bus and timing diagram	4
Figure 40.	ADC accuracy characteristics	7
Figure 41.	Typical application with ADC	7
Figure 42.	LQFP32 - 32-pin. 7 x 7 mm low-profile guad flat package outline	1
Figure 43.	LQFP32 - 32-pin, 7 x 7 mm low-profile guad flat package	
	recommended footprint	3
Figure 44.	LQFP32 marking example (package top view).	3
Figure 45.	TSSOP20 – 20-lead thin shrink small outline. 6.5 x 4.4 mm. 0.65 mm pitch.	-
J	package outline	4
Figure 46.	TSSOP20 – 20-lead thin shrink small outline. 6.5 x 4.4 mm. 0.65 mm pitch.	
0		

1 Introduction

The datasheet contains the description of STM8AF6213, STM8AF6223, STM8AF6223A and STM8AF6226 features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8 Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

4.6 **Power management**

For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- **Wait mode**: in this mode, the CPU is stopped but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.
- Active-halt mode with regulator on: in this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in Active-halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
- Active-halt mode with regulator off: this mode is the same as Active-halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
- **Halt mode**: in this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

4.7 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application timing perfectly. The application software must refresh the counter before time-out and during a limited time window.

A reset is generated in two situations:

- 1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 μ s up to 64 ms.
- 2. Refresh out of window: the downcounter is refreshed before its value is lower than the one stored in the window register.

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
 - Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

Synchronous communication

- Full duplex synchronous transfers
- SPI master operation
- 8-bit data communication
- Maximum speed: 1 Mbit/s at 16 MHz (f_{CPU}/16)

4.14.2 Serial peripheral interface (SPI)

- Maximum speed: 8 Mbit/s (f_{MASTER}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave /master selection input pin

4.14.3 Inter integrated circuit (I²C) interface

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
 - Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)

				Inpu	t		Out	put				
TSSOP	Pin name	Туре	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	QO	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
19	PD2/AIN3 [TIM5_CH3]	I/O	X	x	x	HS	O3	x	x	Port D2	-	Analog input 3 [AFR2] Timer 52 - channel 3 [AFR1]
20	PD3/ AIN4/ TIM5_CH2/ ADC_ETR	I/O	x	x	x	HS	O3	x	x	Port D3	Analog input 4 Timer 52 - channel 2/ADC external trigger	-

Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see *Section 9.2: Absolute maximum ratings*).

2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented)

4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

				Inpu	t		Out	put				
TSSOP	Pin name	Туре	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	OD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	PD4/ TIM5_CH1/ BEEP/SPI_NSS [LINUART_CK]	I/O	x	x	x	HS	O3	x	x	Port D4	Timer 5 - channel 1/BEEP output	LINUART clock [AFR2]
2	PD5/ AIN5/ LINUART_TX	I/O	x	x	x	HS	O3	х	x	Port D5	Analog input 5/ LINUART data transmit	-

Table 7. STM8AF6223A TSSOP20 pin description

Address	Block	Register label	Register name	Reset status				
0x00 5230		UART4_SR	LINUART status register	0xC0				
0x00 5231	•	UART4_DR	LINUART data register	0xXX				
0x00 5232		UART4_BRR1	LINUART baud rate register 1	0x00				
0x00 5233		UART4_BRR2	LINUART baud rate register 2	0x00				
0x00 5234		UART4_CR1	LINUART control register 1	0x00				
0x00 5235		UART4_CR2	LINUART control register 2	0x00				
0x00 5236	LINUARI	UART4_CR3	LINUART control register 3	0x00				
0x00 5237		UART4_CR4	LINUART control register 4	0x00				
0x00 5238			Reserved					
0x00 5239		UART4_CR6	LINUART control register 6	0x00				
0x00 523A		UART4_GTR	LINUART guard time register	0x00				
0x00 523B		UART4_PSCR	LINUART prescaler	0x00				
0x00 523C to 0x00 523F		Reserved area (20 byte)						

Table 11	General	hardware	register	man	(continued)
	General	naiuwaie	register	map	(continueu)

Address	Block	Register label	Register name	Reset status		
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF		
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF		
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF		
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF		
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF		
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF		
0x00 7F96		DM_CR1	DM debug module control register 1	0x00		
0x00 7F97		DM_CR2	DM debug module control register 2	0x00		
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10		
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00		
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF		
0x00 7F9B to 0x00 7F9F			Reserved area (5 byte)			

Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

8.1 Option byte description

Table	15	Ontion	hvte	descri	ntion
Table	15.	option	Dyte	uesch	μισπ

Option byte no.	Description
OPT0	ROP[7:0]: Memory readout protection (ROP) 0xAA: Enable readout protection (write access via SWIM protocol) Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
OPT1	UBC[7:0]: User boot code area 0x00: No UBC, no write-protection 0x01: Page 0 defined as UBC, memory write-protected 0x02: Page 0 to 1 defined as UBC, memory write-protected Pages 0 and 1 contain the interrupt vectors. 0x7F: Pages 0 to 126 defined as UBC, memory write-protected Other values: Page 0 to 127 defined as UBC, memory write-protected. <i>Note: Refer to STM8S series and STM8AF series 8-bit microcontrollers</i> <i>reference manual (RM0016) section on Flash/EEPROM write protection</i> <i>for more details.</i>
OPT2	AFR[7:0] Refer to the following sections for the alternate function remapping descriptions of bits [7:2] and [1:0] respectively.
	HSITRIM: high-speed internal clock trimming register size 0: 3-bit trimming supported in CLK_HSITRIMR register 1: 4-bit trimming supported in CLK_HSITRIMR register
	LSI_EN: low-speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
OPT3	IWDG_HW: Independent watchdog 0: IWDG independent watchdog activated by software 1: IWDG independent watchdog activated by hardware
	WWDG_HW: Window watchdog activation 0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt 0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active

9 Electrical characteristics

9.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

9.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

9.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.

9.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

9.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 7*.

9.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 8.

Figure 8. Pin input voltage

9.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 22: Voltage characteristics*, *Table 23: Current characteristics* and *Table 24: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device's reliability.

Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit
V_{DDx} - V_{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	V
V	Input voltage on true open drain pins ⁽²⁾	V _{SS} - 0.3	6.5	V
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	v
V _{DDx} - V _{DD}	Variations between different power pins	-	50	m\/
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV
V _{ESD}	Electrostatic discharge voltage	see Absolu (electric	ite maximum cal sensitivity, page 89	ratings) on

Table 22. Voltage characteristics

1. All power (V_{DD}) and ground (V_{SS}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

9.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 26*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

9.3.2 Supply current characteristics

The current consumption is measured as described in Section 4.3: Interrupt controller.

Total current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled (clock stopped by peripheral clock gating registers) except if explicitly mentioned.

Subject to general operating conditions for V_{DD} and T_A .

Unless otherwise specified, data are based on characterization results, and not tested in production.

Table 28.	Total current	consumption v	with code	execution in	run mode at V	΄ _{ΠΠ} = 5 V

Symbol	Parameter	Conc	Тур	Max	Unit	
		HSE crystal osc. (16 MHz)		2.3	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2	2.35	
	Supply current		HSI RC osc. (16 MHz)	1.7	2 ⁽¹⁾	
	in run mode,	f _ f /109_ 105 kUz	HSE user ext. clock (16 MHz)	0.86	-	mA
DD(I(ON)	code executed from RAM	ICPU - IMASTER/ 120- 123 KIIZ	HSI RC osc. (16 MHz)	0.7	0.87	
		f _{CPU} = f _{MASTER} /128= 15.625 kHz	HSI RC osc. (16 MHz/8)	0.46	0.58	
		f _{CPU} = f _{MASTER} = 28 kHz	LSI RC osc. (128 kHz)	0.41	0.55	

Total current consumption in halt mode

Symbol	Parameter	Conditions	Тур	Max at 85°C	Max at 125°C	Max at 150°C	Unit
I _{DD(H)}	Supply current in halt mode	Flash in operating mode, HSI clock after wakeup	e, 63 75 f		105	-	
		Flash in power-down mode, HSI clock after wakeup	6.0	20 ⁽¹⁾	55 ⁽¹⁾	80 ⁽¹⁾	μΑ

Table 34. Total current consumption in halt mode at V_{DD} = 5 V

1. Tested in production.

Table 35. Total current consumption in halt mode at V_{DD} = 3.3 V

Symbol	Parameter	Conditions	Тур	Max at 85°C ⁽¹⁾	Max at 125°C ⁽¹⁾	Unit
1	Supply current in halt	Flash in operating mode, HSI clock after wakeup	60	75	100	
IDD(H)	mode	Flash in power-down mode, HSI clock after wakeup	4.5	17	30	μΑ

1. Guaranteed by characterization results.

Low-power mode wakeup times

Table 36. Wakeup times

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
1	Wakeup time	0 to 16 MHz			-	See ⁽³⁾	
^t WU(WFI)	to run mode ⁽²⁾	f _{CPU} = f _{MASTER} = 1	0.56	-			
		MVR voltage			1 ⁽⁶⁾	2 ⁽⁶⁾	
	J(AH) Wakeup time active halt mode to run mode ⁽²⁾ regulator on ⁽⁴⁾ MVR voltage regulator off MVR voltage regulator off Wakeup time Flash in operating	regulator on ⁽⁴⁾	Flash in operating mode ⁽⁵⁾	HSI (after	3 ⁽⁶⁾	-	
'WU(AH)		MVR voltage		wakeup)	48 ⁽⁶⁾	-	μο
				50 ⁽⁶⁾	-		
		Flash in operating mode ⁽⁵⁾		52	-		
t _{WU(H)}	from halt mode to run mode ⁽²⁾	Flash in power-down mode ⁽⁵⁾		54	-		

1. Guaranteed by design.

2. Measured from interrupt event to interrupt vector fetch.

3. $t_{WU(WFI)} = 2 \times 1/f_{MASTER} + 67 \times 1/f_{CPU}$.

- 4. Configured by the REGAH bit in the CLK_ICKR register.
- 5. Configured by the AHALT bit in the FLASH_CR1 register.
- 6. Plus 1 LSI clock depending on synchronization.

Total current consumption and timing in forced reset state

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Supply current in reset state ⁽²⁾	V _{DD} = 5 V	400	-	
^I DD(R)		V _{DD} = 3.3 V	300	-	μΑ
t _{RESETBL}	Reset pin release to vector fetch	-	-	150	μs

1. Guaranteed by design.

2. Characterized with all I/Os tied to V_{SS} .

Current consumption for on-chip peripherals

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

HSI internal RC/f_{CPU} = f_{MASTER} = 16 MHz, V_{DD} = 5 V

Table 38. Peripheral current consumption

Symbol	Parameter	Тур	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	210	
I _{DD(TIM5)}	TIM5 supply current ⁽¹⁾	130	
I _{DD(TIM6)}	TIM6 supply current ⁽¹⁾	50	
I _{DD(UART1)}	LINUART supply current ⁽²⁾	120	μA
I _{DD(SPI)}	SPI supply current ⁽²⁾	45	
I _{DD(I2C)}	I2C supply current ⁽²⁾	65	
I _{DD(ADC1)}	ADC1 supply current ⁽³⁾	1000	

 Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions. Not tested in production.

Symbol	Parameter	Condition	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	-	-40	150	°C
N _{WE}	Flash program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	-	cycles
t	Data retention time	T _A = 25 °C	40	-	Veare
t _{RET}		T _A = 55 °C	20	-	years

Table 45. Flash program memory

1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

Symbol	Parameter	Parameter Condition		Max	Unit
T_{WE}	Temperature for writing and erasing	-	-40	150	°C
N	Data memory endurance ⁽¹⁾	T _A = 25 °C	300 k	-	evelos
INWE	(erase/write cycles)	$T_A = -40^{\circ}C$ to 125 °C	100 k ⁽²⁾	-	Cycles
+	Data rotantian time	T _A = 25 °C	40 ⁽³⁾	-	Vooro
τ _{RET}		T _A = 55 °C	20 ⁽²⁾⁽³⁾	-	years

1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 $^\circ\text{C}.$

Figure 24. Typ. V_{OL} @ V_{DD} = 5 V (true open drain ports)

Figure 25. Typ. V_{OL} @ V_{DD} = 3.3 V (true open drain ports)

Figure 26. Typ. V_{OL} @ V_{DD} = 5 V (high sink ports)

9.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	ADC clock froquency	V _{DD} = 3 to 5.5 V	1	-	4	- MHz	
'ADC	ADC Clock frequency	V _{DD} = 4.5 to 5.5 V	1	-	6		
V _{AIN}	Conversion voltage range ⁽¹⁾	-	V _{SS}	-	V _{DD}	V	
V _{BGREF}	Internal bandgap reference voltage	V _{DD} = 3 to 5.5 V	1.19 ⁽²⁾	1.22	1.25 ⁽²⁾	V	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF	
+ (1)	Minimum compling time	f _{ADC} = 4MHz	-	0.75	-		
LS.	Minimum sampling time	f _{ADC} = 6 MHz	-	0.5	-	μs	
t _{STAB}	Wakeup time from standby	-	-	7	-		
	Minimum total conversion	Ainimum total conversion f _{ADC} = 4 Hz		3.5		110	
t _{CONV}	time including sampling	f _{ADC} = 6 MHz	2.33			μs	
	time, 10-bit resolution	-	14		1/f _{ADC}		

 During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

2. Tested in production.

Table 62. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to four decimal digits.

2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.

^{1.} Dimensions are expressed in millimeters.

11 Ordering information

Table 65. STM8A	F6213/23/2	3A/20	6 orde	ering i	nform	nation	sche	me ⁽¹⁾		
Example	STM8A	F	62	2	3	I	Ρ	С	А	U
Product Class										
8-bit automotive microcontroller										
Program memory type										
F = Flash + EEPROM										
Device family										
62 = LIN only										
Program memory size										
1 = 4 Kbyte 2 = 8 Kbyte										
Pin count										
3 = 20 pins 6 = 32 pins										
HSI accuracy										
Blank = ± 5% I = ± 3%										
Package type										
T = LQFP P = TSSOP U = VFQFPN										
Temperature range										
A = -40 to 85 °C C = -40 to 125 °C D = -40 to 150 °C										
Number of ADC analog inputs										
Blank = 5 analog inputs A = 7 analog inputs										
Packing										

Y = Tray

U = Tube

X = Tape and reel compliant with

EIA 481-C

1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the nearest ST Sales Office.

12.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

12.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

12.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface.

Available toolchains include:

Cosmic C compiler for STM8

All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows the users to assemble and link your application source code.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID025118 Rev 6