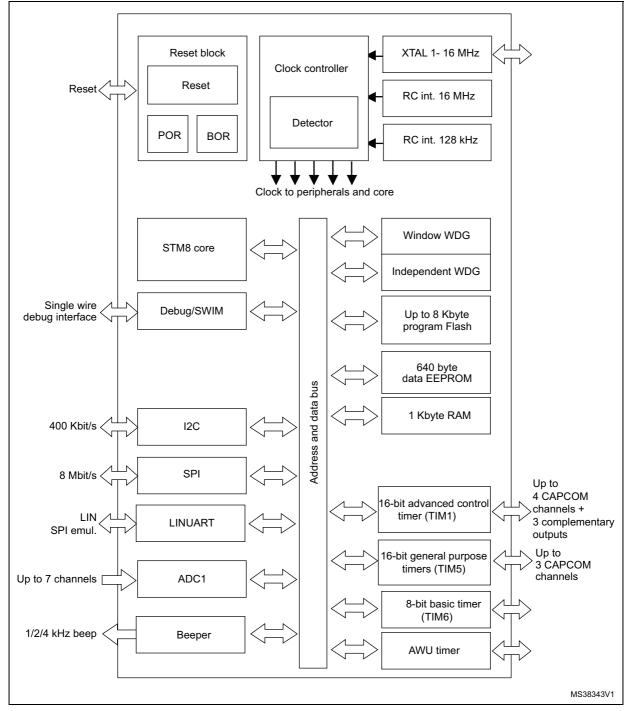
E·XFL

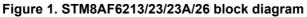
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6223pdax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Block diagram

 Legend: ADC (Analog-to-digital converter), beCAN (Controller area network), BOR (Brownout reset), I²C (Inter-integrated circuit multimaster interface),IWDG (Independent window watchdog), LINUART (Local interconnect network universal asynchronous receiver transmitter), POR (Power on reset), SPI (Serial peripheral interface), SWIM (Single wire interface module), USART (Universal synchronous asynchronous receiver transmitter), Window WDG (Window watchdog).

DocID025118 Rev 6

4.13 Analog-to-digital converter (ADC1)

The STM8AF6213, STM8AF6223, STM8AF6223A and STM8AF6226 products contain a 10-bit successive approximation A/D converter (ADC1) with up to 7 external and 1 internal multiplexed input channels and the following main features:

- Input voltage range: 0 to V_{DD}
- Input voltage range: 0 to V_{DDA}
- Conversion time: 14 clock cycles
- Single and continuous and buffered continuous conversion modes
- Buffer size (n x 10 bits) where n = number of input channels
- Scan mode for single and continuous conversion of a sequence of channels
- Analog watchdog capability with programmable upper and lower thresholds
- Internal reference voltage on channel AIN7
- Analog watchdog interrupt
- External trigger input
- Trigger from TIM1 TRGO
- End of conversion (EOC) interrupt

Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.

Internal bandgap reference voltage

Channel AIN7 is internally connected to the internal bandgap reference voltage. The internal bandgap reference is constant and can be used, for example, to monitor V_{DD} . It is independent of variations in V_{DD} and ambient temperature T_A .

4.14 Communication interfaces

The following communication interfaces are implemented:

- LINUART: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA mode, single wire mode, LIN2.2 capability
- SPI: full and half-duplex, 8 Mbit/s
- I²C: up to 400 Kbit/s

Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016 (see *Table 4*).

Table 4. Communication	peripheral	naming	correspondence
------------------------	------------	--------	----------------

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
LINUART	UART4

4.14.1 LINUART

Main features

- 1 Mbit/s full duplex SCI
- SPI emulation
- High precision baud rate generator
- Smartcard emulation
- IrDA SIR encoder decoder
- LIN mode
- Single wire half duplex mode

LIN mode

Master mode:

- LIN break and delimiter generation
- LIN break and delimiter detection with separate flag and interrupt source for read back checking.

Slave mode:

- Autonomous header handling one single interrupt per valid header
- Mute mode to filter responses
- Identifier parity error checking
- LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI) clock source
- Break detection at any time, even during a byte reception
- Header errors detection:
 - Delimiter too short
 - Synch field error
 - Deviation error (if automatic resynchronization is enabled)
 - Framing error in synch field or identifier field
 - Header time-out

				Input	t		Out	tput				
TSSOP	Pin name	Туре	floating	ndm	Ext. interrupt	High sink ⁽¹⁾	Speed	OD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
3	PD6/ AIN6/ LINUART_RX	I/O	X	x	x	HS	O3	x	х	Port D6	Analog input 6/ LINUART data receive	-
4	NRST	I/O	-	<u>X</u>	-	-	-	-	-	Re	set	-
5	PA1/ OSCIN ⁽²⁾	I/O	<u>x</u>	х	х	-	01	х	х	Port A1	Resonator/ crystal in	-
6	PA2/ OSCOUT	I/O	X	х	х	-	01	х	х	Port A2	Resonator/ crystal out	-
7	VSS	S	-	-	-	-	-	-	-	Digital	ground	-
8	VCAP	S	-	-	-	-	-	-	-	1.8 V regula	tor capacitor	-
9	VDD	S	-	-	-	-	-	-	-	Digital power supply		-
10	PB5/ I2C_SDA [TIM1_BKIN]	I/O	X	-	x	-	01	T ⁽³⁾	-	Port B5	I2C data	Timer 1 - break input [AFR4]
11	PB4/ I2C_SCL [ADC_ETR]	I/O	X	-	x	-	O1	T ⁽³⁾	-	Port B4	I2C clock	ADC external trigger [AFR4]
12	PB1/ TIM1_CH2N/ AIN1	I/O	X	x	x	HS	O3	х	х	Port B1	Timer 1 - inverted channel 2/Analog input 1	-
13	PB0/ TIM1_CH1N/AIN0	I/O	X	x	x	HS	O3	х	х	Port B0	Timer 1 - inverted channel 1/Analog input 0	-
14	PC4/ TIM1_CH4/ CLK_CCO/AIN2/[TIM1_CH2]	I/O	X	x	x	HS	O3	х	х	Port C4	Timer 1 - channel 4 /configurabl e clock output	Analog input 2 [AFR2]Time r 1 channel 2 [AFR7]
15	PC5/SPI_SCK [TIM5_CH1]	I/O	X	x	x	HS	O3	х	х	Port C5	SPI clock	Timer 5 channel 1 [AFR0]

	Table 11. General naroware register map (continued)						
Address	Block	Register label	Register name	Reset status			
0x00 5200		SPI_CR1	SPI control register 1	0x00			
0x00 5201		SPI_CR2	SPI control register 2	0x00			
0x00 5202		SPI_ICR	SPI interrupt control register	0x00			
0x00 5203	SPI	SPI_SR	SPI status register	0x02			
0x00 5204		SPI_DR	SPI data register	0x00			
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07			
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF			
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF			
0x00 5208 to 0x00 520F		Reserved area (8 byte)					
0x00 5210		I2C_CR1	I2C control register 1	0x00			
0x00 5211		I2C_CR2	I2C control register 2	0x00			
0x00 5212		I2C_FREQR	I2C frequency register	0x00			
0x00 5213		I2C_OARL	I2C own address register low	0x00			
0x00 5214		I2C_OARH	I2C own address register high	0x00			
0x00 5215			Reserved area (1 byte)				
0x00 5216		I2C_DR	I2C data register	0x00			
0x00 5217	I2C	I2C_SR1	I2C status register 1	0x00			
0x00 5218		I2C_SR2	I2C status register 2	0x00			
0x00 5219		I2C_SR3	I2C status register 3	0x00			
0x00 521A		I2C_ITR	I2C interrupt control register	0x00			
0x00 521B		I2C_CCRL	I2C clock control register low	0x00			
0x00 521C		I2C_CCRH	I2C clock control register high	0x00			
0x00 521D		I2C_TRISER	I2C TRISE register	0x02			
0x00 521E		I2C_PECR	I2C packet error checking register	0x00			
0x00 521F to 0x00 522F							

 Table 11. General hardware register map (continued)

6.2.2 CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label	Register name	Reset status
0x00 7F00		А	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x00
0x00 7F03	•	PCL	Program counter low	0x00
0x00 7F04		ХН	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	Stack pointer high	0x03
0x00 7F09		SPL	Stack pointer low	0xFF
0x00 7F0A		CCR	Condition code register	0x28
0x00 7F0B to 0x00 7F5F			Reserved area (85 byte)	·
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73	ITC	ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74	ne	ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF
0x00 7F78 to 0x00 7F79			Reserved area (2 byte)	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F			Reserved area (15 byte)	

Table 12. CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label	Register name	Reset status		
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF		
0x00 7F91		DM_BK1RH	DM_BK1RH DM breakpoint 1 register high byte			
0x00 7F92		DM_BK1RL	DM_BK1RL DM breakpoint 1 register low byte			
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF		
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF		
0x00 7F95	DM	DM_BK2RL	DM_BK2RL DM breakpoint 2 register low byte			
0x00 7F96		DM_CR1	DM_CR1 DM debug module control register 1			
0x00 7F97		DM_CR2	DM_CR2 DM debug module control register 2			
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10		
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00		
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF		
0x00 7F9B to 0x00 7F9F	Reserved area (5 byte)					

Table 12. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

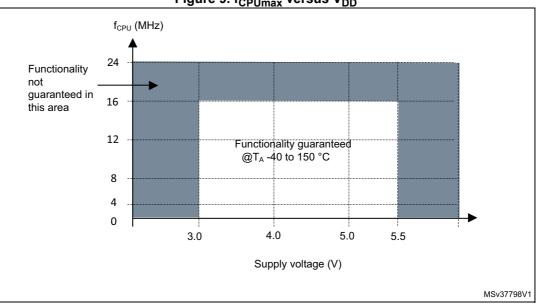


Figure 9. f_{CPUmax} versus V_{DD}

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	V _{DD} rise time rate	-	2 ⁽¹⁾	-	∞	µs/V
t _{VDD}	V _{DD} fall time rate ⁽²⁾	-	2 ⁽¹⁾	-	8	μ5/ ν
t _{TEMP}	Reset release delay	V _{DD} rising	-	-	1.7	ms
V _{IT+}	Power-on reset threshold ⁽³⁾	-	2.6 ⁽¹⁾	2.7	2.85	V
V _{IT-}	Brown-out reset threshold	-	2.5	2.65	2.8 ⁽¹⁾	v
V _{HYS(BOR)}	Brown-out reset hysteresis	-	-	70 ⁽¹⁾	-	mV

1. Guaranteed by design.

2. Reset is always generated after a $t_{\mbox{TEMP}}$ delay. The application must ensure that $V_{\mbox{DD}}$ is still above the minimum operating voltage (V_{\mbox{DD}} min) when the $t_{\mbox{TEMP}}$ delay has elapsed.

3. There is inrush current into V_{DD} present after device power on to charge C_{EXT} capacitor. This inrush energy depends from C_{EXT} capacitor value. For example, a C_{EXT} of 1µF requires Q=1 µF x 1.8V = 1.8 µC.

Current consumption curves

The following figures show typical current consumption measured with code executing in RAM.

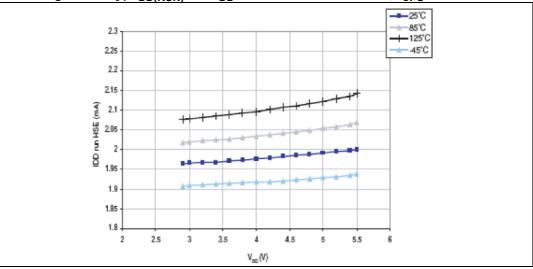
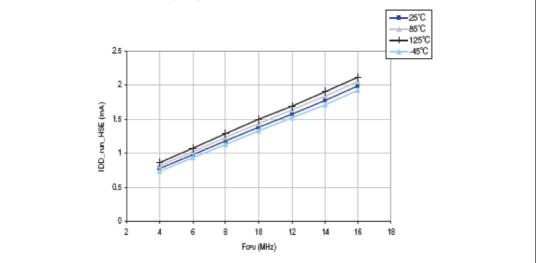



Figure 11. Typ I_{DD(RUN)} vs. V_{DD} HSE user external clock, f_{CPU} = 16 MHz

Figure 12. Typ $I_{DD(RUN)}$ vs. f_{CPU} HSE user external clock, V_{DD} = 5 V

9.3.3 External clock sources and timing characteristics

HSE user external clock

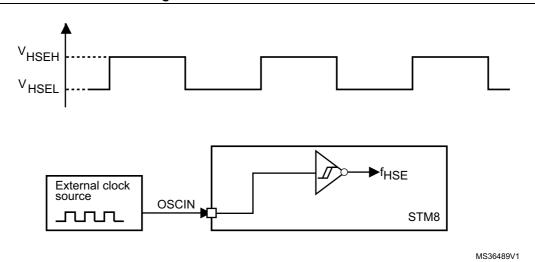

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 39	. HSE user	[•] external	clock	characteristics
----------	------------	-----------------------	-------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency	-	0	-	16	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage	-	0.7 x V _{DD}	-	V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage	-	V _{SS}	-	0.3 x V _{DD}	v
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μΑ

1. Guaranteed by characterization results.

Symbol	Parameter	Condition	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	-	-40	150	°C
N _{WE}	Flash program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	-	cycles
t	Data retention time	T _A = 25 °C	40	-	veare
t _{RET}		T _A = 55 °C	20	-	years

Table 45. Flash program memory

1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

Symbol	Parameter	Condition	Min	Max	Unit	
T _{WE}	Temperature for writing and erasing	-	-40	150	°C	
N	Data memory endurance ⁽¹⁾ (erase/write cycles)	T _A = 25 °C	300 k	-	cycles	
		$T_A = -40^{\circ}C$ to 125 °C	100 k ⁽²⁾	-		
+	Data retention time	T _A = 25 °C	40 ⁽³⁾	-	years	
^I RET		T _A = 55 °C	20 ⁽²⁾⁽³⁾	-		

1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 $^\circ\text{C}.$

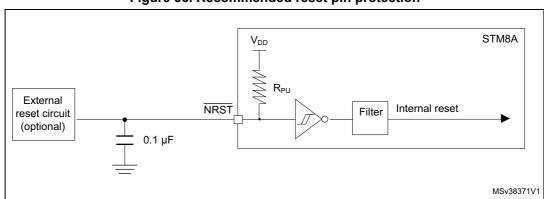


Figure 35. Recommended reset pin protection

9.3.8 SPI serial peripheral interface

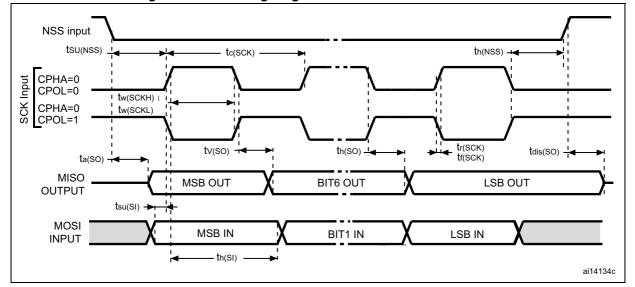
Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit	
f _{SCK}	SDI clock froguency	Master mode	0	8	MHz	
1/t _{c(SCK)}	SPI clock frequency	Slave mode	0	6	- IVIHZ	
t _{r(SCK}) t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	25		
t _{su(NSS)} ⁽²⁾	NSS setup time	Slave mode	4 * t _{MASTER}	-		
t _{h(NSS)} ⁽²⁾	NSS hold time	Slave mode	70	-		
t _{w(SCKH)} (2) t _{w(SCKL)} (2)	SCK high and low time	Master mode	t _{SCK} /2 - 15	t _{SCK} /2 + 15		
t _{su(MI)} (2)	Data input setup time	Master mode	5	-		
t _{su(MI)} (2) t _{su(SI)} (2)		Slave mode	5	-	ns	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	7	-	115	
t _{h(MI)} (2) t _{h(SI)} (2)		Slave mode	10	-		
t _{a(SO)} ⁽²⁾⁽³⁾	Data output access time	Slave mode	-	3* t _{MASTER}		
t _{dis(SO)} ⁽²⁾⁽⁴⁾	Data output disable time	Slave mode	25	-		
$t_{v(SO)}^{(2)}$	Data output valid time	Slave mode (after enable edge)	-	65		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode (after enable edge)	-	36		

Table 52. SPI characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode (after enable edge)	27	-	
t _{h(MO)} ⁽²⁾		Master mode (after enable edge)	11	-	ns


Table 52. SPI characteristics (continued)

1. Parameters are given by selecting 10 MHz I/O output frequency.

2. Values based on design simulation and/or characterization results, and not tested in production.

3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure 36. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are made at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

9.3.9 I²C interface characteristics

Symbol	Parameter	Standard	mode I ² C	Fast mod	Unit		
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	3450	0 ⁽⁴⁾	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300 ^{ns} 300		
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-			
t _{h(STA)}	START condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-		
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-		
t _{SP}	Pulse width of spikes suppressed by the input filter	0	50 ⁽⁵⁾	0	50	ns	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table 53. I²C characteristics

1. f_{MASTER} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz)

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

5. The minimum width of the spikes filtered by the analog filter is above $t_{SP(max)}$

9.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
£		V _{DD} = 3 to 5.5 V	1	-	4	MHz	
f _{ADC}	ADC clock frequency	V _{DD} = 4.5 to 5.5 V	1	-	6	IVITZ	
V _{AIN}	Conversion voltage -		V _{SS}	-	V _{DD}	V	
V _{BGREF}	Internal bandgap reference voltage	V _{DD} = 3 to 5.5 V	1.19 ⁽²⁾	1.22	1.25 ⁽²⁾	V	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF	
ts ⁽¹⁾	Minimum sampling time	f _{ADC} = 4MHz	-	0.75	-		
LS, Y	Minimum sampling une	f _{ADC} = 6 MHz	-	0.5	-	μs	
t _{STAB}	Wakeup time from standby	-	-	7	-		
	Minimum total conversion	f _{ADC} = 4 Hz		3.5			
t _{CONV}	time including sampling	f _{ADC} = 6 MHz		2.33		μs	
	time, 10-bit resolution	-	14		1/f _{ADC}		

Table	54.	ADC	characteristics
-------	-----	-----	-----------------

 During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

2. Tested in production.

Electromagnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm IEC 61967-2 which specifies the board and the loading of each pin.

Symbol		Conditions				
	Parameter		Monitored	Max f _{HS}	Unit	
		General conditions	frequency band	16 MHz/ 8 MHz	16 MHz/ 16 MHz	
		$V_{DD} = 5 V,$ $T_A = 25 °C,$ LQFP32 package conforming to	0.1 MHz to 30 MHz	5	5	
6	Peak level		30 MHz to 130 MHz	4	5	dBµV
S _{EMI}			130 MHz to 1 GHz	5	5	
	EMI level IEC 61967-2			2.5	2.5	level

Table	58.	EMI	data

1. Guaranteed by characterization results.

Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, DLU and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

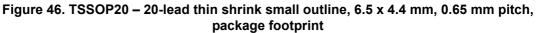
Electrostatic discharge (ESD)

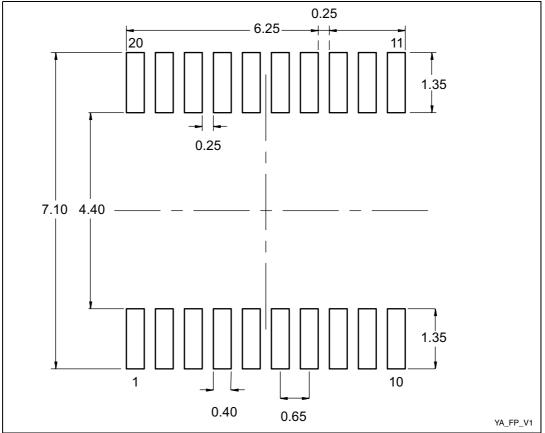
Electrostatic discharges (one positive then one negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	3A	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine model)	T _A = 25°C, conforming to JESD22-A115	В	200	

Table 59. ESD absolute maximum ratings

1. Guaranteed by characterization results.

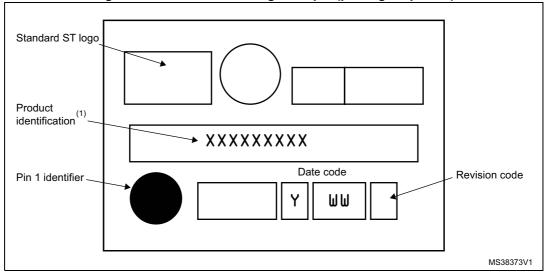

Table 62. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data (continued)

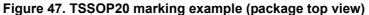

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to four decimal digits.

2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.


^{1.} Dimensions are expressed in millimeters.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

1. Parts marked as "ES" or "E" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

10.4 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in Table 26: General operating conditions.

T_{.lmax}, in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- TAmax is the maximum ambient temperature in °C _
- Θ_{IA} is the package junction-to-ambient thermal resistance in $^\circ$ C/W
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax}$ ($P_{Dmax} = P_{INTmax} + P_{I/Omax}$)
- $\mathsf{P}_{\mathsf{INTmax}}$ is the product of I_{DD} and $\mathsf{V}_{\mathsf{DD}},$ expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins Where:

$$\label{eq:P_I/Omax} \begin{split} &\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}), \\ & \mathsf{taking into account the actual V_{\mathsf{OL}}/\mathsf{I}_{\mathsf{OL}} \; \mathsf{and V}_{\mathsf{OH}}/\mathsf{I}_{\mathsf{OH}} \; \mathsf{of the I}/\mathsf{Os at low and high level} \end{split}$$
in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient TSSOP20 - 4 x 4 mm	110	°C/W
	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	60	
	Thermal resistance junction-ambient VFQFPN32 - 5 x 5 mm	TBD	

Table 64. Thermal characteristics⁽¹⁾

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

10.4.1 **Reference document**

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

10.4.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see Section 11: Ordering information).

The following example shows how to calculate the temperature range needed for a given application.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID025118 Rev 6