

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	STM8A
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	28
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	640 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6226tdy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure.

The IWDG time base spans from 60 µs to 1 s

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM1 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

The beeper output port is only available through the alternate function remap option bit AFR7.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver.

- 16-bit up, down and up/down auto-reload counter with 16-bit fractional prescaler.
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output.
- Synchronization module to control the timer with external signals or to synchronise with TIM5 or TIM6
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

				Input	t		Out	put				
TSSOP	Pin name	Туре	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	QO	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
10	PA3/ TIM5_CH3 [SPI_NSS]	I/O	x	x	x	HS	O3	x	х	Port A3	Timer 5 channel 3	SPI master/ slave select [AFR1]
11	PB5/ I2C_SDA [TIM1_BKIN]	I/O	x	-	x	-	01	T ⁽³⁾	-	Port B5	I2C data	Timer 1 - break input [AFR4]
12	PB4/ I2C_SCL [ADC_ETR]	I/O	x	-	x	-	01	T ⁽³⁾	-	Port B4	I2C clock	ADC external trigger [AFR4]
13	PC3/ TIM1_CH3/[TLI]/[TIM1_CH1N]	I/O	X	x	x	HS	O3	x	x	Port C3	Timer 1 - channel 3	Top level interrupt [AFR3] Timer 1 inverted channel 1 [AFR7]
14	PC4/ TIM1_CH4/ CLK_CCO/AIN2/[TIM1_CH2N]	I/O	X	x	x	HS	O3	x	x	Port C4	Timer 1 - channel 4 /configurabl e clock output	Analog input 2 [AFR2]Time r 1 inverted channel 2 [AFR7]
15	PC5/SPI_SCK [TIM5_CH1]	I/O	x	x	x	HS	O3	x	х	Port C5	SPI clock	Timer 5 channel 1 [AFR0]
16	PC6/ SPI_MOSI [TIM1_CH1]	I/O	x	x	x	HS	O3	x	x	Port C6	PI master out/slave in	Timer 1 channel 1 [AFR0]
17	PC7/ SPI_MISO [TIM1_CH2]	I/O	x	x	x	HS	O3	x	x	Port C7	SPI master in/ slave out	Timer 1 channel 2[AFR0]
18	PD1/ SWIM ⁽⁴⁾	I/O	X	х	х	HS	04	х	х	Port D1	SWIM data interface	-

Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)

				Inpu	t		Out	put				
ດ OS Pin name ກ		Туре	Type loating wpu		Ext. interrupt	High sink ⁽¹⁾	Speed	QO	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
19	PD2/AIN3 [TIM5_CH3]	I/O	X	x	x	HS	O3	x	x	Port D2	-	Analog input 3 [AFR2] Timer 52 - channel 3 [AFR1]
20	PD3/ AIN4/ TIM5_CH2/ ADC_ETR	I/O	x	x	x	HS	O3	x	x	Port D3	Analog input 4 Timer 52 - channel 2/ADC external trigger	-

Table 6. STM8AF6213/STM8AF6223 TSSOP20 pin description (continued)

1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute maximum ratings (see *Section 9.2: Absolute maximum ratings*).

2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are not implemented)

4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.

			Input				Out	put				
TSSOP	Pin name	Туре	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	OD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	PD4/ TIM5_CH1/ BEEP/SPI_NSS [LINUART_CK]	I/O	x	x	x	HS	O3	x	x	Port D4	Timer 5 - channel 1/BEEP output	LINUART clock [AFR2]
2	PD5/ AIN5/ LINUART_TX	I/O	x	x	x	HS	O3	х	x	Port D5	Analog input 5/ LINUART data transmit	-

Table 7. STM8AF6223A TSSOP20 pin description

				Inpu	t		Ou	tput				
LQFP32 VFQPN32	Pin name	Туре	floating	ndw	Ext. interrupt	High sink ⁽¹⁾	Speed	αo	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
17	PE5/ SPI_NSS [TIM1_CH1N]	I/O	x	x	x	HS	O3	х	x	Port E5	SPI master/ slave select	Timer 1 - inverted channel 1 [AFR1:0]
18	PC1/ TIM1_CH1/ LINUART_CK [TIM1_CH2N]	I/O	x	x	x	HS	O3	х	x	Port C1	Timer 1 - channel 1 LINUART clock	Timer 1 - inverted channel 2 [AFR1:0]
19	PC2/ TIM1_CH2 [TIM1_CH3N]	I/O	x	x	x	HS	O3	х	x	Port C2	Timer 1 - channel 2	Timer 1 - inverted channel 3 [AFR1:0]
20	PC3/ TIM1_CH3/[TLI] [TIM1_CH1N]	I/O	x	x	x	HS	O3	х	x	Port C3	Timer 1 - channel 3	Top level interrupt [AFR3] Timer 1 inverted channel 1 [AFR7]
21	PC4/ TIM1_CH4/ CLK_CCO/[AIN 2][TIM1_CH2N]	I/O	x	x	x	HS	O3	х	x	Port C4	Timer 1 - channel 4 /configurable clock output	Analog input 2 [AFR2]Timer 1 inverted channel 2 [AFR7]
22	PC5/SPI_SCK [TIM5_CH1]	I/O	x	х	х	нs	O3	х	х	Port C5	SPI clock	Timer 5 channel 1 [AFR0]
23	PC6/ SPI_MOSI [TIM1_CH1]	I/O	x	x	x	нs	О3	х	x	Port C6	PI master out/slave in	Timer 1 channel 1 [AFR0]
24	PC7/ SPI_MISO [TIM1_CH2]	I/O	x	x	x	нs	О3	х	x	Port C7	SPI master in/ slave out	Timer 1 channel 2[AFR0]
25	PD0/ TIM1_BKIN [CLK_CCO]	I/O	x	x	x	HS	O3	х	x	Port D0	Timer 1 - break input	Configurable clock output [AFR5]
26	PD1/ SWIM ⁽⁴⁾	I/O	x	<u>x</u>	х	HS	O4	х	х	Port D1	SWIM data interface	-

Table 8. STM8AF6226 LQFP32/VFQPN32 pin description (continued)

DocID025118 Rev 6

5.3 Alternate function remapping

As shown in the rightmost column of *Table 6*, *Table 7* and *Table 8* some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to *Section 8: Option bytes on page 46*. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

			·····,	
Address	Block	Register label	Register name	Reset status
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B		TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F	TIN 44	TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260	I IIVI I	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00
0x00 526A		TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00
0x00 526C		TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00
0x00 526D		TIM1_BKR	TIM1 break register	0x00
0x00 526E		TIM1_DTR	TIM1 dead-time register	0x00
0x00 526F		TIM1_OISR	TIM1 output idle state register	0x00
0x00 5270 to 0x00 52FF		Re	eserved area (147 byte)	

 Table 11. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status					
0x00 5349 to 0x00 53DF		Re	eserved area (153 byte)						
0x00 53E0 to 0x00 53F3	ADC1	ADC _DBxR	ADC data buffer registers	0x00					
0x00 53F4 to 0x00 53FF		R	eserved area (12 byte)						
0x00 5400		ADC _CSR	ADC control/status register	0x00					
0x00 5401		ADC_CR1	ADC configuration register 1	0x00					
0x00 5402		ADC_CR2	ADC configuration register 2	0x00					
0x00 5403		ADC_CR3	ADC configuration register 3	0x00					
0x00 5404		ADC_DRH	ADC data register high	0xXX					
0x00 5405		ADC_DRL	ADC data register low	0xXX					
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00					
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00					
0x00 5408	ADCT	ADC _HTRH	ADC high threshold register high	0xFF					
0x00 5409		ADC_HTRL	ADC high threshold register low	0x03					
0x00 540A		ADC _LTRH	ADC low threshold register high	0x00					
0x00 540B		ADC_LTRL	ADC low threshold register low	0x00					
0x00 540C		ADC _AWSRH	ADC watchdog status register high	0x00					
0x00 540D		ADC_AWSRL	ADC watchdog status register low	0x00					
0x00 540E		ADC _AWCRH	ADC watchdog control register high	0x00					
0x00 540F		ADC _AWCRL ADC watchdog control register		0x00					
0x00 5410 to 0x00 57FF		Re	served area (1008 byte)						

T-1.1. 44	A	I I			/ (]	
Table 11.	General	nardware	register	map	(continuea)	

1. Depends on the previous reset source.

2. Write only register.

6.2.2 CPU/SWIM/debug module/interrupt controller registers

Address	Block	Register label	Register name	Reset status		
0x00 7F00		А	Accumulator	0x00		
0x00 7F01		PCE	Program counter extended	0x00		
0x00 7F02		PCH	Program counter high			
0x00 7F03		PCL	Program counter low	0x00		
0x00 7F04		ХН	X index register high	0x00		
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00		
0x00 7F06		YH	Y index register high	0x00		
0x00 7F07		YL	Y index register low	0x00		
0x00 7F08		SPH	Stack pointer high	0x03		
0x00 7F09		SPL	Stack pointer low	0xFF		
0x00 7F0A		CCR	Condition code register	0x28		
0x00 7F0B to 0x00 7F5F	Reserved area (85 byte)					
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00		
0x00 7F70		ITC_SPR1 Interrupt software priority register		0xFF		
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF		
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF		
0x00 7F73		ITC_SPR4	Interrupt software priority register 4	0xFF		
0x00 7F74	nc	ITC_SPR5	Interrupt software priority register 5	0xFF		
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF		
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF		
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF		
0x00 7F78 to 0x00 7F79	Reserved area (2 byte)					
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00		
0x00 7F81 to 0x00 7F8F	Reserved area (15 byte)					

Table 12. CPU/SWIM/debug module/interrupt controller registers

Symbol	Ratings	Max. ⁽¹⁾	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽²⁾	100	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽²⁾	80	
I _{IO}	Output current sunk by any I/O and control pin	20	
	Output current source by any I/Os and control pin	-20	m۸
I _{INJ(PIN)} ^{(3) (4)}	Injected current on RST pin	±4	ШA
	Injected current on OSCIN pin	±4	
	Injected current on any other pin ⁽⁵⁾	±4	
$\Sigma I_{INJ(TOT)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	±20	

Table 23. Current characteristics

1. Guaranteed by characterization results.

- 2. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.
- 3. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding VIN maximum must always be respected.
- 4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN}) and ∑IINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy
- 5. When several inputs are submitted to a current injection, the maximum ∑IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ∑IINJ(PIN) maximum current injection on four I/O port pins of the device.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	150	0

Table 24. Thermal characteristics

Table 25. Operating lifetime (OLF)

Symbol	Ratings	Value	Unit
OLF	Conforming to AEC-Q100	-40 to 150	°C

Total current consumption in wait mode

Unless otherwise specified, data based are on characterization results, and not tested in production.

Symbol	Parameter	Cond	Тур	Max	Unit	
I _{DD(WFI)}			HSE crystal osc. (16 MHz)	1.6	-	
	Supply current in wait mode	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.1	1.3	
			HSI RC osc. (16 MHz)	0.89	1.5 ⁽¹⁾	
		f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	0.7	0.88	mA
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.45	0.57	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.4	0.54	

Table 30.	Total	current	consum	ption in	ı wait	mode	at V _{DD}	= 5 V
								-

1. Tested in production.

2. Default clock configuration measured with all peripherals off.

Symbol	Parameter	Cond	Тур	Max ⁽¹⁾	Unit					
		f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	1.1	-					
			HSE user ext. clock (16 MHz)	1.1	1.3					
	Supply surrent		HSI RC osc. (16 MHz)	0.89	1.1					
I _{DD(WFI)}	in wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	0.7	0.88	mA				
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.45	0.57					
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.4	0.54					

Table 31. Total current consumption in wait mode at V_{DD} = 3.3 V

1. Guaranteed by characterization results.

2. Default clock configuration measured with all peripherals off.

Total current consumption in active halt mode

	Parameter		Conditions						
Symbol		Main voltage regulator (MVR) ⁽¹⁾	Flash mode ⁽²⁾	Clock source	Тур	Max at 85°C	Max at 125°C	Maxat 150°C	Unit
	Supply current in active halt mode	On	Operating mode	HSE crystal osc. (16 MHz)	1030	-	-	-	
				LSI RC osc. (128 kHz)	200	260	300	-	
			Power-down mode	HSE crystal osc. (16 MHz)	970	-	-	-	
'DD(AH)				LSI RC osc. (128 kHz)	150	200	230	-	μΛ
		Off	Operating mode	LSI RC osc. (128 kHz)	66	85	140	200	
			Power-down mode	LSI RC osc. (128 kHz)	10	20	40	-	

Table 32. Total current consumption in active halt mode at V_{DD} = 5 V

1. Configured by the REGAH bit in the CLK_ICKR register.

2. Configured by the AHALT bit in the FLASH_CR1 register.

		Conditions						
			Contaition					
Symbol	Parameter	Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max at 85°C ⁽¹⁾	Max at 125°C	Unit
	Supply current	On ply current ctive halt le	Operating	HSE crystal osc. (16 MHz)	550	-	-	
			mode	LSI RC osc. (128 kHz)	200	260	290	
1			Power- down mode	HSE crystal osc. (16 MHz)	970	-	-	
'DD(AH)	mode			LSI RC osc. (128 kHz)	150	200	230	μΑ
		Off	Operating mode	LSI RC osc. (128 kHz)	66	80	105	
			Power- down mode	LSI RC osc. (128 kHz)	10	18	35	

Table 33. Total current consumption in active halt mode at V_{DD} = 3.3 V

1. Guaranteed by characterization results.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

Total current consumption in halt mode

Symbol	Parameter	Conditions	Тур	Max at 85°C	Max at 125°C	Max at 150°C	Unit	
I _{DD(H)}	Supply current in halt	Flash in operating mode, HSI clock after wakeup	63	75	105	-		
	mode	Flash in power-down mode, HSI clock after wakeup	6.0	20 ⁽¹⁾	55 ⁽¹⁾	80 ⁽¹⁾	μΑ	

Table 34. Total current consumption in halt mode at V_{DD} = 5 V

1. Tested in production.

Table 35. Total current consumption in halt mode at V_{DD} = 3.3 V

Symbol	Parameter	Conditions	Тур	Max at 85°C ⁽¹⁾	Max at 125°C ⁽¹⁾	Unit
I _{DD(H)}	Supply current in halt	Flash in operating mode, HSI clock after wakeup	60	75	100	
	mode	Flash in power-down mode, HSI clock after wakeup	4.5	17	30	μΑ

1. Guaranteed by characterization results.

Low-power mode wakeup times

Table 36. Wakeup times

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
1	Wakeup time	0 to 16 MHz			-	See ⁽³⁾	
^t WU(WFI)	to run mode ⁽²⁾	f _{CPU} = f _{MASTER} = 16 MHz			0.56	-	
t	Wakeup time active halt mode to run mode ⁽²⁾	MVR voltage	Flash in operating mode ⁽⁵⁾		1 ⁽⁶⁾	2 ⁽⁶⁾	
		e regulator on ⁽⁴⁾		HSI (after wakeup)	3 ⁽⁶⁾	-	
'WU(AH)		MVR voltage			48 ⁽⁶⁾	-	μο
		regulator off			50 ⁽⁶⁾	-	
	Wakeup time from halt mode to run mode ⁽²⁾	Flash in operating mode ⁽⁵⁾			52	-	
t _{WU(H)}		Flash in power-do	own mode ⁽⁵⁾		54	-	

1. Guaranteed by design.

2. Measured from interrupt event to interrupt vector fetch.

3. $t_{WU(WFI)} = 2 \times 1/f_{MASTER} + 67 \times 1/f_{CPU}$.

- 4. Configured by the REGAH bit in the CLK_ICKR register.
- 5. Configured by the AHALT bit in the FLASH_CR1 register.
- 6. Plus 1 LSI clock depending on synchronization.

Symbol	Parameter	Condition	Min	Max	Unit
T _{WE}	Temperature for writing and erasing	-	-40	150	°C
N _{WE}	Flash program memory endurance (erase/write cycles) ⁽¹⁾	T _A = 25 °C	1000	-	cycles
t _{RET}	Data rotantian time	T _A = 25 °C	40	-	Veare
		T _A = 55 °C	20	-	years

Table 45. Flash program memory

1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

Symbol	Parameter	Condition	Min	Max	Unit	
T_{WE}	Temperature for writing and erasing	-	-40	150	°C	
N _{WE}	Data memory endurance ⁽¹⁾	T _A = 25 °C	300 k	-	cycles	
	(erase/write cycles)	$T_A = -40^{\circ}C$ to 125 °C	100 k ⁽²⁾	-		
t _{RET}	Data rotantian time	T _A = 25 °C	40 ⁽³⁾	-	years	
		T _A = 55 °C	20 ⁽²⁾⁽³⁾	-		

1. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a write/erase operation addresses a single byte.

2. More information on the relationship between data retention time and number of write/erase cycles is available in a separate technical document.

3. Retention time for 256B of data memory after up to 1000 cycles at 125 $^\circ\text{C}.$

Figure 30. Typ. V_{DD} - $V_{OH} @ V_{DD}$ = 5 V (high sink ports)

Figure 39. Typical application with I2C bus and timing diagram

1. Measurement points are made at CMOS levels: 0.3 x V_{DD} and 0.7 x $V_{\text{DD}}.$

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit				
	Total unadjusted error ⁽²⁾	f _{ADC} = 2 MHz	1.6	3.5					
E _T		f _{ADC} = 4 MHz	2.2	4					
		f _{ADC} = 6 MHz	2.4	4.5					
E _O		f _{ADC} = 2 MHz	1.1	2.5					
	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.5	3					
		f _{ADC} = 6 MHz	1.8	3					
		f _{ADC} = 2 MHz	1.5	3					
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	2.1	3	LSB				
		f _{ADC} = 6 MHz	2.2	4					
		f _{ADC} = 2 MHz	0.7	1.5					
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5					
		f _{ADC} = 6 MHz	0.7	1.5					
		f _{ADC} = 2 MHz	0.6	1.5					
E _L	Integral linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.8	2					
		f _{ADC} = 6 MHz	0.8	2					

Table 55. ADC accuracy with RAIN < 10 k Ω , V_{DD} = 5 V

1. Max value is based on characterization, not tested in production.

2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in the I/O port pin characteristics section does not affect the ADC accuracy.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit		
IE-I	Total upadjusted error	f _{ADC} = 2 MHz	1.6	3.5			
I⊏TI	iolai unaujusleu enoi	f _{ADC} = 4 MHz	1.9	4			
	Offeet error	f _{ADC} = 2 MHz 1	2.5	2.5			
⊏0	Oliset endi	f _{ADC} = 4 MHz	1.5	2.5			
E _G		f _{ADC} = 2 MHz	1.3	3			
	Gain error	f _{ADC} = 4 MHz	2	3	LOB		
E _D	Differential linearity error	f _{ADC} = 2 MHz	0.7	1			
		f _{ADC} = 4 MHz	0.7	1.5			
E _L	Integral linearity error	f _{ADC} = 2 MHz	0.6	1.5			
	integral linearity error	f _{ADC} = 4 MHz	0.8	2			

Table 56. ADC accuracy with RAIN < 10 k Ω , V_{DD} = 3.3 V

1. Max value is based on characterization, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage (applied to each power supply pin),
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Parameter Conditions	
LU	Static latch-up class	T _A = 25 °C	
		$T_A = 85 \ ^{\circ}C$	
		$T_A = 125 \text{ °C}$	
		T _A = 150 °C	

Table 60. Electrical se	ensitivities
-------------------------	--------------

 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

Table 61. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

quan nut puokago mechanical data							
Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
A	0.800	0.900	1.000	0.0315	0.0354	0.0394	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.200	-	-	0.0079	-	
b	0.180	0.250	0.300	0.0071	0.0098	0.0118	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D2	3.500	3.600	3.700	0.1378	0.1417	0.1457	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E2	3.500	3.600	3.700	0.1378	0.1417	0.1457	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.050	-	-	0.0020	

Table 63. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitchquad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

12.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

12.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at www.st.com. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verify of your STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

12.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface.

Available toolchains include:

Cosmic C compiler for STM8

All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows the users to assemble and link your application source code.

