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 ATmega8U2/16U2/32U2
2. Overview
The ATmega8U2/16U2/32U2 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. 
By executing powerful instructions in a single clock cycle, the ATmega8U2/16U2/32U2 achieves throughputs approaching 
1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent 
registers to be accessed in one single instruction executed in one clock cycle. The resulting 
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 ATmega8U2/16U2/32U2
2.2.5 Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The 
Port C output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

Port C also serves the functions of various special features of the ATmega8U2/16U2/32U2 as 
listed on page 77.

2.2.6 Port D (PD7..PD0)
Port D serves as analog inputs to the analog comparator.

Port D also serves as an 8-bit bi-directional I/O port, if the analog comparator is not used (con-
cerns PD2/PD1 pins). Port pins can provide internal pull-up resistors (selected for each bit). The 
Port D output buffers have symmetrical drive characteristics with both high sink and source 
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up 
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, 
even if the clock is not running.

2.2.7 D-
USB Full Speed Negative Data Upstream Port

2.2.8 D+
USB Full Speed Positive Data Upstream Port

2.2.9 UGND
USB Ground.

2.2.10 UVCC
USB Pads Internal Regulator Input supply voltage.

2.2.11 UCAP
USB Pads Internal Regulator Output supply voltage. Should be connected to an external capac-
itor (1μF).

2.2.12 RESET/PC1/dW
Reset input. A low level on this pin for longer than the minimum pulse length will generate a 
reset, even if the clock is not running. The minimum pulse length is given in “System Control and 
Reset” on page 47. Shorter pulses are not guaranteed to generate a reset. This pin alternatively 
serves as debugWire channel or as generic I/O. The configuration depends on the fuses RST-
DISBL and DWEN.

2.2.13 XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.2.14 XTAL2/PC0
Output from the inverting Oscillator amplifier if enabled by Fuse. Also serves as a generic I/O.
 5
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 ATmega8U2/16U2/32U2
10.2.3 Brown-out Detection
ATmega8U2/16U2/32U2 has an On-chip Brown-out Detection (BOD) circuit for monitoring the 
VCC level during operation by comparing it to a fixed trigger level. The trigger level for the BOD 
can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike 
free Brown-out Detection. The hysteresis on the detection level should be interpreted as VBOT+ = 
VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2. When the BOD is enabled, and VCC decreases to a 
value below the trigger level (VBOT- in Figure 10-5), the Brown-out Reset is immediately acti-
vated. When VCC increases above the trigger level (VBOT+ in Figure 10-5), the delay counter 
starts the MCU after the Time-out period tTOUT has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in “System and Reset Characteristics” on page 267.

Figure 10-5. Brown-out Reset During Operation

10.2.4 Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On 
the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT. Refer to 
“Watchdog Timer” on page 51 for details on operation of the Watchdog Timer.

Figure 10-6. Watchdog Reset During Operation

10.2.5 USB Reset
When the USB macro is enabled and configured with the USB reset MCU feature enabled, and 
if a valid USB Reset signalling is detected, the microcontroller is reset unless the USB macro 
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 ATmega8U2/16U2/32U2
Table 10-8. Watchdog Timer Prescale Select, DIV = 5 (CLKwdt = CLK128 / 11) 

WDP3 WDP2 WDP1 WDP0

Number of WDT Oscillator 
Cycles before 1st time-out 

(Early warning)

Early warning Typical 
Time-out at 
VCC = 5.0V

Watchdog 
Reset/Interrupt Typical 

Time-out at 
VCC = 5.0V

0 0 0 0 2K (2048) cycles 88 ms 176 ms

0 0 0 1 4K (4096) cycles 176 ms 352 ms

0 0 1 0 8K (8192) cycles 352 ms 704 ms

0 0 1 1 16K (16384) cycles 704 ms 1.4 s

0 1 0 0 32K (32768) cycles 1.4 s 2.8 s

0 1 0 1 64K (65536) cycles 2.8 s 5.6 s

0 1 1 0 128K (131072) cycles 5.6 s 11.2 s

0 1 1 1 256K (262144) cycles 11.2 s 22.5 s

1 0 0 0 512K (524288) cycles 22.5 s 45 s

1 0 0 1 1024K (1048576) cycles 45s 90 s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Table 10-9. Watchdog Timer Prescale Select, DIV = 6(CLKwdt = CLK128 / 13) 

WDP3 WDP2 WDP1 WDP0

Number of WDT Oscillator 
Cycles before 1st time-out 

(Early warning)

Early warning Typical 
Time-out at 
VCC = 5.0V

Watchdog 
Reset/Interrupt Typical 

Time-out at 
VCC = 5.0V

0 0 0 0 2K (2048) cycles 104 ms 208 ms

0 0 0 1 4K (4096) cycles 208 ms 416 ms

0 0 1 0 8K (8192) cycles 416 ms 832 ms

0 0 1 1 16K (16384) cycles 832 ms 1.64 s

0 1 0 0 32K (32768) cycles 1.6 s 3.3 s

0 1 0 1 64K (65536) cycles 3.3 s 6.6 s

0 1 1 0 128K (131072) cycles 6.6 s 13.3 s

0 1 1 1 256K (262144) cycles 13.3 s 26.6 s

1 0 0 0 512K (524288) cycles 26.6 s 53.2 s

1 0 0 1 1024K (1048576) cycles 53.2 s 106.4 s
 62
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11. Interrupts

11.1 Overview
This sect ion descr ibes the speci f ics of the in terrupt handl ing as per formed in 
ATmega8U2/16U2/32U2. For a general explanation of the AVR interrupt handling, refer to 
“Reset and Interrupt Handling” on page 13.

11.2 Interrupt Vectors in ATmega8U2/16U2/32U2

Table 11-1. Reset and Interrupt Vectors 

Vector
No.

Program
Address(2) Source Interrupt Definition

1 $0000(1) RESET
External Pin, Power-on Reset, Brown-out Reset, 
Watchdog Reset, USB Reset and debugWIRE AVR 
Reset

2 $0002 INT0 External Interrupt Request 0

3 $0004 INT1 External Interrupt Request 1

4 $0006 INT2 External Interrupt Request 2

5 $0008 INT3 External Interrupt Request 3

6 $000A INT4 External Interrupt Request 4

7 $000C INT5 External Interrupt Request 5

8 $000E INT6 External Interrupt Request 6

9 $0010 INT7 External Interrupt Request 7

10 $0012 PCINT0 Pin Change Interrupt Request 0

11 $0014 PCINT1 Pin Change Interrupt Request 1

12 $0016 USB General USB General Interrupt request

13 $0018 USB Endpoint USB Endpoint Interrupt request

14 $001A WDT Watchdog Time-out Interrupt

15 $001C TIMER1 CAPT Timer/Counter1 Capture Event

16 $001E TIMER1 COMPA Timer/Counter1 Compare Match A

17 $0020 TIMER1 COMPB Timer/Counter1 Compare Match B

18 $0022 TIMER1 COMPC Timer/Counter1 Compare Match C

19 $0024 TIMER1 OVF Timer/Counter1 Overflow

20 $0026 TIMER0 COMPA Timer/Counter0 Compare Match A

21 $0028 TIMER0 COMPB Timer/Counter0 Compare match B

22 $002A TIMER0 OVF Timer/Counter0 Overflow

23 $002C SPI, STC SPI Serial Transfer Complete

24 $002E USART1 RX USART1 Rx Complete

25 $0030 USART1 UDRE USART1 Data Register Empty

26 $0032 USART1TX USART1 Tx Complete
 64
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uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source 
is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the 
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and 
OC0B). See “Output Compare Unit” on page 93. for details. The Compare Match event will also 
set the Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare 
interrupt request.

15.2.2 Definitions
Many register and bit references in this section are written in general form. A lower case “n” 
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or 
bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing 
Timer/Counter0 counter value and so on.

The definitions in Table 15-1 are also used extensively throughout the document.

15.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock source 
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits 
located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and pres-
caler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 88.

15.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 
15-2 shows a block diagram of the counter and its surroundings.

Figure 15-2. Counter Unit Block Diagram

Signal description (internal signals):

Table 15-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the 
count sequence. The TOP value can be assigned to be the fixed value 0xFF 
(MAX) or the value stored in the OCR0A Register. The assignment is depen-
dent on the mode of operation.

DATA BUS

TCNTn Control Logic

count

TOVn
(Int.Req.)

Clock Select

top

Tn
Edge

Detector

( From Prescaler )

clkTn

bottom

direction

clear
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15.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0x[1:0] bits differently in Normal, CTC, and PWM 
modes. For all modes, setting the COM0x[1:0] = 0 tells the Waveform Generator that no action 
on the OC0x Register is to be performed on the next Compare Match. For compare output 
actions in the non-PWM modes refer to Table 15-2 on page 102. For fast PWM mode, refer to 
Table 15-3 on page 102, and for phase correct PWM refer to Table 15-4 on page 103.

A change of the COM0x1:0 bits state will have effect at the first Compare Match after the bits are 
written. For non-PWM modes, the action can be forced to have immediate effect by using the 
FOC0x strobe bits.

15.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins, is 
defined by the combination of the Waveform Generation mode (WGM0[2:0]) and Compare Out-
put mode (COM0x[1:0]) bits. The Compare Output mode bits do not affect the counting 
sequence, while the Waveform Generation mode bits do. The COM0x[1:0] bits control whether 
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-
PWM modes the COM0x[1:0] bits control whether the output should be set, cleared, or toggled 
at a Compare Match (See “Compare Match Output Unit” on page 95.).

For detailed timing information see “Timer/Counter Timing Diagrams” on page 100.

15.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM0[2:0] = 0). In this mode the counting 
direction is always up (incrementing), and no counter clear is performed. The counter simply 
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same 
timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth 
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt 
that automatically clears the TOV0 Flag, the timer resolution can be increased by software. 
There are no special cases to consider in the Normal mode, a new counter value can be written 
anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will 
occupy too much of the CPU time.

15.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM0[2:0] = 2), the OCR0A Register is used to 
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter 
value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence 
also its resolution. This mode allows greater control of the Compare Match output frequency. It 
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNT0) 
increases until a Compare Match occurs between TCNT0 and OCR0A, and then counter 
(TCNT0) is cleared.
 96
7799D–AVR–11/10



 ATmega8U2/16U2/32U2
Table 15-4 shows the COM0B[1:0] bit functionality when the WGM0[2:0] bits are set to phase 
correct PWM mode.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM Mode” on 
page 99 for more details.

• Bits 3:2 – Res: Reserved Bits
These bits are reserved and will always read as zero.

• Bits 1:0 – WGM0[1:0]: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting 
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 15-8. Modes of operation supported by the Timer/Counter 
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of 
Pulse Width Modulation (PWM) modes (see “Modes of Operation” on page 96).

Notes: 1. MAX = 0xFF 
2. BOTTOM = 0x00

Table 15-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0 Clear OC0B on Compare Match when up-counting. Set OC0B on 
Compare Match when down-counting.

1 1 Set OC0B on Compare Match when up-counting. Clear OC0B on 
Compare Match when down-counting.

Table 15-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0

Timer/Counter 
Mode of 
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1 PWM, Phase 
Correct 0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF TOP MAX

4 1 0 0 Reserved – – –

5 1 0 1 PWM, Phase 
Correct OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA TOP TOP
 104
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The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by 
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

16.6 Input Capture Unit
The Timer/Counter incorporates an input capture unit that can capture external events and give 
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, for the Timer/Counter1 only, via the 
Analog Comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, 
and other features of the signal applied. Alternatively the time-stamps can be used for creating a 
log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 16-3. The elements of 
the block diagram that are not directly a part of the input capture unit are gray shaded. The small 
“n” in register and bit names indicates the Timer/Counter number.

Figure 16-3. Input Capture Unit Block Diagram

Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 ICP – not 
Timer/Counter3, 4 or 5.

When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn), alternatively 
on the analog Comparator output (ACO), and this change confirms to the setting of the edge 
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter 
(TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at 
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (TICIEn = 
1), the input capture flag generates an input capture interrupt. The ICFn flag is automatically 
cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by 
writing a logical one to its I/O bit location.

ICFn (Int.Req.)

Analog
Comparator

WRITE ICRn (16-bit Register)

ICRnH (8-bit)

Noise
Canceler
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Edge
Detector

TEMP (8-bit)

DATA BUS (8-bit)

ICRnL (8-bit)

TCNTn (16-bit Counter)

TCNTnH (8-bit) TCNTnL (8-bit)

ACIC* ICNC ICESACO*
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Figure 16-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fclk_I/O/8)

Figure 16-12 shows the count sequence close to TOP in various modes. When using phase and 
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams 
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. 
The same renaming applies for modes that set the TOVn Flag at BOTTOM.

Figure 16-12. Timer/Counter Timing Diagram, no Prescaling

Figure 16-13 shows the same timing data, but with the prescaler enabled.
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Note: 1. See “Code Examples” on page 6.

Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

sbis SPSR,SPIF

rjmp Wait_Transmit

ret
C Code Example(1)

void SPI_MasterInit(void)
{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)
{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))
;

}

 141
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• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0 have 
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency fosc is 
shown in the following table:

17.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in 
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is 
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the 
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the 
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The 
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, 
and then accessing the SPI Data Register.

• Bit 5:1 – Res: Reserved Bits
These bits are reserved bits in the ATmega8U2/16U2/32U2 and will always read as zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI 
is in Master mode (see Table 17-5). This means that the minimum SCK period will be two CPU 
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fosc/4 
or lower.

The SPI interface on the ATmega8U2/16U2/32U2 is also used for program memory and 
EEPROM downloading or uploading. See page 259 for serial programming and verification.

Table 17-5. Relationship Between SCK and the Oscillator Frequency  

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4
0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2
1 0 1 fosc/8
1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR
Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or 
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 18-2 shows a block diagram of the clock generation logic.

Figure 18-2. Clock Generation Logic, Block Diagram

Signal description:

18.3.1 Internal Clock Generation – The Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of 
operation. The description in this section refers to Figure 18-2.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a 
programmable prescaler or baud rate generator. The down-counter, running at system clock 
(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or when 
the UBRRLn Register is written. A clock is generated each time the counter reaches zero. This 
clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter divides the 
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the Receiver’s clock and data recovery units. However, the recovery units 
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the 
UMSELn, U2Xn and DDR_XCKn bits.

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master operation.

fOSC XTAL pin frequency (System Clock).
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18.5 USART Initialization
The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the 
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the 
Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the 
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no 
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used 
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to 
check that there are no unread data in the receive buffer. Note that the TXCn Flag must be 
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling 
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter. 
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16 
Registers.

Note: 1. See “Code Examples” on page 6.
More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and 
control registers, and for these types of applications the initialization code can be placed directly 
in the main routine, or be combined with initialization code for other I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRHn, r17

out UBRRLn, r16

; Enable receiver and transmitter

ldi r16, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBSn)|(3<<UCSZn0)

out UCSRnC,r16

ret
C Code Example(1)

void USART_Init( unsigned int baud )
{

/* Set baud rate */

UBRRHn = (unsigned char)(baud>>8);
UBRRLn = (unsigned char)baud;
/* Enable receiver and transmitter */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set frame format: 8data, 2stop bit */

UCSRnC = (1<<USBSn)|(3<<UCSZn0);

}
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18.11 Register Description

18.11.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the 
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the 
UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to 
zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set. 
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter 
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the 
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the 
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions 
(SBIC and SBIS), since these also will change the state of the FIFO.

18.11.2 UCSRnA – USART Control and Status Register A

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive 
buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the receive 
buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag can be 
used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and 
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing 
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see 
description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty
The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If UDREn 
is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can generate a 
Data Register Empty interrupt (see description of the UDRIEn bit).

UDREn is set after a reset to indicate that the Transmitter is ready.

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)
TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA
Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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20.3 USB Module Powering Options
Depending on the selected target application power supply (VCC), the ATmega8U2/16U2/32U2 
USB controller requires different powering schemes, see Figure 20-2 on page 186.

Figure 20-2. Operating modes versus frequency and power-supply

20.3.1 Bus Powered device
The following figures show typical implementations for different powering schemes.

Figure 20-3. Typical Bus powered application with 5V I/O 
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20.3.3 Design guidelines
The following design guidelines should be met:

• Serial resistors on USB Data lines must have 22 Ohms value (+/- 5%).
• Traces from the input USB receptacle (or from the cable connection in the case of a tethered 

device) to the USB microcontroller pads should be as short as possible, and follow differential 
traces routing rules (same length, as near as possible and avoid vias accumulation).

• Voltage transient / ESD suppressors may also be used to prevent USB pads to be damaged 
by external disturbances.

• Ucap capacitor should be 1μF (+/- 10%) for correct operation.
In addition it is highly recommended to connect a 10μF capacitor to the VBUS line

20.4 General Operating Modes

20.4.1 Introduction
The USB controller is disabled and reset after a hardware reset generated by:

– Power on reset
– External reset
– Watchdog reset
– Brown out reset
– debugWIRE reset
– USB End Of Reset

In the case of USB End Of Reset (EOR), the USB controller is reset, but not disabled. Therefore 
the device remains attached.

20.4.2 Power-on and reset
Figure 20-7 on page 189 illustrates the USB controller main states on power-on:

Figure 20-7. USB controller states after reset

Reset

Device

Any other
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USBE = 1 HW RESET
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USBE = 0

HW RESET
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Clock stopped
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21.11.2 STALL handshake and Retry mechanism
The Retry mechanism has priority over the STALL handshake. A STALL handshake is sent if the 
STALLRQ request bit is set and if there is no retry required.

21.12 CONTROL endpoint management
A SETUP request is always ACK’ed. When a new setup packet is received, the RXSTPI inter-
rupt is triggered (if enabled). The RXOUTI interrupt is not triggered.

The FIFOCON and RWAL fields are irrelevant with CONTROL endpoints. The firmware shall 
thus never use them on that endpoints. When read, their value is always 0.

CONTROL endpoints are managed by the following bits:

• RXSTPI is set when a new SETUP is received. It shall be cleared by firmware to 
acknowledge the packet and to clear the endpoint bank.

• RXOUTI is set when a new OUT data is received. It shall be cleared by firmware to 
acknowledge the packet and to clear the endpoint bank.

• TXINI is set when the bank is ready to accept a new IN packet. It shall be cleared by firmware 
to send the packet and to clear the endpoint bank.

CONTROL endpoints should not be managed by interrupts, but only by polling the status bits.

21.12.1 Control Write
The next figure shows a control write transaction. During the status stage, the controller will not 
necessary send a NAK at the first IN token:

• If the firmware knows the exact number of descriptor bytes that must be read, it can then 
anticipate on the status stage and send a ZLP for the next IN token,

• or it can read the bytes and poll NAKINI, which tells that all the bytes have been sent by the 
host, and the transaction is now in the status stage.
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21.12.2 Control Read
The next figure shows a control read transaction. The USB controller has to manage the simulta-
neous write requests from the CPU and the USB host:

A NAK handshake is always generated at the first status stage command.

When the controller detect the status stage, all the data written by the CPU are erased, and 
clearing TXINI has no effects.

The firmware checks if the transmission is complete or if the reception is complete.

The OUT retry is always ACK'ed. This reception:

- set the RXOUTI flag (received OUT data)

- set the TXINI flag (data sent, ready to accept new data)

software algorithm:

set transmit ready

wait (transmit complete OR Receive complete)

if receive complete, clear flag and return

if transmit complete, continue

Once the OUT status stage has been received, the USB controller waits for a SETUP request. 
The SETUP request have priority over any other request and has to be ACK’ed. This means that 
any other flag should be cleared and the fifo reset when a SETUP is received.

WARNING: the byte counter is reset when a OUT Zero Length Packet is received. The firmware 
has to take care of this.

21.13 OUT endpoint management
OUT packets are sent by the host. All the data can be read by the CPU, which acknowledges or 
not the bank when it is empty.

21.13.1 Overview
The Endpoint must be configured first.
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27.10 Current Consumption in Reset and Reset Pulsewidth

Figure 27-28. Reset Supply Current vs. Frequency (Excluding Current Through the Reset 
Pullup)
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