Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | F ² MC-16FX | | Core Size | 16-Bit | | Speed | 56MHz | | Connectivity | CANbus, LINbus, SCI, UART/USART | | Peripherals | DMA, LVD, LVR, POR, PWM, WDT | | Number of I/O | 36 | | Program Memory Size | 160KB (160K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 8K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 12x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb96f315asbpmc-gse2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### **Contents** | Product Lineup | 5 | |--|----| | Block Diagram | | | Pin Assignments | 7 | | Pin Function Description | 8 | | Pin Circuit Type | 10 | | I/O Circuit Type | | | Memory Map | 13 | | RAMSTART Addresses | 14 | | User ROM Memory Map for Flash Devices | 15 | | Serial Programming Communication Interface | 16 | | I/O Map | 17 | | Interrupt Vector Table | 39 | | Handling Devices | 42 | | Latch-up prevention | 42 | | Unused pins handling | 42 | | External clock usage | 42 | | Unused sub clock signal | 43 | | Notes on PLL clock mode operation | 43 | | Power supply pins (VCC/VSS) | 43 | | Crystal oscillator and ceramic resonator circuit | 43 | | Turn on sequence of power supply to | | | A/D converter and analog inputs | 43 | | Pin handling when not using the A/D converter | 43 | |---|----| | Notes on Power-on | 43 | | Stabilization of power supply voltage | 44 | | Serial communication | | | Electrical Characteristics | 45 | | Absolute Maximum Ratings | 45 | | Recommended Operating Conditions | 47 | | DC characteristics | 48 | | AC Characteristics | | | Analog Digital Converter | 63 | | Low Voltage Detector characteristics | 67 | | FLASH memory program/erase characteristics | | | Example Characteristics | 70 | | Temperature dependency of | | | power supply currents | 70 | | Frequency dependency of | | | power supply currents in PLL Run mode | 75 | | Package Dimension MB96(F)31x LQFP48 | 76 | | Ordering Information | 77 | | Revision History | 78 | | Major Changes | 79 | | Document History | 80 | # Pin Function description (2 of 2) | Pin name | Feature | Description | | |-----------------|---------|---|--| | TTGn | PPG | Programmable Pulse Generator n trigger input | | | TTGn_R | PPG | Relocated Programmable Pulse Generator n trigger input | | | TXn | CAN | CAN interface n TX output | | | V _{CC} | Supply | Power supply | | | V _{SS} | Supply | Power supply | | | X0 | Clock | Oscillator input | | | X0A | Clock | Subclock Oscillator input (only for devices with suffix "W") | | | X1 | Clock | Oscillator output | | | X1A | Clock | Subclock Oscillator output (only for devices with suffix "W") | | | Туре | Circuit | Remarks | |------|---|--| | F | | Power supply input protection circuit | | G | ANE AVR ANE | A/D converter ref+ (AVRH) power supply input pin with protection circuit Flash devices do not have a protection circuit against VCC for pin AVRH | | Н | Pout Standby control for input shutdown Standby control for input shutdown Automotive input | CMOS level output (programmable I_{OL} = 5mA, I_{OH} = -5mA and I_{OL} = 2mA, I_{OH} = -2mA) CMOS hysteresis input with input shutdown function Automotive input with input shutdown function Programmable pull-up resistor: 50kΩ approx. | | I | Pull-up control Pout Nout Standby control for input shutdown Standby control for input shutdown Analog input | CMOS level output (programmable I_{OL} = 5mA, I_{OH} = -5mA and I_{OL} = 2mA, I_{OH} = -2mA) CMOS hysteresis input with input shutdown function Automotive input with input shutdown function Programmable pull-up resistor: 50kΩ approx. Analog input | # 8. RAMSTART Addresses | Devices | RAM size | RAMSTART0 | |---------------|----------|----------------------| | MB96F313/F315 | 8KByte | 00:6240 _H | # 9. User ROM Memory Map for Flash Devices | | | MB96F313 | MB96F315 | | |--|--|-----------------------|------------------------|---------| | Alternative mode
CPU address | Flash memory mode address | Flash size
96kByte | Flash size
160kByte | | | FF:FFFF _H
FF:0000 _H | 3F:FFFF _H
3F:0000 _H | S39 - 64K | S39 - 64K | | | FE:FFFF _H
FE:0000 _H | 3E:FFFF _H
3E:0000 _H | | S38 - 64K | Flash A | | FD:FFFF _H
FD:0000 _H | 3D:FFFF _H
3D:0000 _H | | | | | FC:FFFF _H
FC:0000 _H | 3C:FFFF _H
3C:0000 _H | | _ | | | FB:FFFF _H
FB:0000 _H | 3B:FFFF _H
3B:0000 _H | - | - | | | FA:FFFF _H
FA:0000 _H | 3A:FFFF _H
3A:0000 _H | | _ | | | F9:FFF _H
F9:0000 _H | 39:FFFF _H
39:0000 _H | | - | | | F8:FFF _H
F8:0000 _H | 38:FFFF _H
38:0000 _H | | | | | F7:FFFF _H
F7:0000 _H | 37:FFFF _H
37:0000 _H | | | | | F6:FFFF _H
F6:0000 _H | 36:FFFF _H
36:0000 _H | Reserved | | | | F5:FFFF _H
F5:0000 _H | 35:FFFF _H
35:0000 _H | rtocorvou | Reserved | | | F4:FFFF _H
F4:0000 _H | 34:FFFF _H
34:0000 _H | | | | | F3:FFFF _H
F3:0000 _H | 33:FFFF _H
33:0000 _H | | | | | F2:FFFF _H
F2:0000 _H | 32:FFFF _H
32:0000 _H | | | | | F1:FFFF _H
F1:0000 _H | 31:FFFF _H
31:0000 _H | | | | | F0:FFFF _H
F0:0000 _H | 30:FFFF _H
30:0000 _H | | | | | E0:FFFF _H | | | | | | DF:FFFF _H | | | | | | DF:7FFF _H DF:6000 _H | 1F:7FFF _H
1F:6000 _H | SA3 - 8K | SA3 - 8K | | | DF:5FFF _H
DF:4000 _H | 1F:5FFF _H
1F:4000 _H | SA2 - 8K | SA2 - 8K | | | DF:3FFF _H
DF:2000 _H | 1F:3FFF _H
1F:2000 _H | SA1 - 8K | SA1 - 8K | Flash A | | DF:1FFF _H
DF:0000 _H | 1F:1FFF _H
1F:0000 _H | SA0 - 8K *1 | SA0 - 8K *1 | | | DE:FFFF _H | | Reserved | Reserved | | | DE:0000 _H | | | | | # 10. Serial Programming Communication Interface USART pins for Flash serial programming (MD[2:0] = 010) | | MB96F31x | | | | | |------------|---------------|-----------------|--|--|--| | Pin number | LICART Number | Normal function | | | | | LQFP-48 | USART Number | | | | | | 7 | | SIN2 | | | | | 8 | USART2 | SOT2 | | | | | 9 | | SCK2 | | | | | 20 | | SIN7_R | | | | | 19 | USART7 | SOT7_R | | | | | 18 | | SCK7_R | | | | | 22 | | SIN8_R | | | | | 21 | USART8 | SOT8_R | | | | | 23 | | SCK8_R | | | | Note: If a Flash programmer and its software needs to use a handshaking pin, Cypress suggests to the tool vendor to support at least port P00_1 on pin 19. If handshaking is used by the tool but P00_1 is not available in customer's application, Cypress suggests to the customer to check the tool manual or to contact the tool vendor for alternative handshaking pins. # I/O map MB96(F)315x (Sheet 3 of 22) | Address | Register | Abbreviation
8-bit access | Abbreviation
16-bit access | Access | |---------------------|--|------------------------------|-------------------------------|--------| | 00005F _H | EXTINT1 - External Interrupt Level Select High | ELVRH1 | | R/W | | 000060 _H | RLT0 - Timer Control Status Register Low | TMCSRL0 | TMCSR0 | R/W | | 000061 _H | RLT0 - Timer Control Status Register High | TMCSRH0 | | R/W | | 000062 _H | RLT0 - Reload Register - for writing | | TMRLR0 | W | | 000062 _H | RLT0 - Reload Register - for reading | | TMR0 | R | | 000063 _H | RLT0 - Reload Register - for writing | | | W | | 000063 _H | RLT0 - Reload Register - for reading | | | R | | 000064 _H | RLT1 - Timer Control Status Register Low | TMCSRL1 | TMCSR1 | R/W | | 000065 _H | RLT1 - Timer Control Status Register High | TMCSRH1 | | R/W | | 000066 _H | RLT1 - Reload Register - for writing | | TMRLR1 | W | | 000066 _H | RLT1 - Reload Register - for reading | | TMR1 | R | | 000067 _H | RLT1 - Reload Register - for writing | | | W | | 000067 _H | RLT1 - Reload Register - for reading | | | R | | 000068 _H | RLT2 - Timer Control Status Register Low | TMCSRL2 | TMCSR2 | R/W | | 000069 _H | RLT2 - Timer Control Status Register High | TMCSRH2 | | R/W | | 00006A _H | RLT2 - Reload Register - for writing | | TMRLR2 | W | | 00006A _H | RLT2 - Reload Register - for reading | | TMR2 | R | | 00006B _H | RLT2 - Reload Register - for writing | | | W | | 00006B _H | RLT2 - Reload Register - for reading | | | R | | 00006C _H | RLT3 - Timer Control Status Register Low | TMCSRL3 | TMCSR3 | R/W | | 00006D _H | RLT3 - Timer Control Status Register High | TMCSRH3 | | R/W | | 00006E _H | RLT3 - Reload Register - for writing | | TMRLR3 | W | | 00006E _H | RLT3 - Reload Register - for reading | | TMR3 | R | | 00006F _H | RLT3 - Reload Register - for writing | | | W | | 00006F _H | RLT3 - Reload Register - for reading | | | R | | 000070 _H | RLT6 - Timer Control Status Register Low (dedic. RLT for PPG) | TMCSRL6 | TMCSR6 | R/W | | 000071 _H | RLT6 - Timer Control Status Register High (dedic. RLT for PPG) | TMCSRH6 | | R/W | | 000072 _H | RLT6 - Reload Register (dedic. RLT for PPG) - for writing | | TMRLR6 | W | | 000072 _H | RLT6 - Reload Register (dedic. RLT for PPG) - for reading | | TMR6 | R | | | 1 | 1 | 1 | | # I/O map MB96(F)315x (Sheet 13 of 22) | Address | Register | Abbreviation
8-bit access | Abbreviation
16-bit access | Access | |--|---|------------------------------|-------------------------------|--------| | 0004C4 _H -
0004CF _H | Reserved | | | - | | 0004D0 _H | ADC analog input enable register 0 | ADER0 | | R/W | | 0004D1 _H | ADC analog input enable register 1 | ADER1 | | R/W | | 0004D2 _H | ADC analog input enable register 2 | ADER2 | | R/W | | 0004D3 _H | ADC analog input enable register 3 | ADER3 | | R/W | | 0004D4 _H | ADC analog input enable register 4 | ADER4 | | R/W | | 0004D5 _H | Reserved | | | - | | 0004D6 _H | Peripheral Resource Relocation Register 0 | PRRR0 | | R/W | | 0004D7 _H | Peripheral Resource Relocation Register 1 | PRRR1 | | R/W | | 0004D8 _H | Peripheral Resource Relocation Register 2 | PRRR2 | | R/W | | 0004D9 _H | Peripheral Resource Relocation Register 3 | PRRR3 | | R/W | | 0004DA _H | Peripheral Resource Relocation Register 4 | PRRR4 | | R/W | | 0004DB _H | Peripheral Resource Relocation Register 5 | PRRR5 | | R/W | | 0004DC _H | Peripheral Resource Relocation Register 6 | PRRR6 | | R/W | | 0004DD _H | Peripheral Resource Relocation Register 7 | PRRR7 | | R/W | | 0004DE _H | Peripheral Resource Relocation Register 8 | PRRR8 | | R/W | | 0004DF _H | Peripheral Resource Relocation Register 9 | PRRR9 | | R/W | | 0004E0 _H | RTC - Sub Second Register L | WTBRL0 | WTBR0 | R/W | | 0004E1 _H | RTC - Sub Second Register M | WTBRH0 | | R/W | | 0004E2 _H | RTC - Sub-Second Register H | WTBR1 | | R/W | | 0004E3 _H | RTC - Second Register | WTSR | | R/W | | 0004E4 _H | RTC - Minutes | WTMR | | R/W | | 0004E5 _H | RTC - Hour | WTHR | | R/W | | 0004E6 _H | RTC - Timer Control Extended Register | WTCER | | R/W | | 0004E7 _H | RTC - Clock select register | WTCKSR | | R/W | | 0004E8 _H | RTC - Timer Control Register Low | WTCRL | WTCR | R/W | | 0004E9 _H | RTC - Timer Control Register High | WTCRH | | R/W | | 0004EA _H | CAL - Calibration unit Control register | CUCR | | R/W | | 0004EB _H | Reserved | | | - | | 0004EC _H | CAL - Duration Timer Data Register Low | CUTDL | CUTD | R/W | # I/O map MB96(F)315x (Sheet 18 of 22) | Address | Register | Abbreviation
8-bit access | Abbreviation
16-bit access | Access | |---------------------|--------------------------------------|------------------------------|-------------------------------|--------| | 0005C2 _H | PPG16 - Period setting register | | PCSR16 | W | | 0005C3 _H | PPG16 - Period setting register | | | W | | 0005C4 _H | PPG16 - Duty cycle register | | PDUT16 | W | | 0005C5 _H | PPG16 - Duty cycle register | | | W | | 0005C6 _H | PPG16 - Control status register Low | PCNL16 | PCN16 | R/W | | 0005C7 _H | PPG16 - Control status register High | PCNH16 | | R/W | | 0005C8 _H | PPG17 - Timer register | | PTMR17 | R | | 0005C9 _H | PPG17 - Timer register | | | R | | 0005CA _H | PPG17 - Period setting register | | PCSR17 | W | | 0005CB _H | PPG17 - Period setting register | | | W | | 0005CC _H | PPG17 - Duty cycle register | | PDUT17 | W | | 0005CD _H | PPG17 - Duty cycle register | | | W | | 0005CE _H | PPG17 - Control status register Low | PCNL17 | PCN17 | R/W | | 0005CF _H | PPG17 - Control status register High | PCNH17 | | R/W | | 0005D0 _H | PPG18 - Timer register | | PTMR18 | R | | 0005D1 _H | PPG18 - Timer register | | | R | | 0005D2 _H | PPG18 - Period setting register | | PCSR18 | W | | 0005D3 _H | PPG18 - Period setting register | | | W | | 0005D4 _H | PPG18 - Duty cycle register | | PDUT18 | W | | 0005D5 _H | PPG18 - Duty cycle register | | | W | | 0005D6 _H | PPG18 - Control status register Low | PCNL18 | PCN18 | R/W | | 0005D7 _H | PPG18 - Control status register High | PCNH18 | | R/W | | 0005D8 _H | PPG19 - Timer register | | PTMR19 | R | | 0005D9 _H | PPG19 - Timer register | | | R | | 0005DA _H | PPG19 - Period setting register | | PCSR19 | W | | 0005DB _H | PPG19 - Period setting register | | | W | | 0005DC _H | PPG19 - Duty cycle register | | PDUT19 | W | | 0005DD _H | PPG19 - Duty cycle register | | | W | | 0005DE _H | PPG19 - Control status register Low | PCNL19 | PCN19 | R/W | | 0005DF _H | PPG19 - Control status register High | PCNH19 | | R/W | | | <u>l</u> | 1 | 1 | 1 | # I/O map MB96(F)315x (Sheet 19 of 22) | Address | Register | Abbreviation
8-bit access | Abbreviation
16-bit access | Access | |--|--|------------------------------|-------------------------------|--------| | 0005E0 _H -
00065F _H | Reserved | | | - | | 000660 _H | Peripheral Resource Relocation Register 10 | PRRR10 | | R/W | | 000661 _H | Peripheral Resource Relocation Register 11 | PRRR11 | | R/W | | 000662 _H | Peripheral Resource Relocation Register 12 | PRRR12 | | R/W | | 000663 _H | Peripheral Resource Relocation Register 13 | PRRR13 | | W | | 000664 _H -
0008FF _H | Reserved | | | - | | 000900 _H | CAN2 - Control register Low | CTRLRL2 | CTRLR2 | R/W | | 000901 _H | CAN2 - Control register High (reserved) | CTRLRH2 | | R | | 000902 _H | CAN2 - Status register Low | STATRL2 | STATR2 | R/W | | 000903 _H | CAN2 - Status register High (reserved) | STATRH2 | | R | | 000904 _H | CAN2 - Error Counter Low (Transmit) | ERRCNTL2 | ERRCNT2 | R | | 000905 _H | CAN2 - Error Counter High (Receive) | ERRCNTH2 | | R | | 000906 _H | CAN2 - Bit Timing Register Low | BTRL2 | BTR2 | R/W | | 000907 _H | CAN2 - Bit Timing Register High | BTRH2 | | R/W | | 000908 _H | CAN2 - Interrupt Register Low | INTRL2 | INTR2 | R | | 000909 _H | CAN2 - Interrupt Register High | INTRH2 | | R | | 00090A _H | CAN2 - Test Register Low | TESTRL2 | TESTR2 | R/W | | 00090B _H | CAN2 - Test Register High (reserved) | TESTRH2 | | R | | 00090C _H | CAN2 - BRP Extension register Low | BRPERL2 | BRPER2 | R/W | | 00090D _H | CAN2 - BRP Extension register High (reserved) | BRPERH2 | | R | | 00090E _H -
00090F _H | Reserved | | | - | | 000910 _H | CAN2 - IF1 Command request register Low | IF1CREQL2 | IF1CREQ2 | R/W | | 000911 _H | CAN2 - IF1 Command request register High | IF1CREQH2 | | R/W | | 000912 _H | CAN2 - IF1 Command Mask register Low | IF1CMSKL2 | IF1CMSK2 | R/W | | 000913 _H | CAN2 - IF1 Command Mask register High (reserved) | IF1CMSKH2 | | R | | 000914 _H | CAN2 - IF1 Mask 1 Register Low | IF1MSK1L2 | IF1MSK12 | R/W | | 000915 _H | CAN2 - IF1 Mask 1 Register High | IF1MSK1H2 | | R/W | | 000916 _H | CAN2 - IF1 Mask 2 Register Low | IF1MSK2L2 | IF1MSK22 | R/W | | 000917 _H | CAN2 - IF1 Mask 2 Register High | IF1MSK2H2 | | R/W | #### 2. Opposite phase external clock When using an opposite phase external clock, X1 (X1A) must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. ### 13.4 Unused sub clock signal If the pins X0A and X1A are not connected to an oscillator, a pull-down resistor must be connected on the X0A pin and the X1A pin must be left open. ### 13.5 Notes on PLL clock mode operation If the PLL clock mode is selected and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed. ## 13.6 Power supply pins (V_{CC}/V_{SS}) It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range. V_{CC} and V_{SS} must be connected to the device from the power supply with lowest possible impedance. As a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1 μ F between V_{CC} and V_{SS} as close as possible to V_{CC} and V_{SS} pins. #### 13.7 Crystal oscillator and ceramic resonator circuit Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation. It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies. #### 13.8 Turn on sequence of power supply to A/D converter and analog inputs It is required to turn the A/D converter power supply (AV $_{CC}$, AVRH, AVRL) and analog inputs (ANn) on after turning the digital power supply (V $_{CC}$) on. It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, the voltage must not exceed AVRH or AV $_{CC}$ (turning the analog and digital power supplies simultaneously on or off is acceptable). #### 13.9 Pin handling when not using the A/D converter It is required to connect the unused pins of the A/D converter as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = AVRL = V_{SS}$. #### 13.10 Notes on Power-on To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2 V to 2.7 V. Document Number: 002-04592 Rev. *A - *1: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} neither when the power is switched on. - *2: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should also not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/output voltages of standard ports depend on V_{CC} - *3: Applicable to all general purpose I/O pins (Pnn m) - Use within recommended operating conditions. - Use at DC voltage (current) - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller. - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods. - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices. - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset (except devices with persistent low voltage reset in internal vector mode). - Sample recommended circuits: *4: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB. The actual power dissipation depends on the customer application and can be calculated as follows: $$P_D = P_{IO} + P_{INT}$$ $P_{IO} = \Sigma (V_{OL} * I_{OL} + V_{OH} * I_{OH})$ (IO load power dissipation, sum is performed on all IO ports) $P_{INT} = V_{CC} * (I_{CC} + I_A)$ (internal power dissipation) I_{CC} is the total core current consumption into V_{CC} as described in the "3. DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming or the clock modulator. I_A is the analog current consumption into AV $_{CC}$. - *5: Worst case value for a package mounted on single layer PCB at specified T_A without air flow. - *6: Please contact Cypress for reliability limitations when using under these conditions. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. ### 14.3 DC characteristics $(T_A = -40^{\circ}C \text{ to } 125^{\circ}C, V_{CC} = AV_{CC} = 3.0V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V)$ | _ | | | | | Value | | | | | |------------------|--------------------|---|--|-------------------------|-------|-------------------------|------|---|--| | Parameter | Symbol | Pin | Condition | Min Typ | | Max | Unit | Remarks | | | Input H voltage | | | CMOS Hysteresis | 0.7
V _{CC} | - | V _{CC} + 0.3 | V | $V_{CC} \ge 4.5V$ | | | | V _{IH} | Port inputs Pnn_m | 0.7/0.3 input
selected | 0.74
V _{CC} | - | V _{CC} + 0.3 | V | V _{CC} < 4.5V | | | | | | AUTOMOTIVE
Hysteresis input
selected | 0.8
V _{CC} | - | V _{CC} + 0.3 | ٧ | | | | | V _{IHX0F} | Х0 | External clock in
"Fast Clock Input mode" | 0.8
V _{CC} | - | V _{CC} + 0.3 | V | | | | | V _{IHX0S} | X0,X1,
X0A,X1A | External clock in
"oscillation mode" | 2.5 | - | V _{CC} + 0.3 | V | | | | | V _{IHR} | RSTX | - | 0.8
V _{CC} | - | V _{CC} + 0.3 | V | CMOS Hysteresis input | | | | V _{IHM} | MD2-MD0 | - | V _{CC} - 0.3 | - | V _{CC} + 0.3 | V | | | | Input L voltage | | | CMOS Hysteresis
0.7/0.3 input
selected | V _{SS} - 0.3 | - | 0.3
V _{CC} | ٧ | | | | | V _{IL} | Port inputs Pnn_m | AUTOMOTIVE
Hysteresis input | V _{SS} - 0.3 | - | 0.5
V _{CC} | V | $V_{CC} \ge 4.5V$ | | | | | | selected | V _{SS} - 0.3 | - | 0.46
V _{CC} | | V _{CC} < 4.5V | | | | V _{ILX0F} | Х0 | External clock in
"Fast Clock Input mode" | V _{SS} - 0.3 | - | 0.2 V _{CC} | V | | | | | V _{ILX0S} | X0,X1,
X0A,X1A | External clock in
"oscillation mode" | V _{SS} - 0.3 | - | 0.4 | V | | | | | V _{ILR} | RSTX | - | V _{SS} - 0.3 | - | 0.2 V _{CC} | V | CMOS Hysteresis input | | | | V _{ILM} | MD2-MD0 | - | V _{SS} - 0.3 | - | V _{SS} + 0.3 | V | | | | Output H voltage | | OH2 Normal OH5 Normal OH5 | $4.5V \le V_{CC} \le 5.5V$ | | | | | | | | | V _{OH2} | | Driving strength set to | | | | | | | | | OHZ | | $3.0V \le V_{CC} < 4.5V$ | 0.5 | - | - | | (PODR:OD=1) | | | | | | | | | | | | | | | V _{OH5} | | | V _{CC} - 0.5 | | | | Driving strength set to 5mA (PODR:OD=0) | $I_{OH} = -3mA$ | | | | | | | ### 14.4 AC Characteristics # **Source Clock timing** (T_A = -40°C to 125°C, V_{CC} = AV $_{CC}$ = 3.0V to 5.5V, V_{SS} = AV $_{SS}$ = 0V) | Parameter | Symbol | Pin | Value | | | | B | | |-----------------------------|-------------------------------------|----------|---------------------|--------|-----|--|---|--| | | | | Min | Тур | Max | Unit | Remarks | | | Clock frequency | f _C | X0, X1 | 3 | - | 16 | MHz | When using a crystal oscillator, PLL off | | | | | | 0 | - | 16 | MHz | When using an opposite phase external clock, PLL off | | | | | | 3.5 | - | 16 | MHz | When using a crystal oscillator or opposite phase external clock, PLL on | | | Clock frequency | f _{FCI} | X0 | 0 | - | 56 | MHz | When using a single phase external clock in
"Fast Clock Input mode", PLL off | | | | | | 3.5 | - | 56 | MHz | When using a single phase external clock in
"Fast Clock Input mode", PLL on | | | Clock frequency | f _{CL} | X0A, X1A | 32 | 32.768 | 100 | kHz | When using an oscillation circuit | | | | | | 0 | - | 100 | kHz | When using an opposite phase external clock | | | | | X0A | 0 | - | 50 | kHz | When using a single phase external clock | | | Clock frequency | f _{CR} | - | 50 | 100 | 200 | kHz | When using slow frequency of RC oscillator | | | | | | 1 | 2 | 4 | MHz | When using fast frequency of RC oscillator | | | RC clock stabilization time | t _{RCSTAB} | - | 256 RC clock cycles | | | Applied after any reset and when activating the RC oscillator. | | | | PLL Clock
frequency | f _{CLKVCO} | - | 64 | - | 200 | MHz | Permitted VCO output frequency of PLL (CLKVCO) | | | PLL Phase Jitter | T _{PSKEW} | - | - | | ± 5 | ns | For CLKMC (PLL input clock) □ 4MHz, jitter coming from external oscillator, crystal or resonator is not covered | | | Input clock pulse width | P _{WH} , P _{WL} | X0,X1 | 8 | - | - | ns | Duty ratio is about 30% to 70% | | | Input clock pulse width | P _{WHL} , P _{WLL} | X0A,X1A | 5 | _ | - | μS | | | Document Number: 002-04592 Rev. *A # **Internal Clock timing** (T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V) | | | | Core Volta | ge Settings | 3 | | | |--|---|------|------------|-------------|-----|------|---------| | Parameter | Symbol | 1.8V | | 1.9V | | Unit | Remarks | | | | Min | Max | Min | Max | | | | Internal System clock
frequency (CLKS1 and
CLKS2) | f _{CLKS1} , f _{CLKS2} | 0 | 92 | 0 | 96 | MHz | | | Internal CPU clock frequency (CLKB), internal peripheral clock frequency (CLKP1) | f _{CLKB} , f _{CLKP1} | 0 | 52 | 0 | 56 | MHz | | | Internal peripheral clock frequency (CLKP2) | f _{CLKP2} | 0 | 28 | 0 | 32 | MHz | | ### **Power On Reset timing** (T_A = -40°C to 125°C, V_{CC} = AV $_{CC}$ = 3.0V to 5.5V, V_{SS} = AV $_{SS}$ = 0V) | Parameter | Symbol | Pin | | Value | | Unit | Remarks | |--------------------|------------------|-----|------|-------|-----|------|---------| | Parameter | Symbol | | Min | Тур | Max | | | | Power on rise time | t _R | Vcc | 0.05 | - | 30 | ms | | | Power off time | t _{OFF} | Vcc | 1 | - | - | ms | | ### **Definition of A/D Converter Terms** Resolution: Analog variation that is recognized by an A/D converter. <u>Total error:</u> Difference between the actual value and the ideal value. The total error includes zero transition error, full-scale transition error and nonlinearity error. Nonlinearity error: Deviation between a line across zero-transition line ("00 0000 0000" <--> "00 0000 0001") and full-scale transition line ("11 1111 1110" <--> "11 1111 1111") and actual conversion characteristics. <u>Differential nonlinearity error:</u> Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value. Zero reading voltage: Input voltage which results in the minimum conversion value. Full scale reading voltage: Input voltage which results in the maximum conversion value. #### Total error Total error of digital output "N" = $$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}}$$ $$1 \text{ LSB} = (\text{Ideal value}) \quad \frac{\text{AVRH} - \text{AVRL}}{1024} \quad [V]$$ N: A/D converter digital output value V_{OT} (Ideal value) = AVRL + 0.5 LSB [V] V_{EST} (Ideal value) = AVRH - 1.5 LSB [V] $V_{\mbox{\scriptsize NT}}$: A voltage at which digital output transitions from (N - 1) to N. ## 16. Package Dimension MB96(F)31x LQFP48 ## Sales, Solutions, and Legal Information #### Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. cypress.com/usb cypress.com/wireless #### **Products** **USB Controllers** Wireless/RF ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc **Touch Sensing** cypress.com/touch ### PSoC[®]Solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP ### **Cypress Developer Community** Forums | Projects | Video | Blogs | Training | Components ### **Technical Support** cypress.com/support © Cypress Semiconductor Corporation, 2010- 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress parally grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.