

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	56MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, LVR, POR, PWM, WDT
Number of I/O	36
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f315rsbpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

Featu	ures	MB96V300C	MB96(F)31x
Produc	t type	Evaluation sample	Flash product: MB96F31x Mask ROM product: MB9631x
Product	options		
YS		NA	Low voltage reset persistently on / Single clock devices
R	S		Low voltage reset can be disabled / Single clock devices
Y۷	V		Low voltage reset persistently on / Dual clock devices
RV	N		Low voltage reset can be disabled / Dual clock devices
AS	S		No CAN / Low voltage reset can be disabled / Single clock devices
AV	V		No CAN / Low voltage reset can be disabled / Dual clock devices
Flash/ROM	RAM		
96KB	8KB	ROM/Flash memory	MB96F313Y, MB96F313R, MB96F313A
160KB	8KB	emulation by external RAM, 92KB internal RAM	MB96F315Y, MB96F315R, MB96F315A
Pack	age	BGA416	FPT-48P-M26
DN	1A	16 channels	4 channels
USA	RT	10 channels	3 channels
A/D Cor	nverter	40 channels	12 channels
A/D Converte Voltage		yes	No
16-bit Relo	oad Timer	6 channels + 1 channel (for PPG)	4 channels + 1 channel (for PPG)
16-bit Free-Ru	unning Timer	4 channels	4 channels (without external clock input pin)
16-bit Outpu	it Compare	12 channels	2 channels
16-bit Inpu	t Capture	12 channels	4 channels (plus 3 channels for LIN USART)
16-bit Program Gene	nmable Pulse rator	20 channels	14 channels
CAN Int	terface	5 channels	1 channel
External I	nterrupts	16 channels	11 channels
Non-Maskat	ole Interrupt		1 channel
Real Tim	e Clock		1
I/O P	orts	136	34 for part number with suffix "W", 36 for part number with suffix "S"
Clock outpu	ut function		2 channels
Low volta	ge reset		Yes
On-chip RC	C-oscillator		Yes

4. Pin Function Description

Pin Function description (1 of 2)

Pin name	Feature	Description
ADTG_R	ADC	Relocated A/D converter trigger input
ANn	ADC	A/D converter channel n input
AV _{CC}	Supply	Analog circuits power supply
AVRH	ADC	A/D converter high reference voltage input
AV _{SS}	Supply	Analog circuits power supply
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock output function	Clock Output function n output
CKOTn_R	Clock output function	Relocated Clock Output function n output
CKOTXn	Clock output function	Clock Output function n inverted output
INn	ICU	Input Capture Unit n input
INTn	External Interrupt	External Interrupt n input
INTn_R	External Interrupt	Relocated External Interrupt n input
MDn	Core	Input pins for specifying the operating mode.
NMI	External Interrupt	Non-Maskable Interrupt input
OUTn	OCU	Output Compare Unit n waveform output
Pxx_n	GPIO	General purpose IO
PPGn	PPG	Programmable Pulse Generator n output
PPGn_R	PPG	Relocated Programmable Pulse Generator n output
RSTX	Core	Reset input
RXn	CAN	CAN interface n RX input
SCKn	USART	USART n serial clock input/output
SCKn_R	USART	Relocated USART n serial clock input/output
SINn	USART	USART n serial data input
SINn_R	USART	Relocated USART n serial data input
SOTn	USART	USART n serial data output
SOTn_R	USART	Relocated USART n serial data output
TINn	Reload Timer	Reload Timer n event input
TINn_R	Reload Timer	Relocated Reload Timer n event input
TOTn	Reload Timer	Reload Timer n output
TOTn_R	Reload Timer	Relocated Reload Timer n output

5. Pin Circuit Type

Pin circuit types

FPT-48P-M26					
Pin no.	Circuit type ^{*1}				
1	Supply				
2	G				
3 to 12	I				
13, 14	B ^{*2}				
13, 14	H ^{*3}				
15 to 17	C				
18 to 32	Н				
33	E				
34, 35	A				
36, 37	Supply				
38	F				
39 to 45	Н				
46, 47	I				
48	Supply				

*1: Please refer to "6."I/O Circuit Type"" for details on the I/O circuit types

*2: Devices with suffix "W"

*3: Devices without suffix "W"

8. RAMSTART Addresses

Devices	RAM size	RAMSTART0
MB96F313/F315	8KByte	00:6240 _H

I/O map MB96(F)315x (Sheet 6 of 22)

Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access
000104 _H	DMA0 - I/O register address pointer low byte	IOAL0	IOA0	R/W
000105 _H	DMA0 - I/O register address pointer high byte	IOAH0		R/W
000106 _H	DMA0 - Data counter low byte	DCTL0	DCT0	R/W
000107 _H	DMA0 - Data counter high byte	DCTH0		R/W
000108 _H	DMA1 - Buffer address pointer low byte	BAPL1		R/W
000109 _H	DMA1 - Buffer address pointer middle byte	BAPM1		R/W
00010A _H	DMA1 - Buffer address pointer high byte	BAPH1		R/W
00010B _H	DMA1 - DMA control register	DMACS1		R/W
00010C _H	DMA1 - I/O register address pointer low byte	IOAL1	IOA1	R/W
00010D _H	DMA1 - I/O register address pointer high byte	IOAH1		R/W
00010E _H	DMA1 - Data counter low byte	DCTL1	DCT1	R/W
00010F _H	DMA1 - Data counter high byte	DCTH1		R/W
000110 _H	DMA2 - Buffer address pointer low byte	BAPL2		R/W
000111 _H	DMA2 - Buffer address pointer middle byte	BAPM2		R/W
000112 _H	DMA2 - Buffer address pointer high byte	BAPH2		R/W
000113 _H	DMA2 - DMA control register	DMACS2		R/W
000114 _H	DMA2 - I/O register address pointer low byte	IOAL2	IOA2	R/W
000115 _H	DMA2 - I/O register address pointer high byte	IOAH2		R/W
000116 _H	DMA2 - Data counter low byte	DCTL2	DCT2	R/W
000117 _H	DMA2 - Data counter high byte	DCTH2		R/W
000118 _H	DMA3 - Buffer address pointer low byte	BAPL3		R/W
000119 _H	DMA3 - Buffer address pointer middle byte	BAPM3		R/W
00011A _H	DMA3 - Buffer address pointer high byte	BAPH3		R/W
00011B _H	DMA3 - DMA control register	DMACS3		R/W
00011C _H	DMA3 - I/O register address pointer low byte	IOAL3	IOA3	R/W
00011D _H	DMA3 - I/O register address pointer high byte	IOAH3		R/W
00011E _H	DMA3 - Data counter low byte	DCTL3	DCT3	R/W
00011F _H	DMA3 - Data counter high byte	DCTH3		R/W
000120 _H - 00017F _H	Reserved			-

I/O map MB96(F)315x (Sheet 11 of 22)

Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access
000435 _H	I/O Port P05 - Data Direction Register	DDR05		R/W
000436 _H	I/O Port P06 - Data Direction Register	DDR06		R/W
000437 _H	I/O Port P07 - Data Direction Register	DDR07		R/W
000438 _H - 000443 _H	Reserved			-
000444 _H	I/O Port P00 - Port Input Enable Register	PIER00		R/W
000445 _H	I/O Port P01 - Port Input Enable Register	PIER01		R/W
000446 _H	I/O Port P02 - Port Input Enable Register	PIER02		R/W
000447 _H	I/O Port P03 - Port Input Enable Register	PIER03		R/W
000448 _H	Reserved			-
000449 _H	I/O Port P05 - Port Input Enable Register	PIER05		R/W
00044A _H	I/O Port P06 - Port Input Enable Register	PIER06		R/W
00044B _H	I/O Port P07 - Port Input Enable Register	PIER07		R/W
00044C _H - 000457 _H	Reserved			-
000458 _H	I/O Port P00 - Port Input Level Register	PILR00		R/W
000459 _H	I/O Port P01 - Port Input Level Register	PILR01		R/W
00045A _H	I/O Port P02 - Port Input Level Register	PILR02		R/W
00045B _H	I/O Port P03 - Port Input Level Register	PILR03		R/W
00045C _H	Reserved			-
00045D _H	I/O Port P05 - Port Input Level Register	PILR05		R/W
00045E _H	I/O Port P06 - Port Input Level Register	PILR06		R/W
00045F _H	I/O Port P07 - Port Input Level Register	PILR07		R/W
000460 _H - 00046B _H	Reserved			-
00046C _H	I/O Port P00 - Extended Port Input Level Register	EPILR00		R/W
00046D _H	I/O Port P01 - Extended Port Input Level Register	EPILR01		R/W
00046E _H	I/O Port P02 - Extended Port Input Level Register	EPILR02		R/W
00046F _H	I/O Port P03 - Extended Port Input Level Register	EPILR03		R/W
000470 _H	Reserved			-
000471 _H	I/O Port P05 - Extended Port Input Level Register	EPILR05		R/W
000472 _H	I/O Port P06 - Extended Port Input Level Register	EPILR06		R/W

I/O map MB96(F)315x (Sheet 18 of 22)

Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access
0005C2 _H	PPG16 - Period setting register		PCSR16	W
0005C3 _H	PPG16 - Period setting register			W
0005C4 _H	PPG16 - Duty cycle register		PDUT16	W
0005C5 _H	PPG16 - Duty cycle register			W
0005C6 _H	PPG16 - Control status register Low	PCNL16	PCN16	R/W
0005C7 _H	PPG16 - Control status register High	PCNH16		R/W
0005C8 _H	PPG17 - Timer register		PTMR17	R
0005C9 _H	PPG17 - Timer register			R
0005CA _H	PPG17 - Period setting register		PCSR17	W
0005CB _H	PPG17 - Period setting register			W
0005CC _H	PPG17 - Duty cycle register		PDUT17	W
0005CD _H	PPG17 - Duty cycle register			W
0005CE _H	PPG17 - Control status register Low	PCNL17	PCN17	R/W
0005CF _H	PPG17 - Control status register High	PCNH17		R/W
0005D0 _H	PPG18 - Timer register		PTMR18	R
0005D1 _H	PPG18 - Timer register			R
0005D2 _H	PPG18 - Period setting register		PCSR18	W
0005D3 _H	PPG18 - Period setting register			W
0005D4 _H	PPG18 - Duty cycle register		PDUT18	W
0005D5 _H	PPG18 - Duty cycle register			W
0005D6 _H	PPG18 - Control status register Low	PCNL18	PCN18	R/W
0005D7 _H	PPG18 - Control status register High	PCNH18		R/W
0005D8 _H	PPG19 - Timer register		PTMR19	R
0005D9 _H	PPG19 - Timer register			R
0005DA _H	PPG19 - Period setting register		PCSR19	W
0005DB _H	PPG19 - Period setting register			W
0005DC _H	PPG19 - Duty cycle register		PDUT19	W
0005DD _H	PPG19 - Duty cycle register			W
0005DE _H	PPG19 - Control status register Low	PCNL19	PCN19	R/W
0005DF _H	PPG19 - Control status register High	PCNH19		R/W


I/O map MB96(F)315x (Sheet 19 of 22)

Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access
0005E0 _H - 00065F _H	Reserved			-
000660 _H	Peripheral Resource Relocation Register 10	PRRR10		R/W
000661 _H	Peripheral Resource Relocation Register 11	PRRR11		R/W
000662 _H	Peripheral Resource Relocation Register 12	PRRR12		R/W
000663 _H	Peripheral Resource Relocation Register 13	PRRR13		W
000664 _H - 0008FF _H	Reserved			-
000900 _H	CAN2 - Control register Low	CTRLRL2	CTRLR2	R/W
000901 _H	CAN2 - Control register High (reserved)	CTRLRH2		R
000902 _H	CAN2 - Status register Low	STATRL2	STATR2	R/W
000903 _H	CAN2 - Status register High (reserved)	STATRH2		R
000904 _H	CAN2 - Error Counter Low (Transmit)	ERRCNTL2	ERRCNT2	R
000905 _H	CAN2 - Error Counter High (Receive)	ERRCNTH2		R
000906 _H	CAN2 - Bit Timing Register Low	BTRL2	BTR2	R/W
000907 _H	CAN2 - Bit Timing Register High	BTRH2		R/W
000908 _H	CAN2 - Interrupt Register Low	INTRL2	INTR2	R
000909 _H	CAN2 - Interrupt Register High	INTRH2		R
00090A _H	CAN2 - Test Register Low	TESTRL2	TESTR2	R/W
00090B _H	CAN2 - Test Register High (reserved)	TESTRH2		R
00090C _H	CAN2 - BRP Extension register Low	BRPERL2	BRPER2	R/W
00090D _H	CAN2 - BRP Extension register High (reserved)	BRPERH2		R
00090E _H - 00090F _H	Reserved			-
000910 _H	CAN2 - IF1 Command request register Low	IF1CREQL2	IF1CREQ2	R/W
000911 _H	CAN2 - IF1 Command request register High	IF1CREQH2		R/W
000912 _H	CAN2 - IF1 Command Mask register Low	IF1CMSKL2	IF1CMSK2	R/W
000913 _H	CAN2 - IF1 Command Mask register High (reserved)	IF1CMSKH2		R
000914 _H	CAN2 - IF1 Mask 1 Register Low	IF1MSK1L2	IF1MSK12	R/W
000915 _H	CAN2 - IF1 Mask 1 Register High	IF1MSK1H2		R/W
000916 _H	CAN2 - IF1 Mask 2 Register Low	IF1MSK2L2	IF1MSK22	R/W
000917 _H	CAN2 - IF1 Mask 2 Register High	IF1MSK2H2		R/W

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
36	36C _H				Reserved
37	368 _H	PPG3	Yes	37	Programmable Pulse Generator 3
38	364 _H	PPG4	Yes	38	Programmable Pulse Generator 4
39	360				Reserved
40	35C _H	PPG6	Yes	40	Programmable Pulse Generator 6
41	358 _H	PPG7	Yes	41	Programmable Pulse Generator 7
42	354 _H	PPG8	Yes	42	Programmable Pulse Generator 8
43	350 _H	PPG9	Yes	43	Programmable Pulse Generator 9
44	34C _H				Reserved
45	348 _H				Reserved
46	344 _H	PPG12	Yes	46	Programmable Pulse Generator 12
47	340 _H				Reserved
48	33C _H	PPG14	Yes	48	Programmable Pulse Generator 14
49	338 _H				Reserved
50	334 _H	PPG16	Yes	50	Programmable Pulse Generator 16
51	330 _H	PPG17	Yes	51	Programmable Pulse Generator 17
52	32C _H	PPG18	Yes	52	Programmable Pulse Generator 18
53	328 _H	PPG19	Yes	53	Programmable Pulse Generator 19
54	324 _H	RLT0	Yes	54	Reload Timer 0
55	320 _H	RLT1	Yes	55	Reload Timer 1
56	31C _H	RLT2	Yes	56	Reload Timer 2
57	318 _H	RLT3	Yes	57	Reload Timer 3
58	314 _H	PPGRLT	Yes	58	Reload Timer 6 - dedicated for PPG
59	310 _H	ICU0	Yes	59	Input Capture Unit 0
60	30C _H	ICU1	Yes	60	Input Capture Unit 1
61	308 _H				Reserved
62	304 _H				Reserved
63	300 _H	ICU4	Yes	63	Input Capture Unit 4
64	2FC _H	ICU5	Yes	64	Input Capture Unit 5
65	2F8 _H	ICU6	Yes	65	Input Capture Unit 6
66	2F4 _H				Reserved
67	2F0 _H				Reserved
68	2EC _H	ICU9	Yes	68	Input Capture Unit 9
69	2E8 _H	ICU10	Yes	69	Input Capture Unit 10
70	2E4 _H				Reserved
71	2E0 _H				Reserved
72	2DC _H				Reserved

13. Handling Devices

Special care is required for the following when handling the device:

- Latch-up prevention
- · Unused pins handling
- External clock usage
- · Unused sub clock signal
- Notes on PLL clock mode operation
- Power supply pins (V_{CC}/V_{SS})
- Crystal oscillator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- · Notes on energization
- Stabilization of power supply voltage
- · Serial communication

13.1 Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

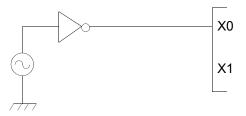
- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{CC} pins and V_{SS} pins.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

13.2 Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

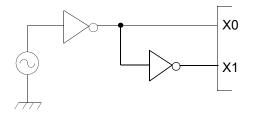
Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. They must therefore be pulled up or pulled down through resistors. To prevent latch-up, those resistors should be more than 2 k Ω .


Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

13.3 External clock usage

The permitted frequency range of an external clock depends on the oscillator type and configuration. See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

1. Single phase external clock


• When using a single phase external clock, X0 (X0A) pin must be driven and X1 (X1A) pin left open.

2. Opposite phase external clock

• When using an opposite phase external clock, X1 (X1A) must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins.

13.4 Unused sub clock signal

If the pins X0A and X1A are not connected to an oscillator, a pull-down resistor must be connected on the X0A pin and the X1A pin must be left open.

13.5 Notes on PLL clock mode operation

If the PLL clock mode is selected and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.6 Power supply pins (V_{CC}/V_{SS})

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

V_{CC} and V_{SS} must be connected to the device from the power supply with lowest possible impedance.

As a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1 μ F between V_{CC} and V_{SS} as close as possible to V_{CC} and V_{SS} pins.

13.7 Crystal oscillator and ceramic resonator circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.8 Turn on sequence of power supply to A/D converter and analog inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH, AVRL) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, the voltage must not exceed AVRH or AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable).

13.9 Pin handling when not using the A/D converter

It is required to connect the unused pins of the A/D converter as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = AVRL = V_{SS}$.

13.10 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2 V to 2.7 V.

13.11 Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the Vcc power supply voltage, a malfunction may occur. The Vcc power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that Vcc ripple fluctuations (peak to peak value) in the commercial frequencies (50 to 60 Hz) fall within 10% of the standard Vcc power supply voltage and the transient fluctuation rate becomes 0.1V/µs or less in instantaneous fluctuation for power supply switching.

13.12 Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

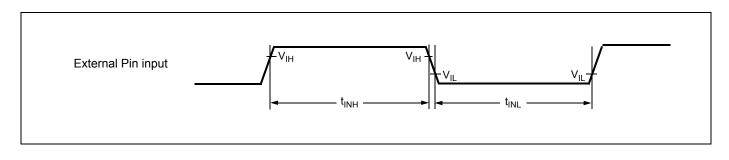
				Value			
Parameter	Symbol	Condition (at T _A)		уа Тур	Max	Unit	Remarks
		PLL Sleep mode with CLKS1/2 = CLKP1 = 16MHz,	+25°C	4	6	mA	
		CLKP2 = 8MHz (CLKRC and CLKSC stopped)	+125°C	4.7	9		
		PLL Sleep mode with CLKS1/2 = CLKP1 = 32MHz, CLKP2 = 16MHz	+25°C	7	9.5	mA	
		(CLKRC and CLKSC stopped)	+125°C	8	12.5		
		PLL Sleep mode with CLKS1/2 = 48MHz,	+25°C	7	9	mA	
	I _{CCSPLL}	CLKP1/2 = 24MHz (CLKRC and CLKSC stopped)	+125°C	8	12	ША	
		PLL Sleep mode with CLKS1/2 = CLKP1= 56MHz, CLKP2 = 28MHz	+25°C	11	14.5		
Power supply current in Sleep modes*		(CLKRC and CLKSC stopped. Core voltage at 1.9V)	+125°C	12	17.5	mA	
		PLL Sleep mode with CLKS1/2 = 96MHz,	CLKS1/2 = 96MHz,				
		CLKP1= 48MHz, CLKP2 = 24MHz				mA	
		(CLKRC and CLKSC stopped. Core voltage at 1.9V)	+125°C	13	18		
	ICCSMAIN	Main Sleep mode with CLKS1/2 = CLKP1/2 = 4MHz	+25°C	1	1.3	mA	
		(CLKPLL, CLKSC and CLKRC stopped)	+125°C	1.6	4.1	mA	
	I _{CCSRCH}	RC Sleep mode with CLKS1/2 = CLKP1/2 = 2MHz	+25°C	0.55	1.1	m۸	
		(CLKMC, CLKPLL and CLKSC stopped)	+125°C	1.15	3.9	mA	
		RC Sleep mode with CLKS1/2 = CLKP1/2 =	+25°C	0.08	0.2		
		100kHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and	+125°C	0.59	2.95	mA	
	I _{CCSRCL}	CLKSC stopped. Voltage regulator in high power mode)	120 0	0.00	2.55		
Power supply current in Sleep modes*		RC Sleep mode with CLKS1/2 = CLKP1/2 = 100kHz, SMCR:LPMSS = 1	+25°C	0.05	0.15		
		(CLKMC, CLKPLL and CLKSC stopped. Voltage regulator in low power mode)	+125°C	0.56	2.9	mA	
	1	Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz	+25°C	0.04	0.12		
	ICCSSUB	(CLKMC, CLKPLL and CLKRC stopped)	+125°C	0.54	2.9	mA	

(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

Parameter	Symbol	Condition (at T _A)		Va	ue	Unit	Demerke
Parameter	Parameter Symbol Condition (at T _A)		Тур	Max	Unit	Remarks	
		VRCR:LPMB[2:0] = 110 _B	+25°C	0.02	0.08	mA	
Power supply	lagu	(Core voltage at 1.8V)	+125°C	0.52	2.8	ШA	
current in Stop Mode	I _{ССН}	VRCR:LPMB[2:0] = 000 _B	+25°C	0.015	0.06	mA	
		(Core voltage at 1.2V)	+125°C	0.4	2.3		
Power supply current for active	ICCLVD	Low voltage detector enabled (RCR:LVDE = 1)	+25°C	5	10	μA	Must be added to all current above
Low Voltage detector	CCLVD		+125°C	7	20		
Power supply current for active Clock modulator	I _{CCCLOMO}	Clock modulator enabled (CMCR:PDX = 1)	-	3	4.5	mA	Must be added to all current above
Flash Write/Erase current	I _{CCFLASH}	Current for one Flash module	-	15	40	mA	Must be added to all current above
Input capacitance	C _{IN}	-	-	5	15	pF	Other than C, AV _{CC} , AV _{SS} , AVRH, AVRL, V _{CC} , V _{SS}

(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

* : The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control.



External Input timing

Parameter	Symbol	Pin	Condition	Value		Unit	Used Pin input function
Falameter				Min	Мах		
Input pulse width	t _{INH} t _{INL}	INTn(_R)		200	_	ns	External Interrupt
		NMI					NMI
		Pnn_m		2*t _{CLKP1} + 200 (t _{CLKP1} =1/f _{CLKP1})	_	ns	General Purpose IO
		TINn					Reload Timer
		TTGn(_R)					PPG Trigger input
		ADTG_R					AD Converter Trigger
		INn					Input Capture

(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

Note : Relocated Resource Inputs have same characteristics

USART timing

WARNING: The values given below are for an I/O driving strength IO_{drive} = 5mA. If IO_{drive} is 2mA, all the maximum output timing described in the different tables must then be increased by 10ns.

Parameter	Symbol	Pin	Condition	$V_{CC} = AV_{CC} = 4.5V$ to 5.5V		$V_{CC} = AV_{CC} = 3.0V$ to 4.5V		Unit
	Ē			Min	Max	Min	Max	
Serial clock cycle time	t _{SCYCI}	SCKn		4 t _{CLKP1}	—	4 t _{CLKP1}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKn, SOTn		-20	+20	-30	+30	ns
$SOT \to SCK \uparrow delay \text{ time}$	t _{ovshi}	SCKn, SOTn	Internal Shift Clock Mode	N*t _{CLKP1} - 20 ^{*1}		N*t _{CLKP1} - 30 *1	_	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHI}	SCKn, SINn		t _{CLKP1} + 45	_	t _{CLKP1} + 55	_	ns
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{Valid SIN hold} \\ \text{time} \end{array}$	t _{SHIXI}	SCKn, SINn		0	_	0	_	ns
Serial clock "L" pulse width	t _{SLSHE}	SCKn		t _{CLKP1} + 10	_	t _{CLKP1} + 10	_	ns
Serial clock "H" pulse width	t _{SHSLE}	SCKn		t _{CLKP1} + 10	_	t _{CLKP1} + 10	_	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKn, SOTn	External Shift	_	2 t _{CLKP1} + 45	_	2 t _{CLKP1} + 55	ns
Valid SIN \rightarrow SCK \uparrow	t _{IVSHE}	SCKn, SINn	Clock Mode	t _{CLKP1} /2 + 10	_	t _{CLKP1} /2 + 10	_	ns
$\begin{array}{l} \text{SCK} \uparrow \rightarrow \text{Valid SIN hold} \\ \text{time} \end{array}$	t _{SHIXE}	SCKn, SINn		t _{CLKP1} + 10	_	t _{CLKP1} + 10	_	ns
SCK fall time	t _{FE}	SCKn	1	—	20	—	20	ns
SCK rise time	t _{RE}	SCKn	1	—	20	—	20	ns

$(T_A = -40^{\circ}C \text{ to } 125^{\circ}C, V_{CC} = 3.0V \text{ to } 5.5V, V_{CC} = 3.0V \text{ to } 5.5V)$	$V_{SS} = AV_{SS} = 0V, IO_{drive} = 5mA, C_1 = 50pF)$
(·A ··· ··· ··· ··· ··· ··· ··· ··· ···	

Notes: • AC characteristic in CLK synchronized mode.

• C_L is the load capacity value of pins when testing.

• Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96300 Super series Hardware Manual".

• t_{CLKP1} is the cycle time of the peripheral clock 1 (CLKP1), Unit : ns

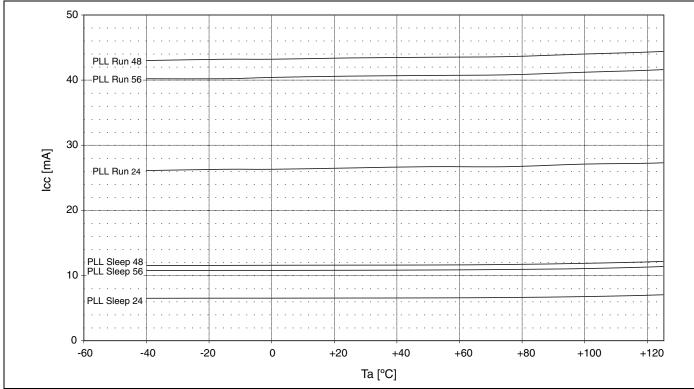
*1: Parameter N depends on t_{SCYCI} and can be calculated as follows: • if $t_{SCYCI} = 2^*k^*t_{CLKP1}$, then N = k, where k is an integer > 2

- if t_{SCYCI} = (2*k+1)*t_{CLKP1}, then N = k+1, where k is an integer > 1 Examples:

tscyci	N
4*t _{CLKP1}	2
5*t _{CLKP1} , 6*t _{CLKP1}	3
7*t _{CLKP1} , 8*t _{CLKP1}	4

14.7 FLASH memory program/erase characteristics

(T_A = -40°C to 105°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)


Parameter	Value			Unit	Remarks	
Falanietei	Min	Тур	Max	Onit	Kemarka	
Sector erase time	-	0.9	3.6	S	Without erasure pre-programming time	
Chip erase time	-	n*0.9	n*3.6	s	Without erasure pre-programming time (n is the number of Flash sector of the device)	
Word (16-bit width) programming time	-	23	370	us	Without overhead time for submitting write command	
Program/Erase cycle	10000	-	-	cycle		
Flash data retention time	20	-	-	year	*1	

*1: This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to convert high temperature measurements into normalized value at 85°C)

Mode name	Details
RC Sleep 100k	 RC Sleep mode current I_{CCSRCL} with the following settings: RC oscillator set to 100kHz (CKFCR:RCFS = 0) f_{CLKS1} = f_{CLKS2} = f_{CLKP1} = f_{CLKP2} = 100kHz Regulator in Low Power Mode A (SMCR:LPMSS = 1) Core voltage at 1.8V (VRCR:LPMA[2:0] = 110_B) PLL, Main oscillator and Sub oscillator stopped
Sub Sleep	 Sub Sleep mode current I_{CCSSUB} with the following settings: f_{CLKS1} = f_{CLKS2} = f_{CLKP1} = f_{CLKP2} = 32kHz Regulator in Low Power Mode A (by hardware) Core voltage at 1.8V (VRCR:LPMA[2:0] = 110_B) PLL, RC oscillator and Main oscillator stopped
PLL Timer 48	 PLL Timer mode current I_{CCTPLL} with the following settings: f_{CLKS1} = f_{CLKS2} = 48MHz Regulator in High Power Mode Core voltage at 1.8V (VRCR:HPM[1:0] = 10_B) RC oscillator and Sub oscillator stopped
Main Timer	 Main Timer mode current I_{CCTMAIN} with the following settings: f_{CLKS1} = f_{CLKS2} = 4MHz Regulator in Low Power Mode A (SMCR:LPMSS = 1) Core voltage at 1.8V (VRCR:LPMA[2:0] = 110_B) PLL, RC oscillator and Sub oscillator stopped
RC Timer 2M	 RC Timer mode current I_{CCTRCH} with the following settings: RC oscillator set to 2MHz (CKFCR:RCFS = 1) f_{CLKS1} = f_{CLKS2} = 2MHz Regulator in Low Power Mode A (SMCR:LPMSS = 1) Core voltage at 1.8V (VRCR:LPMA[2:0] = 110_B) PLL, Main oscillator and Sub oscillator stopped
RC Timer 100k	 RC Timer mode current I_{CCTRCL} with the following settings: RC oscillator set to 100kHz (CKFCR:RCFS = 0) f_{CLKS1} = f_{CLKS2} = 100kHz Regulator in Low Power Mode A (SMCR:LPMSS = 1) Core voltage at 1.8V (VRCR:LPMA[2:0] = 110_B) PLL, Main oscillator and Sub oscillator stopped
Sub Timer	 Sub Timer mode current I_{CCTSUB} with the following settings: f_{CLKS1} = f_{CLKS2} = 32kHz Regulator in Low Power Mode A (by hardware) Core voltage at 1.8V (VRCR:LPMA[2:0] = 110_B) PLL, RC oscillator and Main oscillator stopped
Stop 1.8V	 Stop mode current I_{CCH} with the following settings: Regulator in Low Power Mode B (by hardware) Core voltage at 1.8V (VRCR:LPMB[2:0] = 110_B)
Stop 1.2V	 Stop mode current I_{CCH} with the following settings: Regulator in Low Power Mode B (by hardware) Core voltage at 1.2V (VRCR:LPMB[2:0] = 000_B)

MB96F313/F315 PLL Run and Sleep mode currents

17. Ordering Information

MCU with CAN controller

Part number	Flash/ROM	Subclock	Persistent Low Voltage Reset	Package
MB96F313YSB PMC-GSE2			Yes	
MB96F313RSB PMC-GSE1		No	No	
MB96F313RSB PMC-GSE2	Flash A (96KB)		No	
MB96F313YWB PMC-GSE2		Yes	Yes	48 pins Plastic LQFP (FPT-48P-M26)
MB96F313RWB PMC-GSE2			No	
MB96F315YSB PMC-GSE2		No	Yes	
MB96F315RSB PMC-GSE1	Flash A (160KB)		No	
MB96F315RSB PMC-GSE2			No	
MB96F315YWB PMC-GSE2		Yes	Yes	
MB96F315RWB PMC-GSE2		Tes	No	
MB96V300CRB-ES (for evaluation)	Emulated by ext. RAM	Yes	No	416 pin Plastic BGA (BGA-416P-M02)

MCU without CAN controller

Part number	Flash/ROM	Subclock	Persistent Low Voltage Reset	Package	
MB96F313ASB PMC-GSE2	Flash A (96KB)	No	- No		
MB96F313AWB PMC-GSE2	Flash A (90Kb)	Yes		48 pins Plastic LQFP (FPT-48P-M26)	
MB96F315ASB PMC-GSE2		No			
MB96F315AWB PMC-GSE2	Flash A (160KB)	Yes			