

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 014110	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	56MHz
Connectivity	CANbus, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, LVR, POR, PWM, WDT
Number of I/O	34
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f315rwbpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Memory

- Supports automatic programming, Embedded Algorithm
- Write/Erase/Erase-Suspend/Resume commands
- A flag indicating completion of the algorithm
- Number of erase cycles: 10,000 times
- Data retention time: 20 years
- Erase can be performed on each sector individually
- Sector protection
- Flash Security feature to protect the content of the Flash
- Low voltage detection during Flash erase

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD[2:0] = 010)

MB96F31x										
Pin number		Normal function								
LQFP-48	USART Number									
7		SIN2								
8	USART2	SOT2								
9		SCK2								
20		SIN7_R								
19	USART7	SOT7_R								
18		SCK7_R								
22		SIN8_R								
21	USART8	SOT8_R								
23		SCK8_R								

Note: If a Flash programmer and its software needs to use a handshaking pin, Cypress suggests to the tool vendor to support at least port P00_1 on pin 19.

If handshaking is used by the tool but P00_1 is not available in customer's application, Cypress suggests to the customer to check the tool manual or to contact the tool vendor for alternative handshaking pins.

I/O map MB96(F)315x (Sheet 6 of 22)

Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access			
000104 _H	DMA0 - I/O register address pointer low byte	IOAL0	IOA0	R/W			
000105 _H	DMA0 - I/O register address pointer high byte	IOAH0		R/W			
000106 _H	DMA0 - Data counter low byte						
000107 _H	DMA0 - Data counter high byte	DCTH0		R/W			
000108 _H	DMA1 - Buffer address pointer low byte	BAPL1		R/W			
000109 _H	DMA1 - Buffer address pointer middle byte	BAPM1		R/W			
00010A _H	DMA1 - Buffer address pointer high byte	BAPH1		R/W			
00010B _H	DMA1 - DMA control register	DMACS1		R/W			
00010C _H	DMA1 - I/O register address pointer low byte	IOAL1	IOA1	R/W			
00010D _H	DMA1 - I/O register address pointer high byte	IOAH1		R/W			
00010E _H	DMA1 - Data counter low byte	DCTL1	DCT1	R/W			
00010F _H	DMA1 - Data counter high byte	DCTH1		R/W			
000110 _H	DMA2 - Buffer address pointer low byte	BAPL2		R/W			
000111 _H	DMA2 - Buffer address pointer middle byte	BAPM2		R/W			
000112 _H	DMA2 - Buffer address pointer high byte	BAPH2		R/W			
000113 _H	DMA2 - DMA control register	DMACS2		R/W			
000114 _H	DMA2 - I/O register address pointer low byte	IOAL2	IOA2	R/W			
000115 _H	DMA2 - I/O register address pointer high byte	IOAH2		R/W			
000116 _H	DMA2 - Data counter low byte	DCTL2	DCT2	R/W			
000117 _H	DMA2 - Data counter high byte	DCTH2		R/W			
000118 _H	DMA3 - Buffer address pointer low byte	BAPL3		R/W			
000119 _H	DMA3 - Buffer address pointer middle byte	BAPM3		R/W			
00011A _H	DMA3 - Buffer address pointer high byte	BAPH3		R/W			
00011B _H	DMA3 - DMA control register	DMACS3		R/W			
00011C _H	DMA3 - I/O register address pointer low byte	IOAL3	IOA3	R/W			
00011D _H	DMA3 - I/O register address pointer high byte	IOAH3		R/W			
00011E _H	DMA3 - Data counter low byte	DCTL3	DCT3	R/W			
00011F _H	DMA3 - Data counter high byte	DCTH3		R/W			
000120 _H - 00017F _H	Reserved			-			

I/O map MB96(F)315x (Sheet 10 of 22)

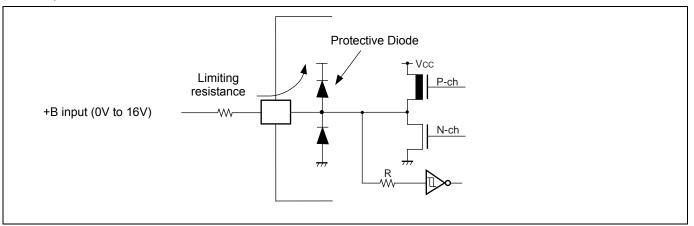
Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access
000404 _H	Clock Frequency control register Low	CKFCRL	CKFCR	R/W
000405 _H	Clock Frequency control register High	CKFCRH		R/W
000406 _H	PLL Control register Low	PLLCRL	PLLCR	R/W
000407 _H	PLL Control register High	PLLCRH		R/W
000408 _H	RC clock timer control register	RCTCR		R/W
000409 _H	Main clock timer control register	MCTCR		R/W
00040A _H	Sub clock timer control register	SCTCR		R/W
00040B _H	Reset cause and clock status register with clear function	RCCSRC		R
00040C _H	Reset configuration register	RCR		R/W
00040D _H	Reset cause and clock status register	RCCSR		R
00040E _H	Watch dog timer configuration register	WDTC		R/W
00040F _H	Watch dog timer clear pattern register	WDTCP		W
000410 _H - 000414 _H	Reserved			-
000415 _H	Clock output activation register	COAR		R/W
000416 _H	Clock output configuration register 0	COCR0		R/W
000417 _H	Clock output configuration register 1	COCR1		R/W
000418 _H	Clock Modulator control register	CMCR		R/W
000419 _H	Reserved			-
00041A _H	Clock Modulator Parameter register Low	CMPRL	CMPR	R/W
00041B _H	Clock Modulator Parameter register High	CMPRH		R/W
00041C _H - 00042B _H	Reserved			-
00042C _H	Voltage Regulator Control register	VRCR		R/W
00042D _H	Clock Input and LVD Control Register	CILCR		R/W
00042E _H - 00042F _H	Reserved			-
000430 _H	I/O Port P00 - Data Direction Register	DDR00		R/W
000431 _H	I/O Port P01 - Data Direction Register	DDR01		R/W
000432 _H	I/O Port P02 - Data Direction Register	DDR02		R/W
000433 _H	I/O Port P03 - Data Direction Register	DDR03		R/W
000434 _H	Reserved			-

I/O map MB96(F)315x (Sheet 17 of 22)

Address	Register	Abbreviation 8-bit access	Abbreviation 16-bit access	Access
000588 _H - 000597 _H	Reserved			-
000598 _H	PPG15-PPG12 - General Control register 1 Low	GCN1L3	GCN13	R/W
000599 _H	PPG15-PPG12 - General Control register 1 High	GCN1H3		R/W
00059A _H	PPG15-PPG12 - General Control register 2 Low	GCN2L3	GCN23	R/W
00059B _H	PPG15-PPG12 - General Control register 2 High	GCN2H3		R/W
00059C _H	PPG12 - Timer register		PTMR12	R
00059D _H	PPG12 - Timer register			R
00059E _H	PPG12 - Period setting register		PCSR12	W
00059F _H	PPG12 - Period setting register			W
0005A0 _H	PPG12 - Duty cycle register		PDUT12	W
0005A1 _H	PPG12 - Duty cycle register			W
0005A2 _H	PPG12 - Control status register Low	PCNL12	PCN12	R/W
0005A3 _H	PPG12 - Control status register High	PCNH12		R/W
0005A4 _H - 0005AB _H	Reserved			-
0005AC _H	PPG14 - Timer register		PTMR14	R
0005AD _H	PPG14 - Timer register			R
0005AE _H	PPG14 - Period setting register		PCSR14	W
0005AF _H	PPG14 - Period setting register			W
0005B0 _H	PPG14 - Duty cycle register		PDUT14	W
0005B1 _H	PPG14 - Duty cycle register			W
0005B2 _H	PPG14 - Control status register Low	PCNL14	PCN14	R/W
0005B3 _H	PPG14 - Control status register High	PCNH14		R/W
0005B4 _H - 0005BB _H	Reserved			-
0005BC _H	PPG19-PPG16 - General Control register 1 Low	GCN1L4	GCN14	R/W
0005BD _H	PPG19-PPG16 - General Control register 1 High	GCN1H4		R/W
0005BE _H	PPG19-PPG16 - General Control register 2 Low	GCN2L4	GCN24	R/W
0005BF _H	PPG19-PPG16 - General Control register 2 High	GCN2H4		R/W
0005C0 _H	PPG16 - Timer register		PTMR16	R
0005C1 _H	PPG16 - Timer register			R

12. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	
1	3F8 _H	CALLV1	No	-	
2	3F4 _H	CALLV2	No	-	
3	3F0 _H	CALLV3	No	-	
4	3EC _H	CALLV4	No	-	
5	3E8 _H	CALLV5	No	-	
6	3E4 _H	CALLV6	No	-	
7	3E0 _H	CALLV7	No	-	
8	3DC _H	RESET	No	-	
9	3D8 _H	INT9	No	-	
10	3D4 _H	EXCEPTION	No	-	
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _H	RC_TIMER	No	13	RC Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _H	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	PLL_UNLOCK	No	16	Reserved
17	3B8 _H	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H				Reserved
19	3B0 _H	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3A8 _H	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H				Reserved
23	3A0 _H	EXTINT7	Yes	23	External Interrupt 7
24	39C _H	EXTINT8	Yes	24	External Interrupt 8
25	398 _H	EXTINT9	Yes	25	External Interrupt 9
26	394 _H	EXTINT10	Yes	26	External Interrupt 10
27	390 _H	EXTINT11	Yes	27	External Interrupt 11
28	38C _H	EXTINT12	Yes	28	External Interrupt 12
29	388 _H	EXTINT13	Yes	29	External Interrupt 13
30	384 _H				Reserved
31	380 _H				Reserved
32	37C _H				Reserved
33	378 _H	CAN2	No	33	CAN Controller 2
34	374 _H	PPG0	Yes	34	Programmable Pulse Generator 0
35	370 _H	PPG1	Yes	35	Programmable Pulse Generator 1



Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
36	36C _H				Reserved
37	368 _H	PPG3	Yes	37	Programmable Pulse Generator 3
38	364 _H	PPG4	Yes	38	Programmable Pulse Generator 4
39	360				Reserved
40	35C _H	PPG6	Yes	40	Programmable Pulse Generator 6
41	358 _H	PPG7	Yes	41	Programmable Pulse Generator 7
42	354 _H	PPG8	Yes	42	Programmable Pulse Generator 8
43	350 _H	PPG9	Yes	43	Programmable Pulse Generator 9
44	34C _H				Reserved
45	348 _H				Reserved
46	344 _H	PPG12	Yes	46	Programmable Pulse Generator 12
47	340 _H				Reserved
48	33C _H	PPG14	Yes	48	Programmable Pulse Generator 14
49	338 _H				Reserved
50	334 _H	PPG16	Yes	50	Programmable Pulse Generator 16
51	330 _H	PPG17	Yes	51	Programmable Pulse Generator 17
52	32C _H	PPG18	Yes	52	Programmable Pulse Generator 18
53	328 _H	PPG19	Yes	53	Programmable Pulse Generator 19
54	324 _H	RLT0	Yes	54	Reload Timer 0
55	320 _H	RLT1	Yes	55	Reload Timer 1
56	31C _H	RLT2	Yes	56	Reload Timer 2
57	318 _H	RLT3	Yes	57	Reload Timer 3
58	314 _H	PPGRLT	Yes	58	Reload Timer 6 - dedicated for PPG
59	310 _H	ICU0	Yes	59	Input Capture Unit 0
60	30C _H	ICU1	Yes	60	Input Capture Unit 1
61	308 _H				Reserved
62	304 _H				Reserved
63	300 _H	ICU4	Yes	63	Input Capture Unit 4
64	2FC _H	ICU5	Yes	64	Input Capture Unit 5
65	2F8 _H	ICU6	Yes	65	Input Capture Unit 6
66	2F4 _H				Reserved
67	2F0 _H				Reserved
68	2EC _H	ICU9	Yes	68	Input Capture Unit 9
69	2E8 _H	ICU10	Yes	69	Input Capture Unit 10
70	2E4 _H				Reserved
71	2E0 _H				Reserved
72	2DC _H				Reserved

- *1: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} neither when the power is switched on.
- *2: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should also not exceed the specified ratings. However if the maximum current to/from a input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/output voltages of standard ports depend on V_{CC}.
- *3: Applicable to all general purpose I/O pins (Pnn_m)
 - Use within recommended operating conditions.
 - Use at DC voltage (current)
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage
 may not be sufficient to operate the Power reset (except devices with persistent low voltage reset in internal vector mode).
 - Sample recommended circuits:

*4: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} * I_{OL} + V_{OH} * I_{OH})$ (IO load power dissipation, sum is performed on all IO ports)

 $P_{INT} = V_{CC} * (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "3. DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming or the clock modulator. I_A is the analog current consumption into AV_{CC}.

- *5: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.
- *6: Please contact Cypress for reliability limitations when using under these conditions.
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.2 Recommended Operating Conditions

Parameter	Symbol Value				Unit	Remarks	
Fardineter	Symbol	Min	Тур	Max	Unit	Kelliarks	
Power supply voltage	V _{CC}	3.0	-	5.5	V		
Smoothing capacitor at C pin	C _S	3.5	4.7	15	μF	Use a X7R ceramic capacitor or a capacitor that has similar frequency characteristics	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Parameter	Symbol	Condition (at T _A)		Va	lue	Unit	Remarks
i arameter	Gymbol		Тур	Max	onit	Remarks	
		PLL Run mode with CLKS1/2 = CLKB =	+25°C	14.5	19.5		
		CLKP1 = 16MHz, CLKP2 = 8MHz	. 10500	4.0		mA	
		1 Flash/ROM wait state	+125°C	16	23		
		(CLKRC and CLKSC stopped)					
		PLL Run mode with CLKS1/2 = CLKB =	+25°C	23	29		
		CLKP1 = 32MHz, CLKP2 = 16MHz				mA	
		2 Flash/ROM wait states	+125°C	25	33		
	I _{CCPLL}	(CLKRC and CLKSC stopped)					
		PLL Run mode with CLKS1/2 = 48MHz, CLKB = CLKP1/2 = 24MHz	+25°C	26	38		
Power supply current in		0 Flash/ROM wait states	+125°C	28	42	mA	
Run modes*		(CLKRC and CLKSC stopped)	125 0	20	72		
		PLL Run mode with	+25°C	40	51		
		CLKS1/2 = CLKB = CLKP1= 56MHz,					
		CLKP2 = 28MHz				mA	
		2 Flash/ROM wait states	+125°C	42	55		
		(CLKRC and CLKSC stopped. Core voltage at 1.9V)					
		PLL Run mode with CLKS1/2 = 96MHz,	+25°C	43	56		
		CLKB = CLKP1= 48MHz, CLKP2 = 24MHz				mA	
		1 Flash/ROM wait state	+125°C	45	60		
		(CLKRC and CLKSC stopped. Core voltage at 1.9V)					

(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

Devenueter	Cumula al	Condition (at T₄)	Va	lue	Unit	Domoska			
Parameter	Symbol			Тур	Мах	Unit	Remarks		
		Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	+25°C	4	5				
	I _{CCMAIN}	1 Flash/ROM wait state (CLKPLL, CLKSC and CLKRC stopped)	+125°C	4.7	8	mA			
		RC Run mode with CLKS1/2 = CLKB =	+25°C	2.5	3.5				
	I _{CCRCH}	CLKP1/2 = 2MHz 1 Flash/ROM wait state (CLKMC, CLKPLL and CLKSC stopped)	+125°C	3.2	6.5	mA			
		RC Run mode with CLKS1/2 = CLKB =	+25°C	0.18	0.3				
Power supply current in Run modes*	I _{CCRCL}	CLKP1/2 = 100kHz, SMCR:LPMS = 0 1 Flash/ROM wait state (CLKMC, CLKPLL and CLKSC stopped. Voltage regulator in high power mode)	+125°C	0.73	3.1	mA			
		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = 100kHz,	+25°C	0.15	0.25				
		SMCR:LPMS = 1 1 Flash/ROM wait state (CLKMC, CLKPLL and CLKSC stopped. Voltage regulator in low power mode, no Flash programming/ erasing allowed)	+125°C	0.7	3.05	mA			
		Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz	+25°C	0.1	0.2				
	I _{CCSUB}	1 Flash/ROM wait state				mA			
		(CLKMC, CLKPLL and CLKRC stopped, no Flash programming/erasing allowed)	+125°C	0.65	0.65 3				

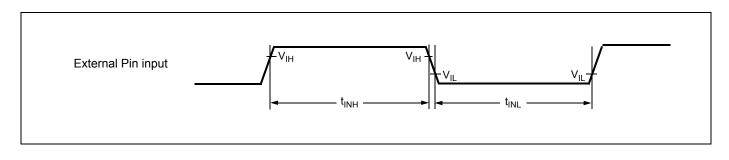
(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

14.4 AC Characteristics

Source Clock timing

(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

Parameter	Symbol	Pin		Value		Unit	Remarks
Parameter	Symbol	Pin	Min	Тур	Мах	Unit	Remarks
			3	-	16	MHz	When using a crystal oscillator, PLL off
Clock frequency	f _C	X0, X1	0	-	16	MHz	When using an opposite phase external clock, PLL off
			3.5	-	16	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
Clock frequency	f _{FCI}	X0	0	-	56	MHz	When using a single phase external clock in "Fast Clock Input mode" , PLL off
Clock nequency	'FCI	70	3.5	-	56	MHz	When using a single phase external clock in "Fast Clock Input mode" , PLL on
	f _{CL}	X0A, X1A	32	32.768	100	kHz	When using an oscillation circuit
Clock frequency			0	-	100	kHz	When using an opposite phase external clock
		X0A	0	-	50	kHz	When using a single phase external clock
Clock frequency	f _{CR}		50	100	200	kHz	When using slow frequency of RC oscillator
Clock frequency		-	1	2	4	MHz	When using fast frequency of RC oscillator
RC clock stabilization time	t _{RCSTAB}	-	256 RC clock cycles			Applied after any reset and when activating the RC oscillator.	
PLL Clock frequency	f _{CLKVCO}	-	64	-	200	MHz	Permitted VCO output frequency of PLL (CLKVCO)
PLL Phase Jitter	T _{PSKEW}	-	-	-	± 5	ns	For CLKMC (PLL input clock) 4MHz, jitter coming from external oscillator, crystal or resonator is not covered
Input clock pulse width	P _{WH} , P _{WL}	X0,X1	8	-	-	ns	Duty ratio is about 30% to 70%
Input clock pulse width	P_{WHL}, P_{WLL}	X0A,X1A	5	-	-	μs	



External Input timing

Parameter	Symbol	Pin	Condition	Value		Unit	Used Pin input function		
Falametei	Symbol	FIII	Condition	Min	Мах	Unit	Osed Pin input function		
		INTn(_R)	$\begin{array}{c} 200 \\ 2^{*}t_{CLKP1} + 200 \\ (t_{CLKP1} = 1/f_{CLKP1}) \end{array}$			200			External Interrupt
		NMI		200		ns	NMI		
		Pnn_m		2*t _{CLKP1} + 200 (t _{CLKP1} =1/f _{CLKP1})	_	ns	General Purpose IO		
Input pulse width	t _{INH} t _{INL}	TINn					Reload Timer		
		TTGn(_R)					PPG Trigger input		
		ADTG_R					AD Converter Trigger		
	F	INn					Input Capture		

(T_A = -40°C to 125°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

Note : Relocated Resource Inputs have same characteristics

14.5 Analog Digital Converter

	Symbol	Pin	Value				
Parameter			Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	V _{OT}	ANn	AVRL-1.5 LSB	AVRL+ 0.5 LSB	AVRL + 2.5 LSB	V	
Full scale transition voltage	V _{FST}	ANn	AVRH - 3.5 LSB	AVRH - 1.5 LSB	AVRH + 0.5 LSB	V	
Comparo timo	-	-	1.0	-	16,500	μS	$4.5V \leq AV_{CC} \leq 5.5V$
Compare time			2.0	-	-	μS	$3.0V \leq AV_{CC} < 4.5V$
	-	-	0.5	-	-	μS	$4.5V \leq AV_{CC} \leq 5.5V$
Sampling time			1.2	-	-	μS	$3.0V \leq AV_{CC} < 4.5V$
Analog input leakage current (during conversion)	I _{AIN}	ANn	-1	-	+1	μA	$\begin{array}{l} T_A \leq 105 \ ^\circ C, \\ AV_{SS}, \ AVRL < V_I < AV_{CC}, \\ AVRH \end{array}$
			-1.2	-	+1.2	μA	105 °C < T _A \leq 125 °C, AV _{SS} , AVRL < V _I < AV _{CC} , AVRH
Analog input voltage range	V _{AIN}	ANn	AVRL	-	AVRH	V	
	AVRH	AVRH	0.75 AVcc	-	AVcc	V	
Reference voltage range	AVRL	AVRL	AV _{SS}	-	$0.25 \text{AV}_{\text{CC}}$	V	
	Ι _Α	AVcc	-	2.5	5	mA	A/D Converter active
Power supply current	I _{AH}	AVcc	-	-	5	μA	A/D Converter not operated
Reference voltage current	I _R	AVRH/AVR L	-	0.7	1	mA	A/D Converter active
	I _{RH}	AVRH/AVR L	-	-	5	μA	A/D Converter not operated
Offset between input channels	-	ANn	-	-	4	LSB	

(T_A = -40 °C to +125 °C, 3.0 V \leq AVRH - AVRL, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

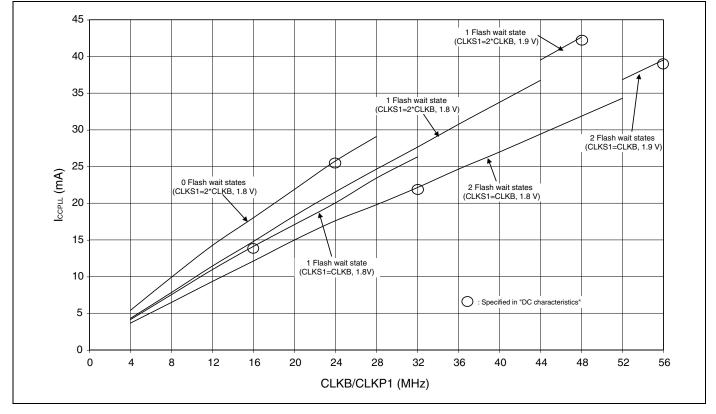
Note: The accuracy gets worse as |AVRH - AVRL| becomes smaller.

14.7 FLASH memory program/erase characteristics

(T_A = -40°C to 105°C, V_{CC} = AV_{CC} = 3.0V to 5.5V, V_{SS} = AV_{SS} = 0V)

Parameter	Value			Unit	Remarks
Falanietei	Min	Тур	Max	Onit	Remarks
Sector erase time	-	0.9	3.6	S	Without erasure pre-programming time
Chip erase time	-	n*0.9	n*3.6	s	Without erasure pre-programming time (n is the number of Flash sector of the device)
Word (16-bit width) programming time	-	23	370	us	Without overhead time for submitting write command
Program/Erase cycle	10000	-	-	cycle	
Flash data retention time	20	-	-	year	*1

*1: This value was converted from the results of evaluating the reliability of the technology (using Arrhenius equation to convert high temperature measurements into normalized value at 85°C)


15.2 Frequency dependency of power supply currents in PLL Run mode

The following diagrams show the current consumption of samples with typical wafer process parameters in PLL Run mode at different frequencies and Flash timing settings.

Measurement conditions:

- $V_{CC} = AV_{CC} = 5.0V$
- Ta = 25°C
- + $f_{CLKS1} = f_{CLKB}$ or $f_{CLKS1} = 2*f_{CLKB}$ as described in diagram
- $f_{CLKS2} = f_{CLKS1}$
- f_{CLKP1} = f_{CLKB}
- $f_{CLKP2} = f_{CLKB}/2$
- Core voltage at 1.8V (VRCR:HPM[1:0] = 10_B) or 1.9V (VRCR:HPM[1:0] = 11_B) as described in diagram
- Main clock = 4MHz external clock
- · Flash memory timing settings:
- MTCRA=2128_H/2208_H (0 Flash wait states, $f_{CLKS1} = 2*f_{CLKB}$)
- MTCRA=0239_H/2129_H (1 Flash wait state, f_{CLKS1} = f_{CLKB})
- MTCRA=4C09_H/6B09_H (1 Flash wait state, $f_{CLKS1} = 2*f_{CLKB}$)
- MTCRA=233A_H (2 Flash wait states, f_{CLKS1} = f_{CLKB})
- Average Flash access rate (number of read accesses to the Flash per CLKB clock cycle, no buffer hit):
- 0 Flash wait states: 0.5
- 1 Flash wait states: 0.33
- 2 Flash wait states: 0.25

MB96F313/F315 PLL Run mode currents

Document History

Document Title: MB96310 Series F ² MC-16FX 16-bit Proprietary Microcontroller Document Number: 002-04592					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	_	AKIH		Migrated to Cypress and assigned document number 002-04592. No change to document contents or format.	
*A	5230360	AKIH	04/22/2016	Updated to Cypress template	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation,2010- 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and ober countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.