

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, LINbus, SPI, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	59
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f11mmfafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 100-pin products

• 100-pin plastic LFQFP (fine pitch) (14×14 mm, 0.5 mm pitch)

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

(2/2)

		ltem	80-pin	100-pin		
		item	R5F11MMx (x = D to F)	R5F11MPx ($x = E$ to G)		
Clock out	put/buzzer o	output	2	2		
			 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 M (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 k (Subsystem clock: fsuB = 32.768 kHz operation) 	Hz, 5 MHz, 10 MHz Hz, 8.192 kHz, 16.384 kHz, 32.768 kHz)		
12-bit reso	olution A/D	converter	10 channels	14 channels		
12-bit reso	olution D/A	converter	2 channels	2 channels		
VREFOU	T (voltage re	eference)	2.5 V/2.048 \	//1.8 V/1.5 V		
Operation	nal amplifier		3 channels	3 channels		
	AMPnO w	ith analog MUX switch	2 channels (2 in-out/channel)	2 channels (4 in-out/channel)		
Comparat	tor		1 channel	1 channel		
Serial inte	erface		 CSI (SPI supported): 1 channel/UART (LIN-bus CSI: 1 channel/UART: 1 channel/simplified I²C: CSI: 1 channel/UART: 1 channel/simplified I²C: CSI: 1 channel/UART: 1 channel/simplified I²C: 	s supported): 1 channel/simplified I ² C: 1 channel 1 channel 1 channel 1 channel		
		I ² C bus	1 channel	1 channel		
LCD contr	LCD controller/driver		Internal voltage boosting method, capacitor split r are switchable.	nethod, and external resistance division method		
	Segment signal output		32 (28) ^{Note 1}	45 (41) ^{Note 1}		
	Common s	signal output	4 (8) Note 1			
Data trans	sfer controlle	er (DTC)	30 sources	30 sources		
Event link	controller (ELC)	Event input: 22, Event trigger output: 8	Event input: 22, Event trigger output: 8		
Vectored	interrupt	Internal	31	31		
sources		External	9	9		
Key interr	rupt		8	8		
Reset Reset Reset Reset R			 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Not} Internal reset by RAM parity error Internal reset by illegal-memory access 	te 2		
Power-on	-reset circui	t	 Power-on-reset: 1.51 ±0.04 V Power-down-reset: 1.50 ±0.04 V 			
Voltage de	etector		Rising edge: 1.88 V to 3.13 V (10 stages) Falling edge: 1.84 V to 3.06 V (10 stages)			
On-chip d	lebug functio	on	Provided			
Power su	pply voltage		V _{DD} = 1.8 to 3.6 V			
Operating	ambient te	mperature	T _A = -40 to +85 °C (A: Consumer applications)			

Note 1. The number in parentheses indicates the number of signal outputs when 8 coms are used.

Note 2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (A: TA = -40 to +85 °C)

This chapter describes the electrical specifications for the products A: Consumer applications (T_A = -40 to +85 °C).

- Caution 1. The RL78 microcontroller has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product in the RL78/L1A User's Manual.

Absolute Max	kimum Rat	ings (TA = 25°C)			(2/3)
Parameter	Symbols		Conditions	Ratings	Unit
LCD voltage	VLI1	VL1 input voltage	Note 1	-0.3 to +2.8	V
	VLI2	VL2 input voltage ^N	Note 1	-0.3 to +6.5	V
	VLI3	VL3 input voltage ^N	Note 1	-0.3 to +6.5	V
	VLI4	VL4 input voltage ^N	Note 1	-0.3 to +6.5	V
	VLI5	CAPL, CAPH inpu	t voltage ^{Note 1}	-0.3 to +6.5	V
-	VL01	VL1 output voltage		-0.3 to +2.8	V
	VLO2	VL2 output voltage		-0.3 to +6.5	V
	VLO3	VL3 output voltage		-0.3 to +6.5	V
	VLO4	VL4 output voltage		-0.3 to +6.5	V
	VLO5	CAPL, CAPH outp	out voltage	-0.3 to +6.5	V
	VLO6	COM0 to COM7	External resistance division method	-0.3 to VDD + 0.3 Note 2	V
		SEG0 to SEG44	Capacitor split method	-0.3 to VDD + 0.3 Note 2	V
			Internal voltage boosting method	-0.3 to VLI4 + 0.3 Note 2	V

Note 1. This value only indicates the absolute maximum ratings when applying voltage to the VL1, VL2, VL3, and VL4 pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 \pm 30%) and connect a capacitor (0.47 \pm 30%) between the CAPL and CAPH pins.

Note 2. Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Absolute Maximum Ratings (TA = 25°C)

(3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin		-40	mA
		Total of all	P40 to P44	-70	mA
		pins -170 mA	P00 to P07, P11 to P17, P30 to P37, P50 to P57, P70 to P77, P80, P81, P125 to P127, P130	-100	mA
	юн2 I	Per pin	P20, P21, P23 to P27, P100, P101, P103 to P107,	-0.1	mA
		Total of all pins	P140 to P143, P150, P152 to P154	-1.6 Note	mA
Output current, low	IOL1	Per pin	Per pin		mA
		Total of all pins 170 mA	P40 to P44	70	mA
			P00 to P07, P11 to P17, P30 to P37, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P130	100	mA
	IOL2	Per pin	P20, P21, P23 to P27, P100, P101, P103 to P107,	0.4	mA
	Total of all pins	Total of all pins	P140 to P143, P150, P152 to P154	6.4 Note	mA
Operating ambient tem-	Та	In normal c	peration mode	-40 to +85	°C
perature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Note Do not exceed the rated values when outputting the current simultaneously 16 pins at maximum.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іцні	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P137,_RESET	VI = VDD				1	μΑ
	Ілнз	P121 to P124 (X1, X2, EXCLK, XT1, VI = VDD XT2, EXCLKS)		In input port or exter- nal clock input			1	μA
				In resonator connec- tion			10	μA
	Ilih4	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	VI = AVDI			1	μΑ	
Input leakage current, low	ILIL1	P00 to P07, P11 to P17, P30 to P37, P40 to P44, P50 to P57, P60, P61, P70 to P77, P80, P81, P125 to P127, P137,_RESET	VI = VSS				-1	μΑ
	Ilil3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or exter- nal clock input			-1	μA
				In resonator connec- tion			-10	μA
	ILIL4	P20, P21, P23 to P27, P100, P101, P103 to P107, P140 to P143, P150, P152 to P154	VI = AVSS				-1	μΑ
On-chip pull-up resistance	Ruı	P00 to P07, P11 to P17, P30 to P37, P50 to P57, P70 to P77, P80, P81,	VI = Vss	$2.4 \text{ V} \le \text{VDD} \le 3.6 \text{ V}$ 1 8 V < VDD < 2 4 V	10 10	20 30	100 100	kΩ
	Dur	P125 to P127			10	00	100	L.O.
	RU2	P40 to P44	VI = VSS		10	20	100	KΩ

(TA = -40 to +85 °C	. 1.8 V < AVDD <	VDD < 3.6 V. /	AVss = Vss = 0 V
		,		

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(TA = -40 to +85 °C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, Vss = 0 V)

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply cur-	IDD1	Operating	HS	fiH = 24 MHz Note 3	Basic	VDD = 3.6 V		1.7		mA
rent Note 1		mode	(high-speed main)		operation	VDD = 3.0 V		1.7		
			mode Note 5		Normal	VDD = 3.6 V		3.6	6.1	
					operation	VDD = 3.0 V		3.6	6.1	
				fiH = 16 MHz Note 3	Normal	VDD = 3.6 V		2.7	4.7	
					operation	VDD = 3.0 V		2.7	4.7	
			LS	fiн = 8 MHz Note 3	Normal operation	VDD = 3.6 V		1.2	2.1	mA
			(low-speed main) mode Note 5			VDD = 3.0 V		1.2	2.1	
			HS (high-speed main) mode ^{Note 5}	fmx = 20 MHz Note 2,	Normal	Square wave input		3.0	5.1	mA
				VDD = 3.6 V	operation	Resonator connection		3.2	5.2	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.9	5.1	
				VDD = 3.0 V	operation	Resonator connection		3.2	5.2	
				f _{MX} = 16 MHz Note 2,	Normal	Square wave input		2.5	4.4	
				VDD = 3.6 V	operation	Resonator connection		2.7	4.5	
			fmx = 16 MHz Note 2,	Normal	Square wave input		2.5	4.4		
			VDD = 3.0 V	operation	Resonator connection		2.7	4.5		
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	3.0		
				VDD = 3.6 V	operation	Resonator connection		1.9	3.0	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		1.9	3.0	
						Resonator connection		1.9	3.0	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	2.0	mA
				VDD = 3.6 V	operation	Resonator connection		1.1	2.0	
			mode Note 5	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	2.0	
				VDD = 3.0 V	operation	Resonator connection		1.1	2.0	
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.0	5.4	μA
			operation	TA = -40°C	operation	Resonator connection		4.3	5.4	
				fsub = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.0	5.4	
				T _A = +25°C	operation	Resonator connection		4.3	5.4	
				fsub = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.1	7.1	
				T _A = +50°C	operation	Resonator connection		4.4	7.1	
				fsub = 32.768 kHz ^{Note 4} T _A = +70°C	Normal	Square wave input		4.3	8.7	
					operation	Resonator connection		4.7	8.7	
				fsub = 32.768 kHz ^{Note 4} TA = +85°C	Normal operation	Square wave input		4.7	12.0	
						Resonator connection		5.2	12.0	

(Notes and Remarks are listed on the next page.)

(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2 Note 2	HALT mode	HS (high-speed main)	fiH = 24 MHz Note 4	VDD = 3.6 V		0.42	1.83	mA
rent	Note 2		mode Note 7		V _{DD} = 3.0 V		0.42	1.83	
				fiн = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.39	1.38	
					V _{DD} = 3.0 V		0.39	1.38	
			LS (low-speed main)	fin = 8 MHz Note 4	V _{DD} = 3.0 V		0.25	0.71	mA
			mode Note 7		V _{DD} = 2.0 V		0.25	0.71	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.26	1.55	mA
			mode Note 7	VDD = 3.6 V	Resonator connection		0.4	1.68	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.25	1.55	
				VDD = 3.0 V	Resonator connection		0.4	1.68	
				fmx = 16 MHz ^{Note 3} , V _{DD} = 3.6 V	Square wave input		0.23	1.22	
					Resonator connection		0.36	1.39	
				f _{MX} = 16 MHz ^{Note 3} ,	Square wave input		0.22	1.22	
				VDD = 3.0 V	Resonator connection		0.35	1.39	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.18	0.82	
				VDD = 3.0 V	Resonator connection		0.28	0.90	
				fmx = 10 MHz ^{Note 3} , V _{DD} = 2.0 V	Square wave input		0.18	0.81	
					Resonator connection		0.28	0.89	
			LS (low-speed main) mode Note 7	fmx = 8 MHz ^{Note 3} , VDD = 3.0 V	Square wave input		0.09	0.51	mA
					Resonator connection		0.15	0.56	
				f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 2.0 V	Square wave input		0.10	0.52	
					Resonator connection		0.15	0.57	
			Subsystem clock operation	fsub = 32.768 kHz Note 5	Square wave input		0.32	0.75	μΑ
				TA = -40°C	Resonator connection		0.51	0.83	
				fsue = 32.768 kHz Note 5	Square wave input		0.41	0.83	
				TA = +25°C	Resonator connection		0.62	1.00	
				fsue = 32.768 kHz Note 5	Square wave input		0.52	1.17	
				TA = +50°C	Resonator connection		0.75	1.36	
				fsue = 32.768 kHz Note 5	Square wave input		0.82	1.97	
				TA = +70°C	Resonator connection		1.08	2.16	
				fsue = 32.768 kHz Note 5	Square wave input		1.38	3.37	
				TA = +85°C	Resonator connection		1.62	3.56	
	IDD3	STOP mode	T _A = -40°C				0.16	0.51	μΑ
	Note 6	Note 8	T _A = +25°C				0.22	0.51	
			T _A = +50°C				0.27	1.10	
			T _A = +70°C				0.37	1.90	
			T _A = +85°C				0.6	3.30	

(TA = -40 to +85 °C, 1.8 V \leq AVDD \leq VDD \leq 3.6 V, Vss = 0 V)

(Notes and Remarks are listed on the next page.)

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	bol Conditions		HS (high-spee Mode	HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ fclk/2	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	167		250		ns
SCKp high-/low-level width	tĸ∟1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			tксү1/2 - 50		ns
SIp setup time (to SCKp [↑]) Note 1	tsik1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.$	6 V	33		110		ns
SIp hold time (from SCKp [↑]) Note 2	tksi1	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.$	6 V	10		10		ns
Delay time from SCKp \downarrow to SOp output $^{Note\ 3}$	tkso1	C = 20 pF Note 4	C = 20 pF Note 4		10		10	ns

(TA = -40 to +85 °C, 2.7 V \leq VDD \leq 3.6 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 4)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85 °C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
					MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tксү2	$2.7~V \leq V_{DD} \leq 3.6~V$	$f_{MCK} > 16 \ MHz$	8/fмск		—		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V \text{DD} \leq 3.6~V$	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$			6/fмск and 500		ns
		$1.8 \text{ V} \leq \text{V}\text{dd} \leq 3.6 \text{ V}$		-		6/fмск and 750		ns
SCKp high-/low-level width	tĸн2, tĸL2	$2.7~V \leq V_{DD} \leq 3.6~V$	$2.7~V \leq V_{DD} \leq 3.6~V$			tксү2/2 - 8		ns
		$1.8~V \leq V_{DD} \leq 3.6~V$	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$			tксү2/2 - 18		ns
SIp setup time (to SCKp↑) Note 1	tsık2	$2.7~V \leq V_{DD} \leq 3.6~V$		1/fмск + 20		1/fмск + 30		ns
		$2.4~V \leq V_{DD} \leq 3.6~V$		1/fмск + 30		1/fмск + 30		ns
		$1.8~V \leq V_{DD} \leq 3.6~V$		_		1/fмск + 30		ns
SIp hold time (from SCKp [↑]) Note 2	tksi2	$2.4~V \leq V_{DD} \leq 3.6~V$		1/fмск + 31		1/fмск + 31		ns
		$1.8~V \leq V_{\text{DD}} \leq 3.6~V$		-		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		2/fмск + 44		2/fмск + 110	ns
			$2.4~V \leq V_{\text{DD}} \leq 3.6~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8~V \le V_{\text{DD}} \le 3.6~V$		-		2/fмск + 110	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02, 10, 12))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark
 p: CSI number (p = 00, 10, 20, 30), m: Unit number (m = 0, 1),

 n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3, 4, 8)

RENESAS

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 10, 20, 30), g: PIM, POM number (g = 0, 1, 3, 4, 8)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 02, 10, 12)

(2) I²C fast mode

(TA = -40 to +85 °C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
					MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	$1.8~V \leq V_{\text{DD}} \leq 3.6~V$	0	400	0	400	kHz
Setup time of restart con-	tsu: STA	$2.7~V \le V_{\text{DD}} \le 3.6$	V	0.6		0.6		μs
dition		$1.8~V \le V_{\text{DD}} \le 3.6$	V	-		0.6		μs
Hold time Note 1	thd: STA	$2.7~V \le V_{\text{DD}} \le 3.6$	V	0.6		0.6		μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		—		0.6		μs
Hold time	t∟ow	$2.7~V \le V_{\text{DD}} \le 3.6$	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$			1.3		μs
when SCLA0 = "L"		$1.8~V \le V_{\text{DD}} \le 3.6$	$1.8~V \le V_{\text{DD}} \le 3.6~V$			1.3		μs
Hold time	tніgн	$2.7~V \le V_{\text{DD}} \le 3.6$	V	0.6		0.6		μs
when SCLA0 = "H"		$1.8~V \leq V_{DD} \leq 3.6~V$		-		0.6		μs
Data setup time (recep-	tsu: dat	$2.7~V \leq V_{DD} \leq 3.6~V$		100		100		ns
tion)		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		_		100		ns
Data hold time (transmis-	thd: dat	$2.7~V \le V_{DD} \le 3.6$	V	0	0.9	0	0.9	μs
sion) Note 2		$1.8~V \le V_{DD} \le 3.6$	V	-		0	0.9	μs
Setup time of stop condi-	tsu: sto	$2.7~V \le V_{\text{DD}} \le 3.6$	V	0.6		0.6		μs
tion		$1.8~V \le V_{DD} \le 3.6$	$1.8~V \leq V_{DD} \leq 3.6~V$		I			μS
Bus-free time	t BUF	$2.7~V \le V_{DD} \le 3.6$	V	1.3		1.3		μs
		$1.8~V \leq V \text{dd} \leq 3.6~V$		—		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

Parameter	Symbol		Conditions	MIN	TYP	MAX	Unit
Full-scale error	EFS	High-speed mode	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—	±0.75	±4.5	LSB
		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±0.75	±4.5	LSB
		Normal mode	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—	±0.75	±4.5	LSB
		ADCSR.ADHSC = 1	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±0.75	±4.5	LSB
		ADSSTRn = 28H	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.5	±7.5	LSB
Differential linearity	DLE	High-speed mode	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—	±1.0	_	LSB
error	ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.0	_	LSB	
		Normal mode ADCSR.ADHSC = 1 ADSSTRn = 28H	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—	±1.0	_	LSB
			$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—	±1.0	_	LSB
			$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.0	_	LSB
Integral linearity error	ILE	High-speed mode	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.0	±3.0	LSB
		ADCSR.ADHSC = 0 ADSSTRn = 28H	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.0	±4.5	LSB
		Normal mode	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.0	±3.0	LSB
		ADCSR.ADHSC =1	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	—	±1.0	±3.0	LSB
		ADSSTRn = 28H	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	_	±1.0	±3.0	LSB

Note The characteristics above only apply when pins other than those of the A/D converter are not in use. The overall error includes the quantization error. Each of the offset error, full-scale error, DNL differential non-linearity error, and INL integral non-linearity error does not include the quantization error.

[Reference value for design (not guaranteed)]

We can provide the design reference values for the A/D converter. Note, however, that these values are not guaranteed and can only be used as a reference when using this function. See below for details.

TA = 0 to +50°C, 2.0 V \leq AVREFP \leq AVDD \leq VDD \leq 3.6 V, VSS = AVSS = 0 V, reference voltage(+) = AVREFP, refP, reference voltage(+) = AVREFP, refere

voltage(-) = AVREFM = 0 V

Parameter	Symbol	Conditions			TYP	MAX	Unit
Resolution	RES			_	_	Note 3	bit
Analog capacitance	Cs			_	_	Note 3	pF
Analog input resistance	Rs			_	_	Note 3	kΩ
Frequency	fclk	High-speed mode	$2.7~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6~\text{V}$	Note 3	_	Note 3	MHz
			$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	Note 3	_	Note 3	MHz
		Normal mode	$2.7 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	Note 3	_	Note 3	MHz
			$2.4~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6~\text{V}$	Note 3	_	Note 3	MHz
			$2.0~\text{V} \leq \text{AV}_{\text{REFP}} \leq \text{AV}_{\text{DD}} \leq \text{V}_{\text{DD}} \leq 3.6~\text{V}$	Note 3	_	Note 3	MHz

2.6.5 Rail to rail Operational amplifier characteristics

Parameter	Symbol	Cond	ditions	MIN	TYP	MAX	Unit
Circuit current	lcc1	Low-power consum	ption mode	—	10	16	μA
	lcc2	High-speed mode		_	210	350	μA
Common mode input	Vicm1	Low-power consum	ption mode	0.1		AVDD-0.1	V
range	Vicm2	High-speed mode		0.1		AVDD-0.1	V
Output voltage range	Vo1	Low-power consum	ption mode	0.1		AVDD-0.1	V
	Vo2	High-speed mode		0.1	_	AVDD-0.1	V
Input offset voltage	Fioff	Low-power consum	ption mode	-10		10	mV
		High-speed mode		-5		5	mV
Open gain	Av		—	120	_	dB	
Gain-bandwidth (GB)	GBW1	Low-power consum	ption mode	—	0.06	_	MHz
product	GBW2	High-speed mode		—	1	-	MHz
Phase margin	PM	CL = 22 pF		50	_	_	deg
Gain margin	GM	CL = 20 pF	CL = 20 pF			_	dB
Equivalent input noise	Vnoise1	f = 1 kHz	Low-power	—	900	_	nV/√Hz
	Vnoise2	f = 10 kHz	consumption mode	_	450	_	nV/√Hz
	Vnoise3	f = 1 kHz	High-speed mode	—	80	_	nV/√Hz
	Vnoise4	f = 2 kHz		_	50	_	nV/√Hz
Power supply reduction	PSRR			_	90	_	dB
	CMPR						
reduction ratio				—	90	—	dB
Operation stabilization wait time	Tturn1	CL = 20 pF	Low-power consumption mode	_	110	300	μs
	Tturn2	CL = 20 pF	High-speed mode	—	5	14	μs
Settling time	Tset1	CL = 20 pF	Low-power consumption mode	_	100	300	μs
	Tset2	CL = 20 pF	High-speed mode	_	4	14	μs
Slew rate	Tselw1	CL = 20 pF	Low-power consumption mode	0.01	0.04	_	V/µs
	Tselw2	CL = 20 pF	High-speed mode	0.3	0.7	_	V/µs
Load current	lload1	Low-power consum	ption mode	-110	_	110	μA
	lload2	High-speed mode		-110	_	110	μA
Load capacitance	CL			—	_	22	pF
Analog MUX ON resistance	Ron	One channel	One channel			1	kΩ

(TA = -40 to +85	°C, 2.2 V \leq AVDD	\leq VDD \leq 3.6 V, /	AVss = Vss = 0 V)
------------------	-----------------------	----------------------------	-------------------

2.8 LCD Characteristics

2.8.1 Resistance division method

(1) Static display mode

(TA = -40 to +85 °C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

(TA = -40 to +85 °C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

(TA = -40 to +85 °C, VL4 (MIN.) \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		Vdd	V

(2) 1/4 bias method

(TA = -40 to +85 °C, 1.8 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C5 Note 1	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 μ F Note 2	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} = 0.47 µF		2 V _{L1} - 0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 Note 1 =	= 0.47 μF	3 VL1 - 0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4	C1 to C5 Note 1 =	= 0.47 μF	4 V _{L1} - 0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	t∨wait1			5			ms
Voltage boost wait time Note 3	tvwait2	C1 to C5 Note 1 =	= 0.47μF	500			ms

Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between $\mathsf{VL3}$ and GND

C5: A capacitor connected between $\mathsf{VL4}$ and GND

C1 = C2 = C3 = C4 = C5 = 0.47 µF±30%

Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

2.8.3 Capacitor split method

(1) 1/3 bias method

(TA = -40 to +85 °C, 2.2 V \leq VDD \leq 3.6 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F Note 2		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F Note 2	2/3 VL4 - 0.1	2/3 VL4	2/3 V _{L4} + 0.1	V
VL1 voltage	V _{L1}	C1 to C4 = 0.47 μ F Note 2	1/3 Vl4 - 0.1	1/3 VL4	1/3 VL4 + 0.1	V
Capacitor split wait time Note 1	t∨wai⊤		100			ms

Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).

Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 μ F \pm 30%

