

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800EX
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	39
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f82736vlfr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- System
 - DMA controller
 - Integrated power-on reset (POR) and low-voltage interrupt (LVI) and brown-out reset module
 - Inter-module crossbar connection
 - JTAG/enhanced on-chip emulation (EOnCE) for unobtrusive, real-time debugging
- Operating characteristics
 - Single supply: 3.0 V to 3.6 V $\,$
 - 5 V-tolerant I/O (except for RESETB pin which is a 3.3 V pin only)
 - Operation ambient temperature: V temperature option: -40°C to $105^\circ C$
 - Operation ambient temperature: M temperature option: -40°C to 125°C
- 64-pin LQFP, 48-pin LQFP, 32-pin QFN, and 32-pin LQFP packages

Table of Contents

1	Overv	view	.4
	1.1	MC56F827xx Product Family	4
	1.2	56800EX 32-bit Digital Signal Controller (DSC) core	.5
	1.3	Operation Parameters	.6
	1.4	On-Chip Memory and Memory Protection	.6
	1.5	Interrupt Controller	. 7
	1.6	Peripheral highlights	. 7
	1.7	Block diagrams	13
2	MC5	6F827xx signal and pin descriptions	16
	2.1	Signal groups	.25
3	Order	ring parts	25
	3.1	Determining valid orderable parts	25
4	Part i	dentification	. 26
	4.1	Description	. 26
	4.2	Format	. 26
	4.3	Fields	. 26
	4.4	Example	27
5	Term	inology and guidelines	27
	5.1	Definition: Operating requirement	. 27
	5.2	Definition: Operating behavior	. 27
	5.3	Definition: Attribute	.28
	5.4	Definition: Rating	28
	5.5	Result of exceeding a rating	. 28
	5.6	Relationship between ratings and operating requirements	29
	5.7	Guidelines for ratings and operating requirements	. 29
	5.8	Definition: Typical value	. 30
	5.9	Typical value conditions	. 31
6	Ratin	gs	31

	6.1	Thermal handling ratings
	6.2	Moisture handling ratings31
	6.3	ESD handling ratings
	6.4	Voltage and current operating ratings
7	Gener	ral
	7.1	General characteristics
	7.2	AC electrical characteristics
	7.3	Nonswitching electrical specifications
	7.4	Switching specifications
	7.5	Thermal specifications
8	Peripl	neral operating requirements and behaviors
	8.1	Core modules44
	8.2	System modules45
	8.3	Clock modules
	8.4	Memories and memory interfaces
	8.5	Analog
	8.6	PWMs and timers
	8.7	Communication interfaces
9	Desig	n Considerations
	9.1	Thermal design considerations
	9.2	Electrical design considerations
	9.3	Power-on Reset design considerations
10	Obtai	ning package dimensions
11	Pinou	t
	11.1	Signal Multiplexing and Pin Assignments
	11.2	Pinout diagrams71
12	Produ	ct documentation73
13	Revis	ion History74

Feature		MC56F82										
Part Number ¹	748V LH	746V LF	743V LC	743V FM	738V LH	736V LF	733V LC	733V FM	728V LH	726V LF	723V LC	723V FM
		746M LF						733M FM				
Analog Comparators (CMP)	4	4	3	3	4	4	3	3	4	4	3	3
QSCI	2	2	1	1	2	2	1	1	2	2	1	1
QSPI	2	1	1	1	2	1	1	1	2	1	1	1
I2C/SMBus	1	1	1	1	1	1	1	1	1	1	1	1
MSCAN	1	1	0	0	1	1	0	0	1	1	0	0
GPIO	54	39	26	26	54	39	26	26	54	39	26	26
Package pin count	64 LQFP	48 LQFP	32 LQFP	32 QFN	64 LQFP	48 LQFP	32 LQFP	32 QFN	64 LQFP	48 LQFP	32 LQFP	32 QFN
AEC-Q100 ³	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	No	No

Table 1. MC56F827xx Family (continued)

1. Temperature options

V: -40°C to 105°C

M: -40°C to 125°C

2. Input capture shares the pin with cooresponding PWM channels.

3. Qualification aligned to AEC-Q100

1.2 56800EX 32-bit Digital Signal Controller (DSC) core

- Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual Harvard architecture:
 - Three internal address buses
 - Four internal data buses: two 32-bit primary buses, one 16-bit secondary data bus, and one 16-bit instruction bus
 - 32-bit data accesses
 - Supports concurrent instruction fetches in the same cycle, and dual data accesses in the same cycle
 - 20 addressing modes
- As many as 100 million instructions per second (MIPS) at 100 MHz core frequency
- 162 basic instructions
- Instruction set supports both fractional arithmetic and integer arithmetic
- 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement, plus addition, subtraction, and logical operations
- Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator (MAC) with dual parallel moves
- 32-bit arithmetic and logic multi-bit shifter
- Four 36-bit accumulators, including extension bits

1.6.3 Periodic Interrupt Timer (PIT) Modules

- 16-bit counter with programmable count modulo
- PIT0 is master and PIT1 is slave (if synchronizing both PITs)
- The output signals of both PIT0 and PIT1 are internally connected to a peripheral crossbar module
- Can run when the CPU is in Wait/Stop modes. Can also wake up the CPU from Wait/Stop modes.
- In addition to its existing bus clock (up to 50 MHz), 3 alternate clock sources for the counter clock are available:
 - Crystal oscillator output
 - 8 MHz / 400 kHz ROSC (relaxation oscillator output)
 - On-chip low-power 200 kHz oscillator

1.6.4 Inter-Module Crossbar and AND-OR-INVERT logic

- Provides generalized connections between and among on-chip peripherals: ADCs, 12-bit DAC, comparators, quad-timers, eFlexPWMs, EWM, and select I/O pins
- User-defined input/output pins for all modules connected to the crossbar
- DMA request and interrupt generation from the crossbar
- Write-once protection for all registers
- AND-OR-INVERT function provides a universal Boolean function generator that uses a four-term sum-of-products expression, with each product term containing true or complement values of the four selected inputs (A, B, C, D).

1.6.5 Comparator

- Full rail-to-rail comparison range
- Support for high and low speed modes
- Selectable input source includes external pins and internal DACs
- Programmable output polarity
- 6-bit programmable DAC as a voltage reference per comparator
- Three programmable hysteresis levels
- Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output

1.6.6 12-bit Digital-to-Analog Converter

- 12-bit resolution
- Powerdown mode

- Programmable length transmissions (2 bits to 16 bits)
- Programmable transmit and receive shift order (MSB as first bit transmitted)

1.6.10 Inter-Integrated Circuit (I2C)/System Management Bus (SMBus) modules

- Compatible with I2C bus standard
- Support for System Management Bus (SMBus) specification, version 2
- Multi-master operation
- General call recognition
- 10-bit address extension
- Start/Repeat and Stop indication flags
- Support for dual slave addresses or configuration of a range of slave addresses
- Programmable glitch input filter with option to clock up to 100 MHz

1.6.11 Modular/Scalable Controller Area Network (MSCAN) Module

- Clock source from PLL or oscillator.
- Implementation of the CAN protocol Version 2.0 A/B
- Standard and extended data frames
- 0-to-8 bytes data length
- Programmable bit rate up to 1 Mbit/s
- Support for remote frames
- Individual Rx Mask Registers per Message Buffer
- Internal timer for time-stamping of received and transmitted messages
- Listen-only mode capability
- Programmable loopback mode supporting self-test operation
- Programmable transmission priority scheme: lowest ID, lowest buffer number, or highest priority
- Low power modes, with programmable wakeup on bus activity

1.6.12 Windowed Computer Operating Properly (COP) watchdog

- Programmable windowed timeout period
- Support for operation in all power modes: run mode, wait mode, stop mode
- Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is detected
- Selectable reference clock source in support of EN60730 and IEC61508
- Selectable clock sources:
 - External crystal oscillator/external clock source

1.6.16 Clock sources

1.6.16.1 On-chip oscillators

- Tunable 8 MHz relaxation oscillator with 400 kHz at standby mode (divide-by-two output)
- 200 kHz low frequency clock as secondary clock source for COP, EWM, PIT

1.6.16.2 Crystal oscillator

- Support for both high ESR crystal oscillator (ESR greater than 100 Ω) and ceramic resonator
- Operating frequency: 4–16 MHz

1.6.17 Cyclic Redundancy Check (CRC) Generator

- Hardware CRC generator circuit with 16-bit shift register
- High-speed hardware CRC calculation
- Programmable initial seed value
- CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
- Error detection for all single, double, odd, and most multibit errors
- Option to transpose input data or output data (CRC result) bitwise, which is required for certain CRC standards

1.6.18 General Purpose I/O (GPIO)

- 5 V tolerance (except RESETB pin)
- Individual control of peripheral mode or GPIO mode for each pin
- Programmable push-pull or open drain output
- Configurable pullup or pulldown on all input pins
- All pins (except JTAG and RESETB) default to be GPIO inputs
- 2 mA / 9 mA source/sink capability
- Controllable output slew rate

1.7 Block diagrams

The 56800EX core is based on a modified dual Harvard-style architecture, consisting of three execution units operating in parallel, and allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set

MC56F827xx signal and pin descriptions

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
(GPIOD1)				Input/Output	Output	GPIO Port D1
ТСК	1	1	1	Input	Input, internal pulldown enabled	Test Clock Input — The pin is connected internally to a pulldown resistor. A Schmitt-trigger input is used for noise immunity. After reset, the default state is TCK
(GPIOD2)				Input/Output		GPIO Port D2
TMS	63	47	31	Input	Input, internal pullup enabled	Test Mode Select Input — It is sampled on the rising edge of TCK and has an internal pullup resistor. After reset, the default state is TMS.
						NOTE: Always tie the TMS pin to V_{DD} through a 2.2 k Ω resistor if need to keep on-board debug capability. Otherwise, directly tie to V_{DD} .
(GPIOD3)				Input/Output		GPIO Port D3
RESET or RESETB	2	2	2	Input	Input, internal pullup enabled	Reset — A direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt-trigger input is used for noise immunity. The internal reset signal is deasserted synchronous with the internal clocks after a fixed number of internal clocks. After reset, the default state is RESET. Recommended a capacitor of up to 0.1 μ F for filtering noise.
(GPIOD4)				Input/ Opendrain Output		GPIO Port D4 RESET functionality is disabled in this mode and the device can be reset only through POR, COP reset, or software reset.
GPIOA0	13	9	6	Input/Output	Input	GPIO Port A0
(ANA0&CMPA_IN 3)				Input		ANA0 is analog input to channel 0 of ADCA; CMPA_IN3 is positive input 3 of analog comparator A. After reset, the default state is GPIOA0.
(CMPC_O)				Output		Analog comparator C output
GPIOA1	14	10	7	Input/Output	Input	GPIO Port A1: After reset, the default state is GPIOA1.
(ANA1&CMPA_IN 0)				Input		ANA1 is analog input to channel 1 of ADCA; CMPA_INO is negative input 0 of analog comparator A. When used as an analog input, the signal goes to ANA1 and CMPA_INO. The ADC control register configures this input as ANA1 or CMPA_INO.
GPIOA2	15	11	8	Input/Output	Input	GPIO Port A2: After reset, the default state is GPIOA2.

Table 2. Signal descriptions (continued)

Table continues on the next page ...

MC56F827xx signal and pin descriptions

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description
GPIOC7	32	24	_	Input/Output	Input	GPIO Port C7: After reset, the default state is GPIOC7.
(<u>SS0_B</u>)				Input/Output		In slave mode, <u>SS0_B</u> indicates to the SPI module 0 that the current transfer is to be received.
(TXD0)				Output		SCI0 transmit data output or transmit/ receive in single wire operation
(XB_IN8)				Input		Crossbar module input 8
GPIOC8	33	25	16	Input/Output	Input	GPIO Port C8: After reset, the default state is GPIOC8.
(MISO0)				Input/Output		Master in/slave out for SPI0 — In master mode, MISO0 pin is the data input. In slave mode, MISO0 pin is the data output. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.
(RXD0)				Input		SCI0 receive data input
(XB_IN9)				Input		Crossbar module input 9
(XB_OUT6)				Output	-	Crossbar module output 6
GPIOC9	34	26	17	Input/Output	Input	GPIO Port C9: After reset, the default state is GPIOC9.
(SCLK0)				Input/Output		SPI0 serial clock. In master mode, SCLK0 pin is an output, clocking slaved listeners. In slave mode, SCLK0 pin is the data clock input.
(XB_IN4)				Input		Crossbar module input 4
(TXD0)				Output		SCI0 transmit data output or transmit/ receive in single wire operation
(XB_OUT8)				Output		Crossbar module output 8
GPIOC10	35	27	18	Input/Output	Input	GPIO Port C10: After reset, the default state is GPIOC10.
(MOSI0)				Input/Output		Master out/slave in for SPI0 — In master mode, MOSI0 pin is the data output. In slave mode, MOSI0 pin is the data input.
(XB_IN5)				Input		Crossbar module input 4
(MISO0)				Input/Output		Master in/slave out for SPI0 — In master mode, MISO0 pin is the data input. In slave mode, MISO0 pin is the data output. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected.
(XB_OUT9)				Output		Crossbar module output 9
GPIOC11	37	29	_	Input/Output	Input	GPIO Port C11: After reset, the default state is GPIOC11.
(CANTX)				Open-drain Output		CAN transmit data output

Table 2. Signal descriptions (continued)

Table continues on the next page ...

Signal Name	64 LQFP	48 LQFP	32 LQFP	Туре	State During Reset	Signal Description	
(SCL0)				Input/Open- drain Output		I ² C0 serial clock	
(TXD1)				Output	•	SCI1 transmit data output or transmit/ receive in single wire operation	
GPIOC12	38	30	_	Input/Output	Input	GPIO Port C12: After reset, the default state is GPIOC12.	
(CANRX)				Input		CAN receive data input	
(SDA0)				Input/Open- drain Output			I ² C0 serial data line
(RXD1)				Input		SCI1 receive data input	
GPIOC13	49	37	_	Input/Output	Input	GPIO Port C13: After reset, the default state is GPIOC13.	
(TA3)				Input/Output	-	Quad timer module A channel 3 input/ output	
(XB_IN6)				Input		Crossbar module input 6	
(EWM_OUT_B)				Output	-	External Watchdog Module output	
GPIOC14	55	41	_	Input/Output	Input	GPIO Port C14: After reset, the default state is GPIOC14.	
(SDA0)				Input/ Opendrain Output		I ² C0 serial data line	
(XB_OUT4)				Output		Crossbar module output 4	
(PWM_FAULT4)				Input		Disable PWMA output 4	
GPIOC15	56	42	_	Input/Output	Input	GPIO Port C15: After reset, the default state is GPIOC15.	
(SCL0)				Input/Open- drain Output		I ² C0 serial clock	
(XB_OUT5)				Output		Crossbar module output 5	
(PWM_FAULT5)				Input		Disable PWMA output 5	
GPIOE0	45	33	21	Input/Output	Input	GPIO Port E0: After reset, the default state is GPIOE0.	
(PWM_0B)				Input/Output		PWM module A (NanoEdge), submodule 0, output B or input capture B	
GPIOE1	46	34	22	Input/Output	Input	GPIO Port E1: After reset, the default state is GPIOE1.	
(PWM_0A)				Input/Output		PWM module A (NanoEdge), submodule 0, output A or input capture A	
GPIOE2	47	35	23	Input/Output	Input	GPIO Port E2: After reset, the default state is GPIOE2.	
(PWMA_1B)				Input/Output		PWM module A (NanoEdge), submodule 1, output B or input capture B	
GPIOE3	48	36	24	Input/Output	Input	GPIO Port E3: After reset, the default state is GPIOE3.	

Table 2. Signal descriptions (continued)

Table continues on the next page...

Part identification

3.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **nxp.com** and perform a part number search for the following device numbers: MC56F82

4 Part identification

4.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

4.2 Format

Part numbers for this device have the following format: Q 56F8 2 C F P T PP N

4.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 MC = Fully qualified, general market flow PC = Prequalification
56F8	DSC family with flash memory and DSP56800/ DSP56800E/DSP56800EX core	• 56F8
2	DSC subfamily	• 2
С	Maximum CPU frequency (MHz)	• 7 = 100 MHz
F	Primary program flash memory size	 1 = 16 KB 2 = 32 KB 3 = 48 KB 4 = 64 KB
P	Pin count	 3 = 32 6 = 48 8 = 64
Т	Temperature range (°C)	 V = -40 to 105 M = -40 to 125
PP	Package identifier	 LC = 32LQFP FM = 32QFN

Table continues on the next page ...

5.5 Result of exceeding a rating

5.6 Relationship between ratings and operating requirements

5.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

5.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

5.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μA

5.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:


```
Ratings
```

6.3 ESD handling ratings

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

All latch-up testing is in conformity with AEC-Q100 Stress Test Qualification.

A device is defined as a failure if after exposure to ESD pulses, the device no longer meets the device specification. Complete DC parametric and functional testing is performed as per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Characteristic ¹	Min	Мах	Unit
ESD for Human Body Model (HBM)	-2000	+2000	V
ESD for Machine Model (MM)	-200	+200	V
ESD for Charge Device Model (CDM)	-500	+500	V
Latch-up current at TA= 85°C (I _{LAT})	-100	+100	mA

Table 4. ESD/Latch-up Protection

1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

6.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 5 may affect device reliability or cause permanent damage to the device.

NOTE

If the voltage difference between VDD and VDDA or VSS and VSSA is too large, then the device can malfunction or be permanently damaged. The restrictions are:

 At all times, it is recommended that the voltage difference of VDD - VSS be within +/-200 mV of the voltage difference of VDDA - VSSA, including power ramp up and ramp down; see additional requirements in Table 6. Failure to do this recommendation may result in a

7.2 AC electrical characteristics

Tests are conducted using the input levels specified in Table 8. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in Figure 3.

The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 3. Input signal measurement references

Figure 4 shows the definitions of the following signal states:

- Active state, when a bus or signal is driven, and enters a low impedance state
- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached V_{OL} or V_{OH}
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}

Figure 4. Signal states

7.3 Nonswitching electrical specifications

7.3.1 Voltage and current operating requirements

This section includes information about recommended operating conditions.

NOTE

Recommended V_{DD} ramp rate is less than 200 ms.

Table 6. Recommended Operating Conditions (V_{REFLx}=0V, V_{SSA}=0V, V_{SS}=0V)

Characteristic	Symbol	Notes ¹	Min	Тур	Max	Unit
Supply voltage	V_{DD}, V_{DDA}		2.7	3.3	3.6	V

Table continues on the next page ...

Table 6. Recommended Operating Conditions (V_{REFLx}=0V, V_{SSA}=0V, V_{SS}=0V) (continued)

	i		· · · · · · · · · · · · · · · · · · ·			
Characteristic	Symbol	Notes ¹	Min	Тур	Max	Unit
ADC (Cyclic) Reference Voltage High	V _{REFHA}		V _{DDA} -0.6		V _{DDA}	V
	V _{REFHB}					
Voltage difference V _{DD} to V _{DDA}	ΔVDD		-0.1	0	0.1	V
Voltage difference V _{SS} to V _{SSA}	ΔVSS		-0.1	0	0.1	V
Input Voltage High (digital inputs)	V _{IH}	Pin Group 1	0.7 x V _{DD}		5.5	V
RESET Voltage High	V _{IH_RESET}	Pin Group 2	0.7 x V _{DD}	—	V _{DD}	V
Input Voltage Low (digital inputs)	V _{IL}	Pin Groups 1, 2			0.35 x V _{DD}	V
Oscillator Input Voltage High	V _{IHOSC}	Pin Group 4	2.0		V _{DD} + 0.3	V
XTAL driven by an external clock source						
Oscillator Input Voltage Low	VILOSC	Pin Group 4	-0.3		0.8	V
Output Source Current High (at V _{OH} min.) • Programmed for low drive strength	I _{ОН}	Pin Group 1			-2	mA
Programmed for high drive strength		Pin Group 1	_		-9	
Output Source Current Low (at V _{OL} max.) ^{2, 3} Programmed for low drive strength 	I _{OL}	Pin Groups 1, 2			2	mA
Programmed for high drive strength		Pin Groups 1, 2			9	

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output
- 2. Total IO sink current and total IO source current are limited to 75 mA each
- 3. Contiguous pin DC injection current of regional limit—including sum of negative injection currents or sum of positive injection currents of 16 contiguous pins—is 25 mA.

7.3.2 LVD and POR operating requirements

Table 7. PMC Low-Voltage Detection (LVD) and Power-On Reset (POR) Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
POR Assert Voltage ¹	POR		2.0		V
POR Release Voltage ²	POR		2.7		V
LVI_2p7 Threshold Voltage			2.73		V
LVI_2p2 Threshold Voltage			2.23		V

1. During 3.3-volt V_{DD} power supply ramp down

2. During 3.3-volt V_{DD} power supply ramp up (gated by LVI_2p7)

Symbol	Description	Min	Мах	Unit	Notes ¹
T _{POR}	After a POR event, the amount of delay from when V_{DD} reaches 2.7 V to when the first instruction executes (over the operating temperature range).	199	225	μs	
	STOP mode to RUN mode	6.79	7.27.31	μs	2
	LPS mode to LPRUN mode	240.9	551	μs	3
	VLPS mode to VLPRUN mode	1424	1459	μs	4
	WAIT mode to RUN mode	0.570	0.620	μs	5
	LPWAIT mode to LPRUN mode	237.2	554	μs	3
	VLPWAIT mode to VLPRUN mode	1413	1500	μs	4

Table 10. Power mode transition behavior

1. Wakeup times are measured from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from respective stop/wait mode.

2. Clock configuration: CPU clock=4 MHz. System clock source is 8 MHz IRC in normal mode.

- 3. CPU clock = 200 KHz and 8 MHz IRC on standby. Exit by an interrupt on PORTC GPIO.
- 4. Using 64 KHz external clock; CPU Clock = 32KHz. Exit by an interrupt on PortC GPIO.
- 5. Clock configuration: CPU and system clocks= 100 MHz. Bus Clock = 50 MHz. Exit by interrupt on PORTC GPIO

7.3.5 Power consumption operating behaviors

Mode	Maximum Frequency	Conditions	Typical at 3.3 V, 25°C		at Maximum Max , at 3.6 V, at 3 105°C 12		Maxi at 3 12	ximum 3.6V, 25°C	
			I _{DD} ¹	I _{DDA}	I_{DD}^{1}	I _{DDA}	I _{DD} ¹	I _{DDA}	
RUN1	100 MHz	 100 MHz Core 50 MHz Peripheral clock Regulators are in full regulation Relaxation Oscillator on PLL powered on Continuous MAC instructions with fetches from Program Flash All peripheral modules enabled. TMRs and SCIs using 1X peripheral clock NanoEdge within eFlexPWM using 2X peripheral clock ADC/DAC (only one 12-bit DAC and all 6-bit DACs) powered on and clocked Comparator powered on 	38.1	9.9	53.5	13.2	53.5	13.2	
RUN2	50 MHz	 50 MHz Core and Peripheral clock Regulators are in full regulation Relaxation Oscillator on PLL powered on Continuous MAC instructions with fetches from Program Flash All peripheral modules enabled. TMRs and SCIs using 1X peripheral clock NanoEdge within eFlexPWM using 2X peripheral clock 	27.6	9.9	43.5	13.2	43.5	14.0	

Table 11. Current Consumption (mA)

Table continues on the next page ...

7.5 Thermal specifications

7.5.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description		Min	Max	Unit
TJ	Die junction temperature	V	-40	115	°C
		М	-40	135	°C
T _A	Ambient temperature	V	-40	105	°C
		М	-40	125	°C

7.5.2 Thermal attributes

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To account for $P_{I/O}$ in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

See Thermal design considerations for more detail on thermal design considerations.

Board type	Symbol	Descriptio n	32 QFN	32 LQFP	48 LQFP	64 LQFP	Unit	Notes
Single-layer (1s)	R _{eja}	Thermal resistance, junction to ambient (natural convection)	96	83	70	64	°C/W	,
Four-layer (2s2p)	R _{eja}	Thermal resistance, junction to ambient (natural convection)	33	55	46	46	°C/W	1,
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient	80	70	57	52	°C/W	1,2

Table continues on the next page...

Characteristic	Symbol	Min	Мах	Unit	See Figure
TMS, TDI data hold time	t _{DH}	5	_	ns	Figure 7
TCK low to TDO data valid	t _{DV}	—	30	ns	Figure 7
TCK low to TDO tri-state	t _{TS}	—	30	ns	Figure 7

 Table 16.
 JTAG timing (continued)

Figure 6. Test clock input timing diagram

Figure 7. Test access port timing diagram

8.2 System modules

8.2.1 Voltage regulator specifications

The voltage regulator supplies approximately 1.2 V to the MC56F82xxx's core logic. For proper operations, the voltage regulator requires an external 2.2 μ F capacitor on each V_{CAP} pin. Ceramic and tantalum capacitors tend to provide better performance tolerances. The output voltage can be measured directly on the V_{CAP} pin. The specifications for this regulator are shown in Table 17.

8.5.2 12-bit Digital-to-Analog Converter (DAC) parameters Table 28. DAC parameters

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit				
DC Specifications										
Resolution			12	12	12	bits				
Settling time ¹	At output load		_	1		μs				
	RLD = 3 kΩ									
	CLD = 400 pF									
Power-up time	Time from release of PWRDWN signal until DACOUT signal is valid	t _{DAPU}			11	μs				
	Αςςι	iracy	L	L	1 1					
Integral non-linearity ²	Range of input digital words:	INL	_	+/- 3	+/- 4	LSB ³				
	410 to 3891 (\$19A - \$F33)									
	5% to 95% of full range									
Differential non-	Range of input digital words:	DNL		+/- 0.8	+/- 0.9	LSB ³				
linearity ²	410 to 3891 (\$19A - \$F33)									
	5% to 95% of full range									
Monotonicity	> 6 sigma monotonicity,			_						
	< 3.4 ppm non-monotonicity									
Offset error ²	Range of input digital words:	VOFFSET	_	+/- 25	+ /- 43	mV				
	410 to 3891 (\$19A - \$F33)									
	5% to 95% of full range									
Gain error ²	Range of input digital words: 410 to 3891 (\$19A - \$F33) 5% to 95% of full range	E _{GAIN}	_	+/- 0.5	+/- 1.5	%				
	DAC	Dutput								
Output voltage range	Within 40 mV of either V_{SSA} or V_{DDA}	V _{OUT}	V _{SSA} + 0.04 V		V _{DDA} - 0.04 V	V				
AC Specifications										
Signal-to-noise ratio		SNR		85	—	dB				
Spurious free dynamic range		SFDR		-72	_	dB				
Effective number of bits		ENOB		11	_	bits				

 $1. \quad \mbox{Settling time is swing range from V_{SSA} to V_{DDA} } 2. \ \mbox{No guaranteed specification within 5% of V_{DDA} or V_{SSA} }$

3. LSB = 0.806 mV

11.2 Pinout diagrams

The following diagrams show pinouts for the packages. For each pin, the diagrams show the default function. However, many signals may be multiplexed onto a single pin.

NOTE The RESETB pin is a 3.3 V pin only.