
Silicon Labs - C8051F540-IQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity SMBus (2-Wire/I²C), LINbus, SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 25

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.25V

Data Converters A/D 25x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package 32-LQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f540-iq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f540-iq-4410282
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F54x

Rev. 1.1 13

1. System Overview

C8051F54x devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are
listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

 High-speed pipelined 8051-compatible microcontroller core (up to 50 MIPS)

 In-system, full-speed, non-intrusive debug interface (on-chip)

 LIN 2.1 peripheral (fully backwards compatible, master and slave modes) (C8051F540/2/4/6)

 True 12-bit 200 ksps 32-channel single-ended ADC with analog multiplexer

 Precision programmable 24 MHz internal oscillator that is within ±0.5% across the temperature range
and for VDD voltages greater than or equal to the on-chip voltage regulator minimum output at the low
setting. The oscillator is within +1.0% for VDD voltages below this minimum output setting.

 On-chip Clock Multiplier to reach up to 50 MHz

 16 kB (C8051F540/1/2/3) or 8 kB (C8051F544/5/6/7) of on-chip Flash memory

 1280 bytes of on-chip RAM

 SMBus/I2C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware

 Four general-purpose 16-bit timers

 Programmable Counter/Timer Array (PCA) with six capture/compare modules and Watchdog Timer
function

 On-chip Voltage Regulator

 On-chip Power-On Reset, VDD Monitor, and Temperature Sensor

 On-chip Voltage Comparator

 25 or 18 Port I/O (5 V push-pull)

With on-chip Voltage Regulator, Power-On Reset, VDD monitor, Watchdog Timer, and clock oscillator, the
C8051F54x devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be repro-
grammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051
firmware. User software has complete control of all peripherals, and may individually shut down any or all
peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip
resources), full speed, in-circuit debugging using the production MCU installed in the final application. This
debug logic supports inspection and modification of memory and registers, setting breakpoints, single
stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging
using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging with-
out occupying package pins.

The devices are specified for 1.8 V to 5.25 V operation over the automotive temperature range (–40 to
+125 °C). The C8051F540/1/4/5 devices are available in 32-pin QFP and QFN packages and the
C8051F542/3/6/7 devices are available in 32-pin QFN packages. All package options are lead-free and
RoHS compliant. See Table 2.1 for ordering information. Block diagrams are included in Figure 1.1 and
Figure 1.2.

C8051F54x

14 Rev. 1.1

Figure 1.1. C8051F540/1/4/5 Block Diagram

Digital Peripherals

UART0

Timers 0,
1, 2, 3

6 channel
PCA/WDT

LIN 2.1

Priority
Crossbar
Decoder

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

Crossbar Control

Port I/O Configuration

SFR
Bus

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5

I2C

Debug /
Programming

Hardware

Power On
Reset

Reset

C2CK/RST

P1.6
P1.7

Analog Peripherals

Comparator 0
+
-

12-bit
200ksps
ADC

A
M
U
X

VREFVDD

VDD

VREF

GND

CP0, CP0A

Voltage
Reference VREF

System Clock Setup

External Oscillator

XTAL1

CIP-51 8051 Controller
Core (50 MHz)

16 kB Flash Program
Memory

256 Byte RAM

Port 0
Drivers

Port 1
Drivers

Voltage Regulator
(LDO)

GND

VREGIN

VDD

XTAL2

VIO

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

Port 2
Drivers

Temp
Sensor

P0 – P3

GNDA

VDDA

Clock Multiplier

Internal Oscillator
(±0.5%)

1 kB XRAM

SPI

Comparator 1
+
-

CP1, CP1A

P3.0/C2DPort 3
Driver

C2D

C8051F54x

19 Rev. 1.1

P1.3 23 14 D I/O or A In Port 1.3.

P1.4 22 13 D I/O or A In Port 1.4.

P1.5 21 12 D I/O or A In Port 1.5.

P1.6 20 11 D I/O or A In Port 1.6.

P1.7 19 10 D I/O or A In Port 1.7.

P2.0 18 9 D I/O or A In Port 2.0. See SFR Definition 18.20 for a description.

P2.1 17 — D I/O or A In Port 2.1.

P2.2 16 — D I/O or A In Port 2.2.

P2.3 15 — D I/O or A In Port 2.3.

P2.4 14 — D I/O or A In Port 2.4.

P2.5 13 — D I/O or A In Port 2.5.

P2.6 12 — D I/O or A In Port 2.6.

P2.7 11 — D I/O or A In Port 2.7.

Table 3.1. Pin Definitions for the C8051F54x (Continued)

Name Pin

‘F540/1/4/5

(32-pin)

Pin

‘F542/3/6/7

(24-pin)

Type Description

C8051F54x

Rev. 1.1 69

8.1. Comparator Multiplexer

C8051F54x devices include an analog input multiplexer for each of the comparators to connect Port I/O
pins to the comparator inputs. The Comparator0 inputs are selected in the CPT0MX register (SFR Defini-
tion 8.5). The CMX0P3–CMX0P0 bits select the Comparator0 positive input; the CMX0N3–CMX0N0 bits
select the Comparator0 negative input. Similarly, the Comparator1 inputs are selected in the CPT1MX reg-
ister using the CMX1P3-CMX1P0 bits and CMX1N3-CMX1N0 bits. The same pins are available to both
multiplexers at the same time and can be used by both comparators simultaneously.

Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be con-
figured as analog inputs in their associated Port configuration register, and configured to be skipped by the
Crossbar (for details on Port configuration, see Section “18.6. Special Function Registers for Accessing
and Configuring Port I/O” on page 161).

Figure 8.3. Comparator Input Multiplexer Block Diagram

VDD

 +

 -

GND

CPn +

CPn -

P0.1

P0.3

P0.5

P0.7

C
P

T
nM

X

CMXnN3

CMXnN2

CMXnN1

CMXnN0

CMXnP3

CMXnP2

CMXnP1

CMXnP0

P1.1

P1.3

P1.5

P1.7

P2.1

P2.3

P2.5

P2.7

P0.0

P0.2

P0.4

P0.6

P1.0

P1.2

P1.4

P1.6

P2.0

P2.2

P2.4

P2.6

C8051F54x

Rev. 1.1 74

10. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-
ware. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51
also includes on-chip debug hardware (see description in Section 25), and interfaces directly with the ana-
log and digital subsystems providing a complete data acquisition or control-system solution in a single inte-
grated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as
additional custom peripherals and functions to extend its capability (see Figure 10.1 for a block diagram).
The CIP-51 includes the following features:

 Fully Compatible with MCS-51 Instruction Set

 50 MIPS Peak Throughput with 50 MHz Clock

 0 to 50 MHz Clock Frequency

 Extended Interrupt Handler

 Reset Input

 Power Management Modes

 On-chip Debug Logic

 Program and Data Memory Security

10.1. Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more
than eight system clock cycles.

C8051F54x

Rev. 1.1 85

11. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are
two separate memory spaces: program memory and data memory. Program and data memory share the
same address space but are accessed via different instruction types. The memory organization is shown in
Figure 11.1

Figure 11.1. C8051F54x Memory Map

11.1. Program Memory
The CIP-51 core has a 64 kB program memory space. The C8051F54x devices implement 16 kB or 8 kB
of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous
block from addresses 0x0000 to 0x3FFF in 16 kB devices and addresses 0x0000 to 0x1FFF in 8 kB
devices. The address 0x3BFF in 16 kB devices and 0x1FFF in 8 kB devices serves as the security lock
byte for the device. Addresses above 0x3BFF are reserved in the 16 kB devices.

PROGRAM/DATA MEMORY
(FLASH)

(Direct and Indirect
Addressing)

0x00

0x7F

Upper 128 RAM
(Indirect Addressing

Only)0x80

0xFF Special Function
Register's

(Direct Addressing Only)

DATA MEMORY (RAM)

General Purpose
Registers

0x1F
0x20

0x2F
Bit Addressable

Lower 128 RAM
(Direct and Indirect
Addressing)

0x30

INTERNAL DATA ADDRESS SPACE

EXTERNAL DATA ADDRESS SPACE

0x0000

0x03FF

Same 1024 bytes as
from 0x0000 to 0x03FF,
wrapped on 1024-byte

boundaries

0x0400

0xFFFF

16 kB FLASH

(In-System
Programmable in 512

Byte Sectors)

0x0000

RESERVED
0x3C00
0x3BFF

C8051F540/1/2/3

8 kB FLASH

(In-System
Programmable in 512

Byte Sectors)

0x0000

0x1FFF

C8051F544/5/6/7

XRAM
1K Bytes

(accessable using
MOVX instruction)

C8051F54x

Rev. 1.1 95

Figure 12.6. SFR Page Stack Upon Return From SPI0 Interrupt

In the example above, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT,
and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to
return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to
the SFR Page stack can be useful to enable real-time operating systems to control and manage context
switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on
interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation
of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic
Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFR0CN). See SFR Definition 12.1.

0x0F

(SMB0ADR)
SFRPAGE

SFRLAST

SFRNEXT

SFR Page 0x00
Automatically

popped off of the
stack on return from

interrupt

SFRNEXT
popped to
SFRPAGE

C8051F54x

Rev. 1.1 97

SFR Address = 0xA7; SFR Page = All Pages

SFR Definition 12.2. SFRPAGE: SFR Page

Bit 7 6 5 4 3 2 1 0

Name SFRPAGE[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SFRPAGE[7:0] SFR Page Bits.

Represents the SFR Page the C8051 core uses when reading or modifying
SFRs.

Write: Sets the SFR Page.

Read: Byte is the SFR page the C8051 core is using.

When enabled in the SFR Page Control Register (SFR0CN), the C8051 core will
automatically switch to the SFR Page that contains the SFRs of the correspond-
ing peripheral/function that caused the interrupt, and return to the previous SFR
page upon return from interrupt (unless SFR Stack was altered before a return-
ing from the interrupt). SFRPAGE is the top byte of the SFR Page Stack, and
push/pop events of this stack are caused by interrupts (and not by reading/writ-
ing to the SFRPAGE register)

C8051F54x

100 Rev. 1.1

Table 12.1. Special Function Register (SFR) Memory Map for Pages 0x0 and 0xF

A
dd

re
ss

P
ag

e 0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

F8 0
F

SPI0CN PCA0L
SN0

PCA0H
SN1

PCA0CPL0
SN2

PCA0CPH0
SN3

PCACPL4 PCACPH4 VDM0CN

F0 0
F

B
(All Pages)

P0MAT
P0MDIN

P0MASK
P1MDIN

P1MAT
P2MDIN

P1MASK
P3MDIN

EIP1
EIP1

EIP2
EIP2

E8 0
F

ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPL3 RSTSRC

E0 0
F

ACC
(All Pages) XBR0 XBR1 CCH0CN IT01CF

EIE1
(All Pages)

EIE2
(All Pages)

D8 0
F

PCA0CN PCA0MD
PCA0PWM

PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 PCA0CPM5

D0 0
F

PSW
(All Pages)

REF0CN LIN0DATA LIN0ADDR
P0SKIP P1SKIP P2SKIP P3SKIP

C8 0
F

TMR2CN REG0CN
LIN0CF

TMR2RLL TMR2RLH TMR2L TMR2H PCA0CPL5 PCA0CPH5

C0 0
F

SMB0CN SMB0CF SMB0DAT ADC0GTL ADC0GTH ADC0LTL ADC0LTH
XBR2

B8 0
F

IP
(All Pages)

ADC0TK ADC0MX ADC0CF ADC0L ADC0H

B0 0
F

P3
(All Pages)

P2MAT P2MASK FLSCL
(All Pages)

FLKEY
(All Pages)

A8 0
F

IE
(All Pages)

SMOD0 EMI0CN
SBCON0 SBRLL0 SBRLH0

P3MAT
P3MDOUT

P3MASK

A0 0
F

P2
(All Pages)

SPI0CFG
OSCICN

SPI0CKR
OSCICRS

SPI0DAT
P0MDOUT P1MDOUT P2MDOUT

SFRPAGE
(All Pages)

98 0
F

SCON0 SBUF0 CPT0CN CPT0MD CPT0MX CPT1CN CPT1MD
OSCIFIN

CPT1MX
OSCXCN

90 0
F

P1
(All Pages)

TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H
CLKMUL

88 0
F

TCON
(All Pages)

TMOD
(All Pages)

TL0
(All Pages)

TL1
(All Pages)

TH0
(All Pages)

TH1
(All Pages)

CKCON
(All Pages)

PSCTL
CLKSEL

80 0
F

P0
(All Pages)

SP
(All Pages)

DPL
(All Pages)

DPH
(All Pages) SFR0CN

SFRNEXT
(All Pages)

SFRLAST
(All Pages)

PCON
(All Pages)

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

(bit addressable)

C8051F54x

Rev. 1.1 101

Table 12.2. Special Function Registers

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register Address Description Page

ACC 0xE0 Accumulator 82

ADC0CF 0xBC ADC0 Configuration 40

ADC0CN 0xE8 ADC0 Control 42

ADC0GTH 0xC4 ADC0 Greater-Than Compare High 44

ADC0GTL 0xC3 ADC0 Greater-Than Compare Low 44

ADC0H 0xBE ADC0 High 41

ADC0L 0xBD ADC0 Low 41

ADC0LTH 0xC6 ADC0 Less-Than Compare Word High 45

ADC0LTL 0xC5 ADC0 Less-Than Compare Word Low 45

ADC0MX 0xBB ADC0 Mux Configuration 59

ADC0TK 0xBA ADC0 Tracking Mode Select 43

B 0xF0 B Register 82

CCH0CN 0xE3 Cache Control 125

CKCON 0x8E Clock Control 228

CLKMUL 0x97 Clock Multiplier 141

CLKSEL 0x8F Clock Select 136

CPT0CN 0x9A Comparator0 Control 65

CPT0MD 0x9B Comparator0 Mode Selection 66

CPT0MX 0x9C Comparator0 MUX Selection 70

CPT1CN 0x9D Comparator1 Control 65

CPT1MD 0x9E Comparator1 Mode Selection 66

CPT1MX 0x9F Comparator1 MUX Selection 70

DPH 0x83 Data Pointer High 81

DPL 0x82 Data Pointer Low 81

EIE1 0xE6 Extended Interrupt Enable 1 111

EIE2 0xE7 Extended Interrupt Enable 2 111

EIP1 0xF6 Extended Interrupt Priority 1 112

EIP2 0xF7 Extended Interrupt Priority 2 113

EMI0CN 0xAA External Memory Interface Control 88

FLKEY 0xB7 Flash Lock and Key 123

FLSCL 0xB6 Flash Scale 124

IE 0xA8 Interrupt Enable 109

IP 0xB8 Interrupt Priority 110

IT01CF 0xE4 INT0/INT1 Configuration 116

LIN0ADR 0xD3 LIN0 Address 177

C8051F54x

136 Rev. 1.1

SFR Address = 0x8F; SFR Page = 0x0F;

SFR Definition 17.1. CLKSEL: Clock Select

Bit 7 6 5 4 3 2 1 0

Name CLKSL[1:0]

Type R R R R R R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:2 Unused Read = 000000b; Write = Don’t Care

1:0 CLKSL[1:0] System Clock Source Select Bits.

00: SYSCLK derived from the Internal Oscillator and scaled per the IFCN bits in reg-
ister OSCICN.
01: SYSCLK derived from the External Oscillator circuit.
10: SYSCLK derived from the Clock Multiplier.
11: reserved.

C8051F54x

Rev. 1.1 155

SFR Address = 0xE2; SFR Page = 0x0F

SFR Definition 18.2. XBR1: Port I/O Crossbar Register 1

Bit 7 6 5 4 3 2 1 0

Name T1E T0E ECIE PCA0ME[2:0] SYSCKE Reserved

Type R/W R/W R/W R/W R/W R R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 T1E T1 Enable.

0: T1 unavailable at Port pin.
1: T1 routed to Port pin.

6 T0E T0 Enable.

0: T0 unavailable at Port pin.
1: T0 routed to Port pin.

5 ECIE PCA0 External Counter Input Enable.

0: ECI unavailable at Port pin.
1: ECI routed to Port pin.

4:2 PCA0ME[2:0] PCA Module I/O Enable Bits.

000: All PCA I/O unavailable at Port pins.
001: CEX0 routed to Port pin.
010: CEX0, CEX1 routed to Port pins.
011: CEX0, CEX1, CEX2 routed to Port pins.
100: CEX0, CEX1, CEX2, CEX3 routed to Port pins.
101: CEX0, CEX1, CEX2, CEX3, CEX4 routed to Port pins.
110: CEX0, CEX1, CEX2, CEX3, CEX4, CEX5 routed to Port pins.
111: RESERVED

1 SYSCKE SYSCLK Output Enable.

0: SYSCLK unavailable at Port pin.
1: SYSCLK output routed to Port pin.

0 Reserved Always Write to 0.

C8051F54x

Rev. 1.1 174

19.3. LIN Master Mode Operation
The master node is responsible for the scheduling of messages and sends the header of each frame con-
taining the SYNCH BREAK FIELD, SYNCH FIELD, and IDENTIFIER FIELD. The steps to schedule a mes-
sage transmission or reception are listed below.

1. Load the 6-bit Identifier into the LIN0ID register.

2. Load the data length into the LIN0SIZE register. Set the value to the number of data bytes or "1111b" if
the data length should be decoded from the identifier. Also, set the checksum type, classic or
enhanced, in the same LIN0SIZE register.

3. Set the data direction by setting the TXRX bit (LIN0CTRL.5). Set the bit to 1 to perform a master
transmit operation, or set the bit to 0 to perform a master receive operation.

4. If performing a master transmit operation, load the data bytes to transmit into the data buffer (LIN0DT1
to LIN0DT8).

5. Set the STREQ bit (LIN0CTRL.0) to start the message transfer. The LIN controller will schedule the
message frame and request an interrupt if the message transfer is successfully completed or if an error
has occurred.

This code segment shows the procedure to schedule a message in a transmission operation:

 LIN0ADR = 0x08; // Point to LIN0CTRL
 LIN0DAT |= 0x20; // Select to transmit data
 LIN0ADR = 0x0E; // Point to LIN0ID
 LIN0DAT = 0x11; // Load the ID, in this example 0x11
 LIN0ADR = 0x0B; // Point to LIN0SIZE
 LIN0DAT = (LIN0DAT & 0xF0) | 0x08; // Load the size with 8

 LIN0ADR = 0x00; // Point to Data buffer first byte
 for (i=0; i<8; i++)
 {
 LIN0DAT = i + 0x41; // Load the buffer with ‘A’, ‘B’, ...
 LIN0ADR++; // Increment the address to the next buffer
 }
 LIN0ADR = 0x08; // Point to LIN0CTRL
 LIN0DAT = 0x01; // Start Request
The application should perform the following steps when an interrupt is requested.

Table 19.3. Autobaud Parameters Examples

System Clock (MHz) Prescaler Divider

25 1 312

24.5 1 306

24 1 300

22.1184 1 276

16 1 200

12.25 0 306

12 0 300

11.0592 0 276

8 0 200

C8051F54x

Rev. 1.1 176

3. The LIN controller does not directly support LIN Version 1.3 Extended Frames. If the application detects
an unknown identifier (e.g. extended identifier), it has to write a 1 to the STOP bit (LIN0CTRL.7) instead
of setting the DTACK (LIN0CTRL.4) bit. At that time, steps 2 through 5 can then be skipped. In this
situation, the LIN controller stops the processing of LIN communication until the next SYNC BREAK is
received.

4. Changing the configuration of the checksum during a transaction will cause the interface to reset and
the transaction to be lost. To prevent this, the checksum should not be configured while a transaction is
in progress. The same applies to changes in the LIN interface mode from slave mode to master mode
and from master mode to slave mode.

19.5. Sleep Mode and Wake-Up
To reduce the system’s power consumption, the LIN Protocol Specification defines a Sleep Mode. The
message used to broadcast a Sleep Mode request must be transmitted by the LIN master application in
the same way as a normal transmit message. The LIN slave application must decode the Sleep Mode
Frame from the Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by
setting the SLEEP bit (LIN0CTRL.6).

If the SLEEP bit (LIN0CTRL.6) of the LIN slave application is not set and there is no bus activity for four
seconds (specified bus idle timeout), the IDLTOUT bit (LIN0ST.6) is set and an interrupt request is gener-
ated. After that the application may assume that the LIN bus is in Sleep Mode and set the SLEEP bit
(LIN0CTRL.6).

Sending a wake-up signal from the master or any slave node terminates the Sleep Mode of the LIN bus. To
send a wake-up signal, the application has to set the WUPREQ bit (LIN0CTRL.1). After successful trans-
mission of the wake-up signal, the DONE bit (LIN0ST.0) of the master node is set and an interrupt request
is generated. The LIN slave does not generate an interrupt request after successful transmission of the
wake-up signal but it generates an interrupt request if the master does not respond to the wake-up signal
within 150 milliseconds. In that case, the ERROR bit (LIN0ST.2) and TOUT bit (LIN0ERR.2) are set. The
application then has to decide whether or not to transmit another wake-up signal.

All LIN nodes that detect a wake-up signal will set the WAKEUP (LIN0ST.1) and DONE bits (LIN0ST.0) and
generate an interrupt request. After that, the application has to clear the SLEEP bit (LIN0CTRL.6) in the
LIN slave.

19.6. Error Detection and Handling
The LIN controller generates an interrupt request and stops the processing of the current frame if it detects
an error. The application has to check the type of error by processing LIN0ERR. After that, it has to reset
the error register and the ERROR bit (LIN0ST.2) by writing a 1 to the RSTERR bit (LIN0CTRL.2). Starting a
new message with the LIN controller selected as master or sending a Wakeup signal with the LIN control-
ler selected as a master or slave is possible only if the ERROR bit (LIN0ST.2) is set to 0.

C8051F54x

Rev. 1.1 189

All transactions are initiated by a master, with one or more addressed slave devices as the target. The
master generates the START condition and then transmits the slave address and direction bit. If the trans-
action is a WRITE operation from the master to the slave, the master transmits the data a byte at a time
waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the
data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master
generates a STOP condition to terminate the transaction and free the bus. Figure 20.3 illustrates a typical
SMBus transaction.

Figure 20.3. SMBus Transaction

20.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the “transmitter” when it is sending an address or
data byte to another device on the bus. A device is a “receiver” when an address or data byte is being sent
to it from another device on the bus. The transmitter controls the SDA line during the address or data byte.
After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or
NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

20.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL
and SDA lines remain high for a specified time (see Section “20.3.5. SCL High (SMBus Free) Timeout” on
page 190). In the event that two or more devices attempt to begin a transfer at the same time, an arbitra-
tion scheme is employed to force one master to give up the bus. The master devices continue transmitting
until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be
pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning
master continues its transmission without interruption; the losing master becomes a slave and receives the
rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and
no data is lost.

20.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different
speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow
slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line
LOW to extend the clock low period, effectively decreasing the serial clock frequency.

20.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore,
the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus
protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than
25 ms as a “timeout” condition. Devices that have detected the timeout condition must reset the communi-
cation no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to
reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to

SLA6
SDA

SLA5-0 R/W D7 D6-0

SCL

Slave Address + R/W Data ByteSTART ACK NACK STOP

C8051F54x

Rev. 1.1 201

20.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK. The interrupt will
occur after the ACK cycle.

If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected.
If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received
slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface
enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the
master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the
next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared
(Note: an error condition may be generated if SMB0DAT is written following a received NACK while in
Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the
interface will switch to Slave Receiver Mode if SMB0DAT is not written following a Slave Transmitter inter-
rupt. Figure 20.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any
number of bytes may be transmitted. Notice that all of the ‘data byte transferred’ interrupts occur after the
ACK cycle in this mode.

Figure 20.8. Typical Slave Read Sequence

20.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. In the tables, STATUS
VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown
response options are only the typical responses; application-specific procedures are allowed as long as
they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not con-
form to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts

C8051F54x

Rev. 1.1 207

21.2. Data Format

UART0 has a number of available options for data formatting. Data transfers begin with a start bit (logic
low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two
stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the
data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop
bit length is selectable between 1 and 2 bit times, and a multi-processor communication mode is available
for implementing networked UART buses. All of the data formatting options can be configured using the
SMOD0 register, shown in SFR Definition 21.2. Figure 21.2 shows the timing for a UART0 transaction
without parity or an extra bit enabled. Figure 21.3 shows the timing for a UART0 transaction with parity
enabled (PE0 = 1). Figure 21.4 is an example of a UART0 transaction when the extra bit is enabled
(XBE0 = 1). Note that the extra bit feature is not available when parity is enabled, and the second stop bit
is only an option for data lengths of 6, 7, or 8 bits.

Figure 21.2. UART0 Timing Without Parity or Extra Bit

Figure 21.3. UART0 Timing With Parity

Figure 21.4. UART0 Timing With Extra Bit

D1D0 DN-2 DN-1

START
BIT

MARK
STOP
BIT 1

BIT TIMES

SPACE

N bits; N = 5, 6, 7, or 8

STOP
BIT 2

Optional
(6,7,8 bit

Data)

D1D0 DN-2 DN-1 PARITY
START

BIT
MARK

STOP
BIT 1

BIT TIMES

SPACE

N bits; N = 5, 6, 7, or 8

STOP
BIT 2

Optional
(6,7,8 bit

Data)

D1D0 DN-2 DN-1 EXTRA
START

BIT
MARK

STOP
BIT 1

BIT TIMES

SPACE

N bits; N = 5, 6, 7, or 8

STOP
BIT 2

Optional
(6,7,8 bit

Data)

C8051F54x

Rev. 1.1 239

This mode allows software to determine the external oscillator frequency when an RC network or capacitor
is used to generate the clock source.

Figure 23.6. Timer 2 External Oscillator Capture Mode Block Diagram

External Clock / 8

SYSCLK / 12

SYSCLK

0

1

0

1

T2XCLK

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

TMR2L TMR2H
TCLKTR2

TMR2RLL TMR2RLH

Capture

External Clock / 8

T
M

R
2C

N

T2SPLIT
TF2CEN

TF2L
TF2H

T2XCLK

TR2

TF2LEN

TF2CEN
Interrupt

C8051F54x

260 Rev. 1.1

Figure 24.10. PCA 16-Bit PWM Mode

24.4. Watchdog Timer Mode
A programmable watchdog timer (WDT) function is available through the PCA Module 5. The WDT is used
to generate a reset if the time between writes to the WDT update register (PCA0CPH5) exceed a specified
limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 5 operates as a watchdog timer (WDT). The Mod-
ule 5 high byte is compared to the PCA counter high byte; the Module 5 low byte holds the offset to be
used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some
PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset
shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and option-
ally re-configured and re-enabled if it is used in the system).

24.4.1. Watchdog Timer Operation

While the WDT is enabled:

 PCA counter is forced on.

 Writes to PCA0L and PCA0H are not allowed.

 PCA clock source bits (CPS[2:0]) are frozen.

 PCA Idle control bit (CIDL) is frozen.

 Module 5 is forced into software timer mode.

 Writes to the Module 5 mode register (PCA0CPM5) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run
until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but
user software has not enabled the PCA counter. If a match occurs between PCA0CPH5 and PCA0H while
the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a
write of any value to PCA0CPH5. Upon a PCA0CPH5 write, PCA0H plus the offset held in PCA0CPL5 is
loaded into PCA0CPH5 (See Figure 24.11).

PCA0CPLnPCA0CPHn

Enable

PCA Timebase

0 0 x 0 x

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

1

16-bit Comparator
CEXn

Crossbar Port I/O

Overflow

Q

Q
SET

CLR

S

R

match

PCA0H PCA0L

ENB

ENB

0

1

Write to
PCA0CPLn

Write to
PCA0CPHn

Reset

C8051F54x

Rev. 1.1 273

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 1.0
 Updated “2. Ordering Information” to include -A (Automotive) devices and automotive qualification

information.

 Updated Figure 4.6.

 Updated supply current related specifications throughout “6. Electrical Characteristics” .

 Updated SFR Definition 7.1 (REF0CN) to change VREF high setting to 2.20 V from 2.25 V.

 Updated Figure 8.1 to indicate that Comparators are powered from VIO and not VDDA.

 Updated the Gain Table in “5.3.1. Calculating the Gain Value” to fix the ADC0GNH Value in the last row.

 Updated Table 10.1 with correct timing for all branch instructions, MOVC, and CPL A.

 Updated Table 14.1 to indicate behavior when performing a Flash operation in reserved space.

 Updated “14.1. Programming the Flash Memory” to clarify behavior of 8-bit MOVX instructions and
when writing/erasing Flash.

 Updated SFR Definition 14.3 (FLSCL) to include FLEWT bit definition. This bit must be set before
writing or erasing Flash. Also updated Table 6.5 to reflect new Flash Write and Erase timing.

 Updated “16.7. Flash Error Reset” with an additional cause of a Flash Error reset.

 Updated “18.1.3. Interfacing Port I/O in a Multi-Voltage System” to remove note regarding interfacing to
voltages above VIO.

 Updated “20. SMBus” to remove all hardware ACK features, including SMB0ADM and SMB0ADR
SFRs.

 Updated SFR Definition 21.1(SCON0) to correct SFR Page to 0x00 from All Pages.

 Updated CP Register Definition 24.2 with proper Device ID.
Note: All items from the C8051F54x Errata dated November 5th, 2009 are incorporated into this data sheet.

Revision 1.0 to Revision 1.1
 Updated “1. System Overview” with a voltage range specification for the internal oscillator.

 Updated Figure 5.4, “12-Bit ADC Burst Mode Example With Repeat Count Set to 4,” on page 33 with
new timing diagram when using CNVSTR pin.

 Updated Table 6.6, “Internal High-Frequency Oscillator Electrical Characteristics,” on page 53 with new
conditions for the internal oscillator accuracy. The internal oscillator accuracy is dependent on the
operating voltage range.

 Updated “6. Electrical Characteristics” to remove the internal oscillator curve across temperature
diagram.

 Updated SFR Definition 7.1 (REF0CN) with oscillator suspend requirement for ZTCEN.

 Fixed incorrect cross references in “8. Comparators” .

 Updated SFR Definition 9.1 (REG0CN) with a new definition for Bit 6. The bit 6 reset value is 1b and
must be written to 1b.

 Updated Figure 11.2, “Flash Program Memory Map,” on page 86 with correct address for start of lock
byte page from 0x3900 to 0x3A00.

 Updated “15.3. Suspend Mode” with note regarding ZTCEN.

 Added Port 2 Event and Port 3 Event to wake-up sources in “17.2.1. Internal Oscillator Suspend Mode”

 Updated “19. Local Interconnect Network (LIN)” with a voltage range specification for the internal
oscillator.

 Updated LIN Register Definitions for LIN0MUL and LIN0DIV to correct the reset value.

 Updated C2 Register Definitions 25.2 and 25.3 with correct C2 and SFR addresses.

