

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	81
Program Memory Size	288KB (288K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f646rbpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- ■Hardware Watchdog Timer
 - □ Hardware watchdog timer is active after reset
 - Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval
- Reload Timers
 - □ 16-bit wide
 - Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
 - □ Event count function
- ■Free-Running Timers
 - □ Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
 - □ Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency
- ■Input Capture Units
 - □ 16-bit wide
 - □ Signals an interrupt upon external event
 - Rising edge, Falling edge or Both (rising & falling) edges sensitive
- ■Output Compare Units
 - □ 16-bit wide
 - □ Signals an interrupt when a match with Free-running Timer occurs
 - \square A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

- □ 16-bit down counter, cycle and duty setting registers
- □ Can be used as 2 × 8-bit PPG
- □ Interrupt at trigger, counter borrow and/or duty match
- □ PWM operation and one-shot operation
- □ Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- □ Can be triggered by software or reload timer
- □ Can trigger ADC conversion
- □ Timing point capture
- □ Start delay

■Quadrature Position/Revolution Counter (QPRC)

- □ Up/down count mode, Phase difference count mode, Count mode with direction
- □ 16-bit position counter
- □ 16-bit revolution counter
- □ Two 16-bit compare registers with interrupt
- Detection edge of the three external event input pins AIN, BIN and ZIN is configurable
- Real Time Clock
 - Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
 - Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
 - □ Read/write accessible second/minute/hour registers
 - □ Can signal interrupts every half
 - second/second/minute/hour/day
 - \square Internal clock divider and prescaler provide exact 1s clock

- External Interrupts
 - □ Edge or Level sensitive
 - Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

■Non Maskable Interrupt

- □ Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- \square Once enabled, cannot be disabled other than by reset
- □ High or Low level sensitive
- □ Pin shared with external interrupt 0

I/O Ports

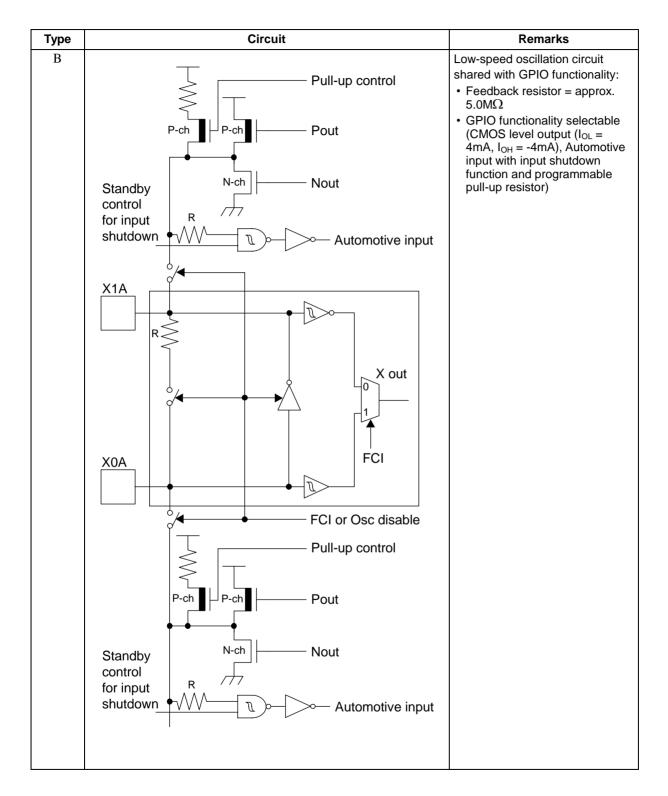
- \square Most of the external pins can be used as general purpose I/O
- □ All push-pull outputs (except when used as I²C SDA/SCL line)
- □ Bit-wise programmable as input/output or peripheral signal □ Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor
- Built-in On Chip Debugger (OCD)
 - □ One-wire debug tool interface
 - □ Break function:
 - · Hardware break: 6 points (shared with code event)
 - · Software break: 4096 points
 - Event function
 - · Code event: 6 points (shared with hardware break)
 - · Data event: 6 points
 - Event sequencer: 2 levels + reset
 - □ Execution time measurement function
- □ Trace function: 42 branches
- Security function
- ■Flash Memory
 - Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
 - Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
 - Supports automatic programming, Embedded Algorithm
 - □ Write/Erase/Erase-Suspend/Resume commands
 - □ A flag indicating completion of the automatic algorithm □ Erase can be performed on each sector individually
 - □ Sector protection
 - □ Flash Security feature to protect the content of the Flash
 - Low voltage detection during Flash erases or writes

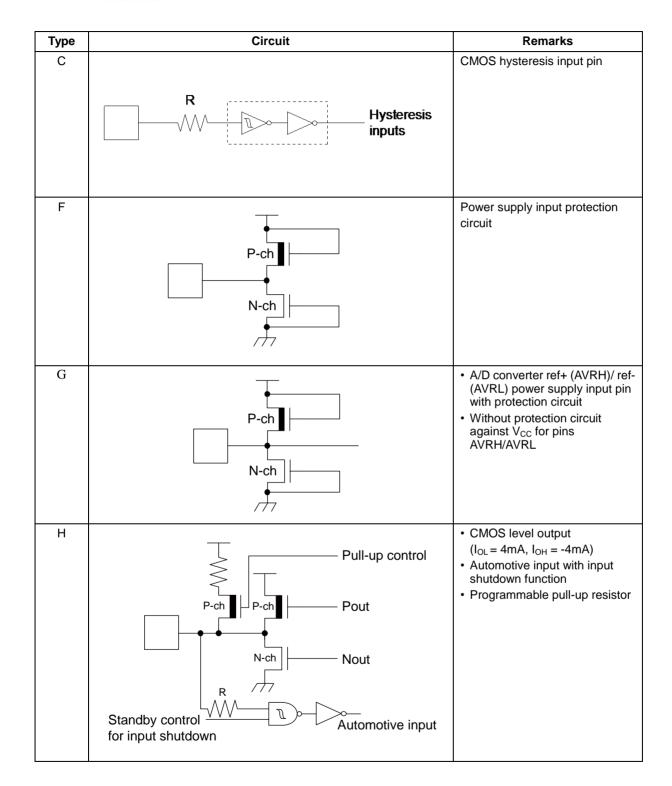
14.4.9 External Input Timing
14.4.10 I ² C Timing
14.5 A/D Converter
14.5.1 Electrical Characteristics for the A/D Converter
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time
14.5.3 Definition of A/D Converter Terms
14.6 Low Voltage Detection Function Characteristics
14.7 Flash Memory Write/Erase Characteristics
15. Example Characteristics
16. Ordering Information
17. Package Dimension
18. Major Changes
Document History

5. Pin Circuit Type

Pin no.	I/O circuit type*	Pin name					
1	Supply	Vss					
2	F	С					
3	М	P03_7 / INT1 / SIN1					
4	Н	P13_0 / INT2 / SOT1					
5	М	P13_1 / INT3 / SCK1					
6	Н	P13_2 / PPG0 / TIN0 / FRCK1					
7	Н	P13_3 / PPG1 / TOT0 / WOT					
8	М	P13_4 / SIN0 / INT6					
9	Н	P13_5 / SOT0 / ADTG / INT7					
10	М	P13_6 / SCK0 / CKOTX0					
11	N	P04_4 / PPG3 / SDA0					
12	N	P04_5 / PPG4 / SCL0					
13	I	P06_2 / AN2 / INT5 / SIN5					
14	К	P06_3 / AN3 / FRCK0					
15	К	P06_4 / AN4 / IN0 / TTG0 / TTG4					
16	К	P06_6 / AN6 / TIN1 / IN4_R					
17	К	P06_7 / AN7 / TOT1 / IN5_R					
18	Supply	AVcc					
19	G	AVRH					
20	G	AVRL					
21	Supply	AVss					
22	К	P05_0 / AN8					
23	К	P05_2 / AN10 / OUT2					
24	К	P05_3 / AN11 / OUT3					
25	Supply	Vcc					
26	Supply	Vss					
27	К	P05_4 / AN12 / INT2_R / WOT_R					
28	К	P05_6 / AN14 / TIN2					
29	К	P05_7 / AN15 / TOT2					
30	К	P08_0 / AN16					
31	К	P08_1 / AN17					
32	K	P08_2 / AN18					
33	К	P08_3 / AN19					
34	К	P08_4 / AN20 / OUT6					
35	N	P04_6 / SDA1					
36	N	P04_7 / SCL1					
37	К	P08_5 / AN21 / OUT7					
38	К	P08_6 / AN22 / PPG6_B					

Pin no.	I/O circuit type*	Pin name
39	К	P08_7 / AN23 / PPG7_B
40	К	P09_0 / AN24 / PPG8_R
41	К	P09_1 / AN25 / PPG9_R
42	К	P09_2 / AN26 / PPG10_R
43	К	P09_3 / AN27 / PPG11_R
44	Н	P17_1 / PPG12_R
45	Н	P17_2 / PPG13_R
46	I	P10_0 / SIN2 / TIN3 / AN28 / INT11
47	Н	P10_1 / SOT2 / TOT3
48	М	P10_2 / SCK2 / PPG6
49	Н	P10_3 / PPG7
50	Supply	Vcc
51	Supply	Vss
52	0	DEBUG I/F
53	Н	P17_0
54	С	MD
55	A	X0
56	A	X1
57	Supply	Vss
58	В	P04_0 / X0A
59	В	P04_1 / X1A
60	С	RSTX
61	Н	P11_0
62	Н	P11_1 / PPG0_R
63	Н	P11_2 / PPG1_R
64	Н	P11_3 / PPG2_R
65	Н	P11_4 / PPG3_R
66	Н	P11_5 / PPG4_R
67	Н	P11_6 / FRCK0_R / ZIN1
68	Н	P11_7 / IN0_R / AIN1
69	Н	P12_0 / IN1_R / BIN1
70	Н	P12_3 / OUT2_R
71	н	P12_7 / INT1_R
72	Н	P00_0 / INT3_R / FRCK2
73	Н	P00_1 / INT4_R
74	н	P00_2 / INT5_R
75	Supply	Vcc
76	Supply	Vss
77	Н	P00_3 / INT6_R / PPG8_B




Pin no.	I/O circuit type*	Pin name						
78	н	P00_4 / INT7_R / PPG9_B						
79	н	P00_5 / IN6 / TTG2 / TTG6 / PPG10_B						
80	н	P00_6 / IN7 / TTG3 / TTG7 / PPG11_B						
81	н	P00_7 / INT14						
82	Μ	P01_0 / SCK7						
83	н	P01_1 / CKOT1 / OUT0 / SOT7						
84	M	P01_2 / CKOTX1 / OUT1 / INT15 / SIN7						
85	н	P01_3 / PPG5						
86	Μ	P01_4 / SIN4 / INT8						
87	н	P01_5 / SOT4						
88	Μ	P01_6 / SCK4 / TTG12						
89	Μ	P01_7 / CKOTX1_R / INT9 / TTG13 / ZIN0 / SCK7_R						
90	н	P02_0 / CKOT1_R / INT10 / TTG14 / AIN0 / SOT7_R						
91	Μ	P02_2 / IN7_R / CKOT0_R / INT12 / BIN0 / SIN7_R						
92	Μ	P02_5 / OUT0_R / INT13 / SIN5_R						
93	н	P03_0 / PPG4_B						
94	Н	P03_1 / PPG5_B						
95	н	P03_2 / PPG14_B / SOT5_R						
96	Μ	P03_3 / PPG15_B / SCK5_R						
97	Μ	P03_4 / RX0 / INT4						
98	н	P03_5 / TX0						
99	н	P03_6 / INT0 / NMI						
100	Supply	Vcc						

*: See "I/O Circuit Type" for details on the I/O circuit types.

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
40	35Cн	PPG2	Yes	40	Programmable Pulse Generator 2
41	358 _Н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _H	PPG4	Yes	42	Programmable Pulse Generator 4
43	350н	PPG5	Yes	43	Programmable Pulse Generator 5
44	34C _H	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	PPG8	Yes	46	Programmable Pulse Generator 8
47	340 _H	PPG9	Yes	47	Programmable Pulse Generator 9
48	33Cн	PPG10	Yes	48	Programmable Pulse Generator 10
49	338 _H	PPG11	Yes	49	Programmable Pulse Generator 11
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _Н	PPG13	Yes	51	Programmable Pulse Generator 13
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	PPG15	Yes	53	Programmable Pulse Generator 15
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _Н	-	-	56	Reserved
57	318 _Н	-	-	57	Reserved
58	314 _H	RLT0	Yes	58	Reload Timer 0
59	310 _Н	RLT1	Yes	59	Reload Timer 1
60	30C _H	RLT2	Yes	60	Reload Timer 2
61	308 _Н	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	ICU7	Yes	72	Input Capture Unit 7
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	ICU9	Yes	74	Input Capture Unit 9
75	2D0 _H	-	-	75	Reserved
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _H	OCU2	Yes	79	Output Compare Unit 2
80	2BC _H	OCU3	Yes	80	Output Compare Unit 3
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4

Vector number	Offset in vector table			Description	
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _H	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	FRT2	Yes	91	Free-Running Timer 2
92	28C _H	-	-	92	Reserved
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280 _H	-	-	95	Reserved
96	27C _H	IIC0	Yes	96	I ² C interface 0
97	278 _H	IIC1	Yes	97	I ² C interface 1
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	LINR0	Yes	101	LIN USART 0 RX
102	264 _H	LINT0	Yes	102	LIN USART 0 TX
103	260 _Н	LINR1	Yes	103	LIN USART 1 RX
104	25C _Н	LINT1	Yes	104	LIN USART 1 TX
105	258 _H	LINR2	Yes	105	LIN USART 2 RX
106	254 _H	LINT2	Yes	106	LIN USART 2 TX
107	250 _Н	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	LINR4	Yes	109	LIN USART 4 RX
110	244 _H	LINT4	Yes	110	LIN USART 4 TX
111	240 _H	LINR5	Yes	111	LIN USART 5 RX
112	23C _H	LINT5	Yes	112	LIN USART 5 TX
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	LINR7	Yes	115	LIN USART 7 RX
116	22C _H	LINT7	Yes	116	LIN USART 7 TX
117	228 _H	-	-	117	Reserved
118	224 _H	-	-	118	Reserved
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

■Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

13.8 Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than 50µs from 0.2V to 2.7V.

13.10Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes 0.1V/µs or less in instantaneous fluctuation for power supply switching.

13.11 Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

14.2 Recommended Operating Conditions

$(V_{SS} = A)$	AVss =	0V)
----------------	--------	-----

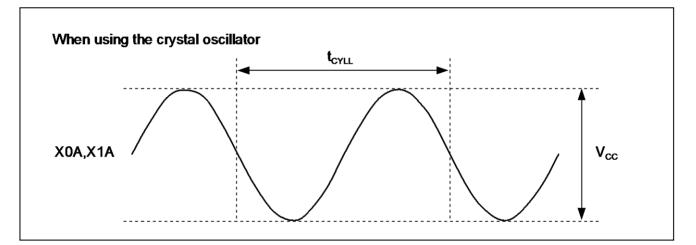
Parameter	Symbol	Value			Unit	Remarks	
Farameter	Symbol	Min	Тур	Max	Unit	Reliaiks	
Power supply		2.7	-	5.5	V		
voltage	V _{CC} , AV _{CC}	2.0	-	5.5	V	Maintains RAM data in stop mode	
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \ (\mbox{Allowance within } \pm 50\%) \\ 3.9 \mu F \ (\mbox{Allowance within } \pm 20\%) \\ \mbox{Please use the ceramic capacitor or the capacitor of the frequency response of this level.} \\ \mbox{The smoothing capacitor at } V_{CC} \ \mbox{must use the one of a capacity value that is larger than } C_S. \end{array}$	

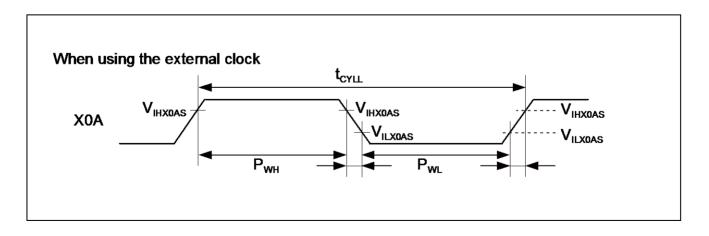
WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
	-,	name		Min	Тур	Max		
			PLL Sleep mode with	-	8.5	-	mA	T _A = +25°C
			CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC	-	-	14	mA	T _A = +105°C
			stopped)	-	-	15.5	mA	T _A = +125°C
			Main Sleep mode with CLKS1/2 = CLKP1/2 =	-	1	-	mA	T _A = +25°C
			4MHz, SMCR:LPMSS = 0	-	-	4.5	mA	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	6	mA	T _A = +125°C
Daviana a vina ku	ICCSRCH	Vcc	RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.6	-	mA	T _A = +25°C
Power supply current in Sleep modes ^{*1}				-	-	3.8	mA	T _A = +105°C
				-	-	5.3	mA	T _A = +125°C
			RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and	-	0.07	-	mA	T _A = +25°C
				-	-	2.8	mA	T _A = +105°C
			CLKSC stopped)	-	-	4.3	mA	T _A = +125°C
			Sub Sleep mode with	-	0.04	-	mA	T _A = +25°C
	ICCSSUB		CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and	-	-	2.5	mA	T _A = +105°C
			CLKRC stopped)	-	-	4	mA	T _A = +125°C


Deremeter	Symphol	Pin name	Conditions		Value		L In it	Domorko
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level	V _{OH4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OH} = -4mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OH} = -1.5mA \end{array}$	V _{cc} - 0.5	-	V _{cc}	V	
output voltage V _{OH3}	V _{OH3}	3mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -3mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	V _{cc} - 0.5	-	V _{cc}	V	
"L" level	V _{OL4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OL} = +4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OL} = +1.7mA$		-	0.4	V	
output voltage	V _{OL3}	3mA type	$2.7V \le V_{CC} < 5.5V$ $I_{OL} = +3mA$	-	-	0.4	V	
	V _{OLD}	DEBUG I/F	V _{CC} = 2.7V I _{OL} = +25mA	0	-	0.25	V	
Input leak current	IIL	Pnn_m	V _{SS} < V _I < V _{CC} AV _{SS} , AVRL < V _I < AV _{CC} , AVRH	- 1	-	+ 1	μA	
Pull-up resistance value	R _{PU}	Pnn_m	$V_{CC} = 5.0V \pm 10\%$	25	50	100	kΩ	
Input capacitance	CIN	Other than C, Vcc, Vss, AVcc, AVss, AVRH, AVRL	-	-	5	15	pF	



14.4.2 Sub Clock Input Characteristics

Devementer	Cumula al	Pin	Conditions	Value			11	Demontos
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
		VOA	-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency	f _{CL}	X0A, X1A	-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μS	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

14.4.7 Power-on Reset Timing

Parameter	Symbol	Pin name	Value			Unit
			Min	Тур	Max	Onit
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)

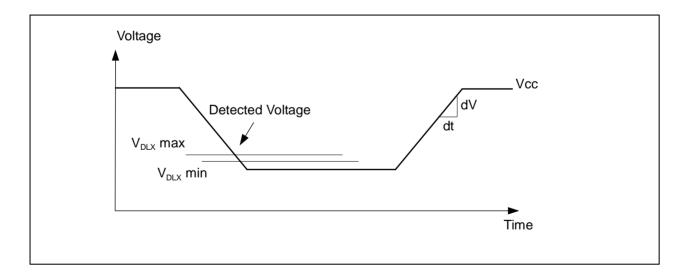
14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

Devementer	Oursela a l	Dia nome Value				11	Deven 1	
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks	
Resolution	-	-	-	-	10	bit		
Total error	-	-	- 3.0	-	+ 3.0	LSB		
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB		
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB		
Zero transition voltage	V _{OT}	ANn	Тур - 20	AVRL + 0.5LSB	Тур + 20	mV		
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH - 1.5LSB	Тур + 20	mV		
Compare time [*]		-	1.0	-	5.0	μS	$4.5 V \leq AV_{CC} \leq 5.5 V$	
Compare ume	-	-	2.2	-	8.0	μS	$2.7V \leq AV_{CC} < 4.5V$	
O a man line of time a *		-	0.5	-	-	μS	$4.5V \le AV_{CC} \le 5.5V$	
Sampling time [*]	-		1.2	-	-	μS	$2.7V \leq AV_{CC} < 4.5V$	
Dowor oupply	I _A		-	2.0	3.1	mA	A/D Converter active	
Power supply I _A	I _{AH}	AV _{CC}	-	-	3.3	μA	A/D Converter not operated	
Reference power supply current	I _R	AVRH	-	520	810	μA	A/D Converter active	
(between AVRH and AVRL)	I _{RH}		-	-	1.0	μA	A/D Converter not operated	
Analog input capacity	C _{VIN}	ANn	-	-	15.9	pF		
Analog impedance	Б	ANn	-	-	2050	Ω	$4.5V \le AV_{CC} \le 5.5V$	
Analog impedance	R _{VIN}	ANII	-	-	3600	Ω	$2.7 V \leq AV_{CC} < 4.5 V$	
Analog port input current (during conversion)	I _{AIN}	ANn	- 0.3	-	+ 0.3	μA	AV _{SS} , AVRL <v<sub>AIN < AV_{CC}, AVRH</v<sub>	
Analog input voltage	V _{AIN}	ANn	AVRL	-	AVRH	V		
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AV _{CC}	V		
	-	AVRL	AV _{SS}	-	AV _{SS} + 0.1	V		
Variation between channels	-	ANn	-	-	4.0	LSB		

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)

*: Time for each channel.



14.6 Low Voltage Detection Function Characteristics

		$(V_{CC} = AV_{CC} = AV_{CC})$	2.7V to 5.5V, V _S	$s = AV_{SS} = 0$	√, T _A = - 40°C 1	o + 125°C
Parameter	Symbol	Conditions		Value		
			Min	Тур	Max	Unit
Detected voltage ^{*1}	V _{DL0}	$CILCR:LVL = 0000_{B}$	2.70	2.90	3.10	V
	V _{DL1}	$CILCR:LVL = 0001_{B}$	2.79	3.00	3.21	V
	V _{DL2}	$CILCR:LVL = 0010_B$	2.98	3.20	3.42	V
	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V
	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V
Power supply voltage change rate ²	dV/dt	-	- 0.004	-	+ 0.004	V/µs
Hysteresis width	V _{HYS}	CILCR:LVHYS=0	-	-	50	mV
		CILCR:LVHYS=1	80	100	120	mV
Stabilization time	T _{LVDSTAB}	-	-	-	75	μS
Detection delay time	t _d	-	-	-	30	μs

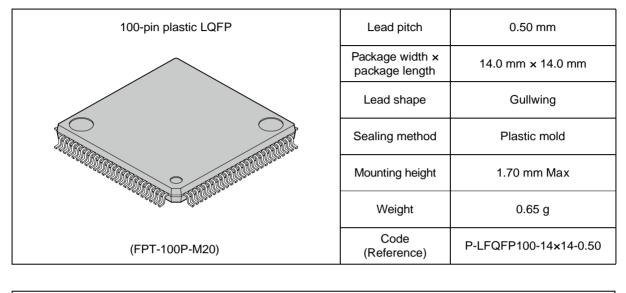
*1: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

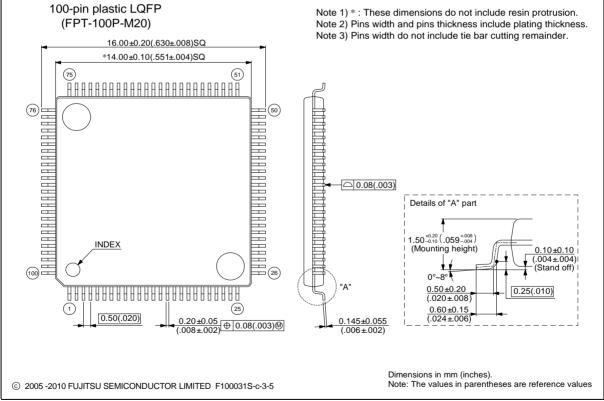
*2: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

16.Ordering Information

MCU with CAN controller

Part number	Flash memory	Package*			
MB96F643RBPMC-GSE1	Flash A	100-pin plastic LQFP (FPT-100P-M20)			
MB96F643RBPMC-GSE2	(96.5KB)				
MB96F645RBPMC-GSE1	Flash A	100-pin plastic LQFP			
MB96F645RBPMC-GSE2	(160.5KB)	(FPT-100P-M20)			
MB96F646RBPMC-GSE1	Flash A	100-pin plastic LQFP			
MB96F646RBPMC-GSE2	(288.5KB)	(FPT-100P-M20)			
MB96F647RBPMC-GSE1	Flash A	100-pin plastic LQFP			
MB96F647RBPMC-GSE2	(416.5KB)	(FPT-100P-M20)			
*: For details about package, see "Package Dimension".					


MCU without CAN controller


Part number	Flash memory	Package*
MB96F643ABPMC-GSE1	Flash A	100-pin plastic LQFP
MB96F643ABPMC-GSE2	(96.5KB)	(FPT-100P-M20)
MB96F645ABPMC-GSE1	Flash A	100-pin plastic LQFP
MB96F645ABPMC-GSE2	(160.5KB)	(FPT-100P-M20)

*: For details about package, see "Package Dimension".

17. Package Dimension

