

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	81
Program Memory Size	416KB (416K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	28К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f647rbpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

Features		MB96640	Remark			
Product Type			Flash Memory Product			
Subclock			Subclock can be set by software			
Dual Opera	ation Flash Memory	RAM	-			
64.5KB + 32KB 10KB			MB96F643R, MB96F643A			
128.5KB +	32KB	16KB	MB96F645R, MB96F645A	Product Options		
256.5KB +	32KB	24KB	MB96F646R	R: MCU with CAN		
384.5KB +	32KB	28KB	MB96F647R	A: MCU without CAN		
			LQFP-100			
Package			FPT-100P-M20			
DMA			4ch			
USART			6ch	LIN-USART 0 to 2/4/5/7		
	with automatic LIN-Head transmission/reception	er	Yes (only 1ch)	LIN-USART 0		
	with 16 byte RX- and TX-FIFO		No			
I ² C			2ch	I ² C 0/1		
8/10-bit A/[D Converter		24ch	AN 2 to 4/6 to 8/10 to 12/14 to 28		
	with Data Buffer		No			
	with Range Comparator		Yes			
with Scan Disable			Yes			
with ADC Pulse Detection			No			
16-bit Reload Timer (RLT)			5ch	RLT 0 to 3/6		
16-bit Free-Running Timer (FRT)			3ch	FRT 0 to 2		
16 bit Input Conturo Lipit (ICLI)		7ch	ICU 0/1/4 to 7/9			
ro-bit input Capture Onit (ICO)		(1 channel for LIN-USART)	(ICU 9 for LIN-USART)			
16-bit Outp	out Compare Unit (OCU)		7ch	OCU 0 to 4/6/7 (OCU 4 for FRT clear)		
8/16-bit Pro	ogrammable Pulse Genera	tor (PPG)	16ch (16-bit) / 24ch (8-bit)	PPG 0 to 15		
	with Timing point capture	;	Yes			
	with Start delay		Yes			
	with Ramp		No			
Quadrature (QPRC)	Position/Revolution Coun	ter	2ch	QPRC 0/1		
CAN Interfa	ace		1ch	CAN 0 32 Message Buffers		
External In	terrupts (INT)		16ch	INT 0 to 15		
Non-Maska	able Interrupt (NMI)		1ch			
Real Time Clock (RTC)			1ch			
I/O Ports			79 (Dual clock mode) 81 (Single clock mode)			
Clock Calibration Unit (CAL)			1ch			
Clock Output Function			2ch			
Low Voltag	e Detection Function		Yes	Low voltage detection function can be disabled by software		
Hardware \	Natchdog Timer		Yes			
On-chip RC	C-oscillator		Yes			
On-chip De	ebugger		Yes			

Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.

2. Block Diagram

3. Pin Assignment

(Top view)

*1: CMOS input level only

*²: CMOS input level only for I²C

*³: Please set ROM Configuration Block (RCB) to use the subclock.

Other than those above, general-purpose pins have only automotive input level.

4. Pin Description

Pin name	Feature	Description			
ADTG	ADC	A/D converter trigger input pin			
AINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin			
ANn	ADC	A/D converter channel n input pin			
AVcc	Supply	Analog circuits power supply pin			
AVRH	ADC	A/D converter high reference voltage input pin			
AVRL	ADC	A/D converter low reference voltage input pin			
AVss	Supply	Analog circuits power supply pin			
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin			
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin			
CKOTn	Clock Output function	Clock Output function n output pin			
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin			
CKOTXn	Clock Output function	Clock Output function n inverted output pin			
CKOTXn_R	Clock Output function	Relocated Clock Output function n inverted output pin			
DEBUG I/F	OCD	On Chip Debugger input/output pin			
FRCKn	Free-Running Timer	Free-Running Timer n input pin			
FRCKn_R	Free-Running Timer	Relocated Free-Running Timer n input pin			
INn	ICU	Input Capture Unit n input pin			
INn_R	ICU	Relocated Input Capture Unit n input pin			
INTn	External Interrupt	External Interrupt n input pin			
INTn_R	External Interrupt	Relocated External Interrupt n input pin			
MD	Core	Input pin for specifying the operating mode			
NMI	External Interrupt	Non-Maskable Interrupt input pin			
OUTn	OCU	Output Compare Unit n waveform output pin			
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin			
Pnn_m	GPIO	General purpose I/O pin			
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)			
PPGn_R	PPG	Relocated Programmable Pulse Generator n output pin (16bit/8bit)			
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)			
RSTX	Core	Reset input pin			
RXn	CAN	CAN interface n RX input pin			
SCKn	USART	USART n serial clock input/output pin			
SCKn_R	USART	Relocated USART n serial clock input/output pin			
SCLn	I ² C	I ² C interface n clock I/O input/output pin			
SDAn	l ² C	I ² C interface n serial data I/O input/output pin			
SINn	USART	USART n serial data input pin			
SINn_R	USART	Relocated USART n serial data input pin			
SOTn	USART	USART n serial data output pin			
SOTn_R	USART	Relocated USART n serial data output pin			
TINn	Reload Timer	Reload Timer n event input pin			
TOTn	Reload Timer	Reload Timer n output pin			

Pin name	Feature	Description
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
Vcc	Supply	Power supply pin
Vss	Supply	Power supply pin
WOT	RTC	Real Time clock output pin
WOT_R	RTC	Relocated Real Time clock output pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

5. Pin Circuit Type

Pin no.	I/O circuit type*	Pin name
1	Supply	Vss
2	F	С
3	М	P03_7 / INT1 / SIN1
4	н	P13_0 / INT2 / SOT1
5	М	P13_1 / INT3 / SCK1
6	н	P13_2 / PPG0 / TIN0 / FRCK1
7	н	P13_3 / PPG1 / TOT0 / WOT
8	М	P13_4 / SIN0 / INT6
9	н	P13_5 / SOT0 / ADTG / INT7
10	М	P13_6 / SCK0 / CKOTX0
11	N	P04_4 / PPG3 / SDA0
12	N	P04_5 / PPG4 / SCL0
13	1	P06_2 / AN2 / INT5 / SIN5
14	К	P06_3 / AN3 / FRCK0
15	К	P06_4 / AN4 / IN0 / TTG0 / TTG4
16	К	P06_6 / AN6 / TIN1 / IN4_R
17	К	P06_7 / AN7 / TOT1 / IN5_R
18	Supply	AVcc
19	G	AVRH
20	G	AVRL
21	Supply	AVss
22	К	P05_0 / AN8
23	К	P05_2 / AN10 / OUT2
24	К	P05_3 / AN11 / OUT3
25	Supply	Vcc
26	Supply	Vss
27	К	P05_4 / AN12 / INT2_R / WOT_R
28	К	P05_6 / AN14 / TIN2
29	К	P05_7 / AN15 / TOT2
30	К	P08_0 / AN16
31	К	P08_1 / AN17
32	К	P08_2 / AN18
33	К	P08_3 / AN19
34	К	P08_4 / AN20 / OUT6
35	N	P04_6 / SDA1
36	N	P04_7 / SCL1
37	К	P08_5 / AN21 / OUT7
38	K	P08_6 / AN22 / PPG6_B

6. I/O Circuit Type

Туре	Circuit	Remarks
N	Pull-up control P-ch P-ch Pout P-ch Nout* K K Standby control for input shutdown	 CMOS level output (I_{OL} = 3mA, I_{OH} = -3mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor *: N-channel transistor has slew rate control according to I²C spec, irrespective of usage.
0	Standby control	 Open-drain I/O Output 25mA, Vcc = 2.7V TTL input

8. RAMSTART Addresses

Devices	Bank 0 RAM size	RAMSTART0
MB96F643	10KB	00:5A00 _H
MB96F645	16KB	00:4200 _H
MB96F646	24KB	00:2200 _H
MB96F647	28KB	00:1200 _H

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
121	218 _Н	-	-	121	Reserved
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _Н	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _н	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _Н	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _н	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

14.3 DC Characteristics

14.3.1 Current Rating

Devenueter	Printer Value				Unit	, Demonitor		
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 = CLKB =	-	27	-	mA	T _A = +25°C
			Flash 0 wait	-	-	37	mA	T _A = +105°C
			(CLKRC and CLKSC stopped)	-	-	38.5	mA	T _A = +125°C
			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.5	-	mA	T _A = +25°C
			Flash 0 wait	-	-	8	mA	T _A = +105°C
			(CLKPLL, CLKSC and CLKRC stopped)	-	-	9.5	mA	T _A = +125°C
	ICCRCH	Vcc	RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz	-	1.8	-	mA	T _A = +25°C
Power supply current in Run modes ^{*1}			Flash 0 wait	-	-	6	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	7.5	mA	T _A = +125°C
	ICCRCL		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz	-	0.16	-	mA	T _A = +25°C
			Flash 0 wait	-	-	3.5	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	5	mA	T _A = +125°C
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz	-	0.1	-	mA	T _A = +25°C
	I _{CCSUB}		Flash 0 wait	-	-	3.3	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKRC stopped)	-	-	4.8	mA	T _A = +125°C

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)

Paramotor	Symbol	Pin	Conditions	Value			Unit	Domorko
Farameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Relliarks
			PLL Sleep mode with	-	8.5	-	mA	T _A = +25°C
			CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC	-	-	14	mA	T _A = +105°C
			stopped)	-	-	15.5	mA	T _A = +125°C
			Main Sleep mode with CLKS1/2 = CLKP1/2 =	-	1	-	mA	T _A = +25°C
			4MHz, SMCR:LPMSS = 0	-	-	4.5	mA	T _A = +105°C
		Vcc	(CLKPLL, CLKRC and CLKSC stopped)	-	-	6	mA	T _A = +125°C
	Iccsrch		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.6	-	mA	T _A = +25°C
Power supply current in Sleep modes ^{*1}				-	-	3.8	mA	T _A = +105°C
				-	-	5.3	mA	T _A = +125°C
			RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz	-	0.07	-	mA	T _A = +25°C
				-	-	2.8	mA	T _A = +105°C
			CLKSC stopped)	-	-	4.3	mA	T _A = +125°C
	Іссязив		Sub Sleep mode with	-	0.04	-	mA	T _A = +25°C
			CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC_CLKPLL and	-	-	2.5	mA	T _A = +105°C
			CLKRC stopped)	-	-	4	mA	T _A = +125°C

14.3.2 Pin Characteristics

Demonstern	0	Diaman	O an all the set	Value			11	Demender
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	M	Port	-	V _{CC} × 0.7	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIH	Pnn_m	-	V _{CC} × 0.8	-	V _{CC} + 0.3	V	AUTOMOTIVE Hysteresis input
	VIHXOS	X0	External clock in "Fast Clock Input mode"	VD × 0.8	-	VD	V	VD=1.8V±0.15V
"H" level input voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	V _{CC} × 0.8	-	V _{CC} + 0.3	V	
	VIHR	RSTX	-	V _{CC} × 0.8	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIHM	MD	-	V _{CC} - 0.3	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIHD	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input
	Port V _{IL} inputs Pnn_m	Port	-	V _{SS} - 0.3	-	V _{CC} × 0.3	V	CMOS Hysteresis input
		Pnn_m	-	V _{SS} - 0.3	-	$V_{CC} \times 0.5$	V	AUTOMOTIVE Hysteresis input
	VILXOS	X0	External clock in "Fast Clock Input mode"	V _{SS}	-	VD × 0.2	V	VD=1.8V±0.15V
"L" level input voltage	VILXOAS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{CC} × 0.2	V	
	VILR	RSTX	-	V _{SS} - 0.3	-	V _{CC} × 0.2	V	CMOS Hysteresis input
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input
	VILD	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

14.4.5 Operating Conditions of PLL

Parameter	Symbol	Value			Unit	Pomarks	
Falallelei	Symbol	Min	Тур	Max	Onit	Rendriks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t PSKEW	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = - 40°C to + 125°C)

14.4.6 Reset Input

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)

Parameter	Symbol	Pin name	Value		Lloit
			Min	Max	Onit
Reset input time	+	RSTX	10	-	μs
Rejection of reset input time	l _{RSTL}		1	-	μs

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

Rvin: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used:

 $Tsamp = 7.62 \times (R_{ext} \times C_{ext} + (R_{ext} + R_{VIN}) \times C_{VIN})$

- Do not select a sampling time below the absolute minimum permitted value. $(0.5\mu s \text{ for } 4.5V \le AV_{CC} \le 5.5V, 1.2\mu s \text{ for } 2.7V \le AV_{CC} < 4.5V)$
- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu F$ to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AVRL| becomes smaller.

15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.

■MB96F647

■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings		
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz		
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz		
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz		
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz		
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz		
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)		
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)		
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)		
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)		
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)		
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode		
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode		
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode		
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode		
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode		
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode		