

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c671-04-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC12C67X devices are low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converter and EEPROM data memory (EEPROM on PIC12CE67X versions only).

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC12C67X microcontrollers have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches, which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC12C67X microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The PIC12C67X devices have 128 bytes of RAM, 16 bytes of EEPROM data memory (PIC12CE67X only), 5 I/O pins and 1 input pin. In addition a timer/counter is available. Also a 4-channel, high-speed, 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, (i.e., thermostat control, pressure sensing, etc.)

The PIC12C67X devices have special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. The Power-On Reset (POR), Power-up Timer (PWRT), and Oscillator Start-up Timer (OST) eliminate the need for external reset circuitry. There are five oscillator configurations to choose from, including INTRC precision internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power-saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability. The SLEEP (power-down) feature provides a power-saving mode. The user can wake-up the chip from SLEEP through several external and internal interrupts and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

A UV erasable windowed package version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

1.1 <u>Applications</u>

The PIC12C67X series fits perfectly in applications ranging from personal care appliances and security systems to low-power remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient, while the EEPROM data memory (PIC12CE67X only) technology allows for the changing of calibration factors and security codes. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, low-power, high performance, ease of use and I/O flexibility make the PIC12C67X series very versatile even in areas where no microcontroller use has been considered before (i.e., timer functions, replacement of "glue" logic and PLD's in larger systems, coprocessor applications).

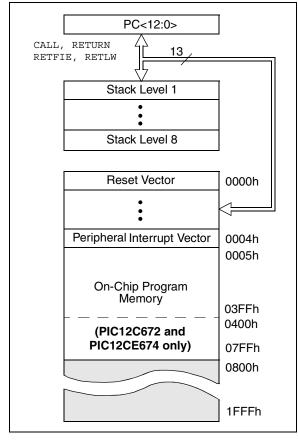
1.2 Family and Upward Compatibility

The PIC12C67X products are compatible with other members of the 14-bit PIC16CXXX families.

1.3 Development Support

The PIC12C67X devices are supported by a fullfeatured macro assembler, a software simulator, an incircuit emulator, a low-cost development programmer and a full-featured programmer. A "C" compiler and fuzzy logic support tools are also available.

4.0 MEMORY ORGANIZATION


4.1 Program Memory Organization

The PIC12C67X has a 13-bit program counter capable of addressing an 8K x 14 program memory space.

For the PIC12C671 and the PIC12CE673, the first 1K x 14 (0000h-03FFh) is implemented.

For the PIC12C672 and the PIC12CE674, the first 2K x 14 (0000h-07FFh) is implemented. Accessing a location above the physically implemented address will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 4-1: PIC12C67X PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

The data memory is partitioned into two banks, which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit.

RP0 (STATUS<5>) = $1 \rightarrow \text{Bank } 1$

RP0 (STATUS<5>) = $0 \rightarrow Bank 0$

Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain Special Function Registers. Some "high use" Special Function Registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access.

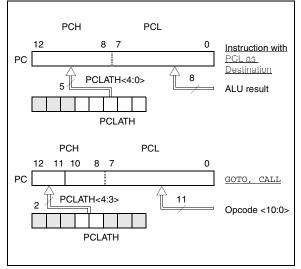
Also note that F0h through FFh on the PIC12C67X is mapped into Bank 0 registers 70h-7Fh as common RAM.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 4.5).

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 Register overflow, GPIO port change and external GP2/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).


REGISTER 4-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE bit7	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	es all un-r	nasked in						
bit 6:	PEIE: Per 1 = Enabl 0 = Disab	es all un-r	nasked pe	ripheral ir	iterrupts				
bit 5:	TOIE: TMI 1 = Enabl 0 = Disab	es the TM	R0 interru	ıpt	bit				
bit 4:		es the ext	ernal inter	rupt on GI	P2/INT/T00 P2/INT/T00				
bit 3:	GPIE: GPIO Interrupt on Change Enable bit 1 = Enables the GPIO Interrupt on Change 0 = Disables the GPIO Interrupt on Change								
bit 2:	TOIF: TMR 1 = TMRC 0 = TMRC) register h	as overflo	wed (mus	t be cleare	d in softwa	re)		
bit 1:		xternal int	errupt on	GP2/INT/1	TOCKI/AN2 TOCKI/AN2			e cleared in software)	
bit 0:		GP1 or Gl	P3 pins ch	anged sta	bit ite (must be ve changed		n software)		

4.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL Register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

4.3.1 COMPUTED GOTO

A Computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC12C67X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 <u>Program Memory Paging</u>

The PIC12C67X ignores both paging bits PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC12C67X is not recommended since this may affect upward compatibility with future products.

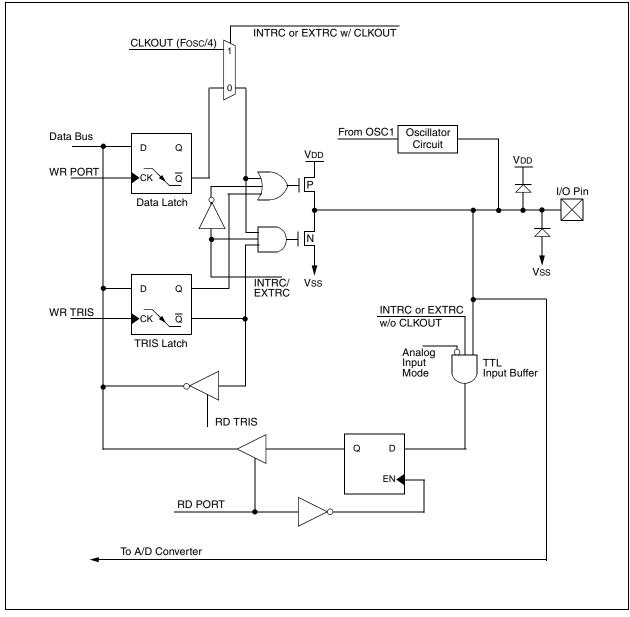
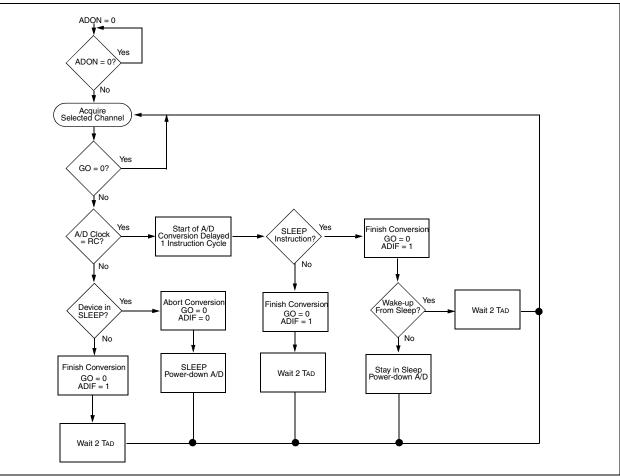



FIGURE 5-4: BLOCK DIAGRAM OF GP4/OSC2/AN3/CLKOUT PIN

TABLE 8-2: SUMMARY OF A/D REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
0Bh/8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	x000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	—	-	—	—	-0	-0
8Ch	PIE1	—	ADIE	—	_	_	_	—	—	-0	-0
1Eh	ADRES	A/D Res	sult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	reserved CHS1 CHS0 GO/DONE reserved ADON						0000 0000	0000 0000
9Fh	ADCON1	_	_	_		-	PCFG2	PCFG1	PCFG0	000	000
05h	GPIO	SCL ⁽²⁾	SDA ⁽²⁾	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu
85h	TRIS	_	_	TRIS5	TRIS4	TRIS3	TRIS2	TRIS1	TRIS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers can be addressed from either bank.

2: The SCL (GP7) and SDA (GP6) bits are unimplemented on the PIC12C671/672 and read as '0'.

TABLE 9-6: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0-
MCLR Reset during normal operation	000h	000u uuuu	u-
MCLR Reset during SLEEP	000h	0001 0uuu	u-
WDT Reset during normal operation	000h	0000 uuuu	u-
WDT Wake-up from SLEEP	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

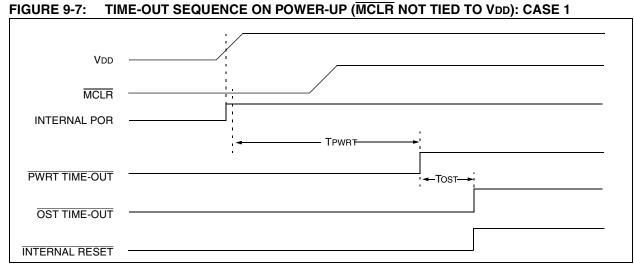
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 9-7: INITIALIZATION CON\DITIONS FOR ALL REGISTERS

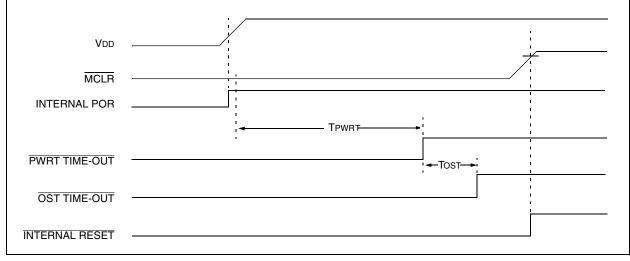
Power-on Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
xxxx xxxx	<u>uuuu</u> uuuu	սսսս սսսս
0000 0000	0000 0000	0000 0000
xxxx xxxx	นนนน นนนน	սսսս սսսս
0000 0000	0000 0000	PC + 1 ⁽²⁾
0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
xxxx xxxx	นนนน นนนน	սսսս սսսս
11xx xxxx	11uu uuuu	11uu uuuu
xx xxxx	uu uuuu	uu uuuu
0 0000	0 0000	u uuuu
0000 000x	0000 000u	uuuu uqqq ⁽¹⁾
-0	-0	- <u>q</u> (4)
0000 0000	0000 0000	uuuu uquu ⁽⁵⁾
1111 1111	1111 1111	սսսս սսսս
11 1111	11 1111	uu uuuu
-0	-0	-u
0-	u-	u-
0111 00	uuuu uu	uuuu uu
000	000	uuu
	XXXX XXXX 0000 0000 XXXX XXXX 0000 0000 0001 1xxx XXXX XXXX 11xx XXXX 11xx XXXX xx XXXX xx XXXX 0 0000 0000 000x -0 0000 0000 1111 1111 11 1111 -0 0.011 00	WDT Reset xxxx xxxx uuuu uuuu 0000 0000 0000 0000 xxxx xxxx uuuu uuuu 0000 0000 0000 0000 xxxx xxxx uuuu uuuu 0001 1xxx 000q quuu ⁽³⁾ xxxx xxxx uuuu uuuu 11xx xxxx 11uu uuuu 11xx xxxx 11uu uuuu xx xxxx uu uuuu xx xxxx uu uuuu 0 0000 0 0000 0000 000x 0000 000u 0000 000x 0000 000u -0 -0 0000 0000 0000 0000 1111 111 1111 111 11 111 11 1111 -0 -0 -0 -0 -0 -0 -0 -0 </td

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for reset value for specific condition.


4: If wake-up was due to A/D completing then bit 6 = 1, all other interrupts generating a wake-up will cause bit 6 = u.

5: If wake-up was due to A/D completing then bit 3 = 0, all other interrupts generating a wake-up will cause bit 3 = u.

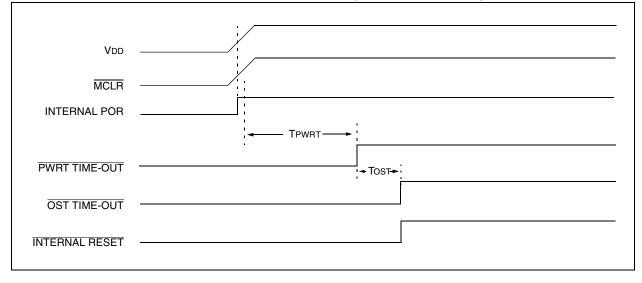

PIC12C67X

FIGURE 9-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

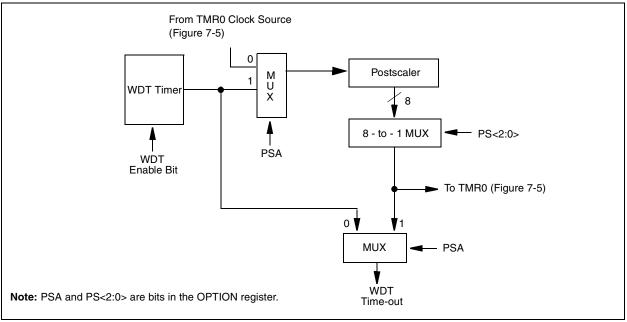
FIGURE 9-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

9.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 9.1).

9.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized. The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out early and generating a premature device RESET condition.


The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

9.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

Note: When the prescaler is assigned to the WDT, always execute a CLRWDT instruction before changing the prescale value, otherwise a WDT reset may occur.

See Example 7-1 and Example 7-2 for changing prescaler between WDT and Timer0.

FIGURE 9-15: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-8: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits ⁽¹⁾	MCLRE	CP1	CP0	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
81h	OPTION	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 9-1 for operation of these bits. Not all CP0 and CP1 bits are shown.

FIGURE 9-16: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; a1 a2 a3 a osc1 ///////	4; Q1 Q2 Q3 Q4 _/~~~~		Q1 Q2 Q3 Q4	01 02 03 04 ////////	01 02 03 04	Q1 Q2 Q3 Q4;
CLKOUT(4)	-∖/	Tost(2)	/	\/	\/¦	
GPIO pin	 	x		I I I		
GPIF flag (INTCON<0>)				Interrupt Latency (Note 3)		i
GIE bit (INTCON<7>)	 	Processor in SLEEP				
INSTRUCTION FLOW	1			i i		1
РС Х РС	X PC+1	X PC+2	PC+2	X PC + 2	X 0004h	0005h
Instruction fetched Inst(PC) = SLEEF	Inst(PC + 1)	I I I	Inst(PC + 2)	I I I	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1)	SLEEP	I i	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

- 2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for INTRC and EXTRC osc mode.
- **3:** GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.
- 4: CLKOUT is not available in XT, HS or LP osc modes, but shown here for timing reference.

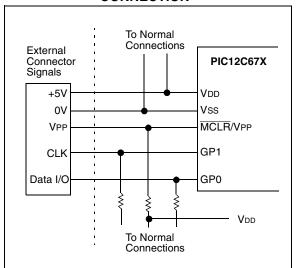
9.9 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

9.10 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.


9.11 In-Circuit Serial Programming

PIC12C67X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the GP1 and GP0 pins low, while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). GP1 (clock) becomes the programming clock and GP0 (data) becomes the programming data. Both GP0 and GP1 are Schmitt Trigger inputs in this mode.

After reset, and if the device is placed into programming/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC12C67X Programming Specifications.

FIGURE 9-17: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

NOTES:

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- · Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- · Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

11.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- · Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

11.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

11.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

11.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

PIC12C67X

NOTES:

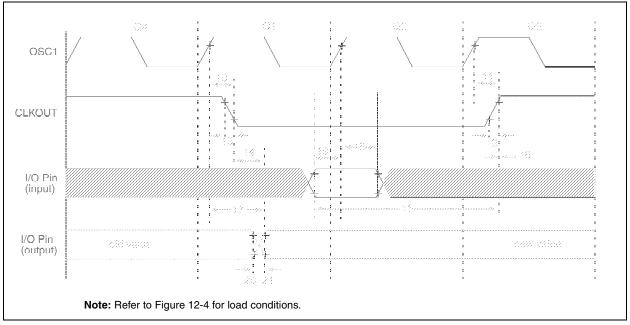
12.3 DC CHARACTERISTICS:

PIC12C671/672 (Commercial, Industrial, Extended) PIC12CE673/674 (Commercial, Industrial, Extended)

					-				
							nerwise specified)		
		Operati	ng temperature				C (commercial)		
DC CH	ARACTERISTICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)							
		-					C (extended)		
				range	as descri	bed in	DC spec Section 12.1 and		
		Section							
Param	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
No.									
	Input Low Voltage								
	I/O ports	Vi∟							
D030	with TTL buffer		Vss	—	0.8V	V	For $4.5V \le VDD \le 5.5V$		
			Vss	—	0.15Vdd	V	otherwise		
D031	with Schmitt Trigger buffer		Vss	—	0.2Vdd	V			
D032	MCLR, GP2/T0CKI/AN2/INT		Vss	—	0.2Vdd	V			
	(in EXTRC mode)								
D033	OSC1 (in EXTRC mode)		Vss	—	0.2Vdd		Note 1		
D033	OSC1 (in XT, HS, and LP)		Vss	—	0.3Vdd	V	Note 1		
	Input High Voltage								
	I/O ports	Vін		_					
D040	with TTL buffer		2.0V	_	Vdd	v	$4.5V \le VDD \le 5.5V$		
D040A			0.25VDD + 0.8V	_	Vdd	v	otherwise		
D041	with Schmitt Trigger buffer		0.8VDD	_	VDD	v	For entire VDD range		
D042	MCLR. GP2/T0CKI/AN2/INT		0.8VDD	_	VDD	v			
D042A	OSC1 (XT, HS, and LP)		0.7VDD		VDD	V	Note 1		
D043	OSC1 (in EXTRC mode)		0.9VDD	_	VDD	v			
2010	Input Leakage Current (Notes 2, 3)		0.0755			•			
D060	I/O ports	lı∟		_	<u>+</u> 1	μA	VSS \leq VPIN \leq VDD, Pin at		
2000					<u> </u>	μι	hi-impedance		
D061	GP3/MCLR (Note 5)				+30	μA	$VSS \leq VPIN \leq VDD$		
D061A	GP3 (Note 6)				+5	μA	$VSS \leq VPIN \leq VDD$		
D062	GP2/T0CKI			_		μA	$V_{SS} \leq V_{PIN} \leq V_{DD}$		
D063	OSC1				<u>+</u> 5	•			
D063	0501		_	_	<u>+</u> 5	μA	VSS \leq VPIN \leq VDD, XT, HS, and LP osc configuration		
D070	GPIO weak pull-up current (Note 4)	IPUR	50	250	400	μA	VDD = 5V, VPIN = VSS		
	MCLR pull-up current	—	—	—	30	μA	VDD = 5V, VPIN = VSS		
	Output Low Voltage								
D080	I/O ports	Vol	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, −40°C to +85°C		
D080A			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, −40°C to +125°C		
D083	OSC2/CLKOUT		—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, −40°C to +85°C		
D083A			_		0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C67X be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

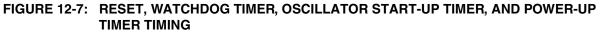
- 3: Negative current is defined as coming out of the pin.
- 4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

FIGURE 12-6: CLKOUT AND I/O TIMING

TABLE 12-3:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------

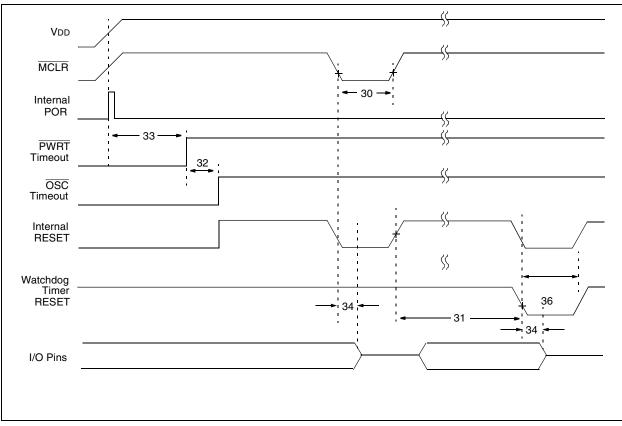

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	Т↑	Tosc + 200	—	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT \uparrow		0		—	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		—	50	150	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port	PIC12 C 67X	100	—	—	ns	
18A*		input invalid (I/O in hold time)	PIC12 LC 67X	200	—	—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I time)	/O in setup	0	—	—	ns	
20*	TioR	Port output rise time	PIC12 C 67X	_	10	40	ns	
20A*			PIC12 LC 67X	_		80	ns	
21*	TioF	Port output fall time	PIC12 C 67X	—	10	40	ns	
21A*		PIC12 LC 67X		—	_	80	ns	
22††*	Tinp	GP2/INT pin high or low time		Тсү		—	ns	
23††*	Trbp	GP0/GP1/GP3 change INT time	high or low	Тсү	—	—	ns	

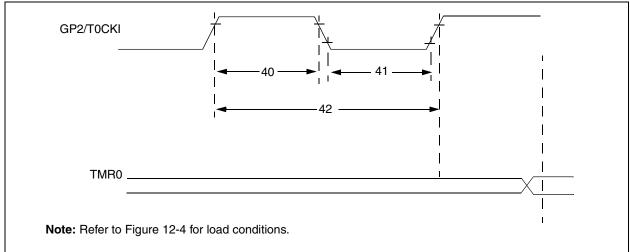
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in EXTRC and INTRC modes where CLKOUT output is 4 x Tosc.




TABLE 12-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μS	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset		_	2.1	μS	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-8: TIMER0 CLOCK TIMINGS

TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

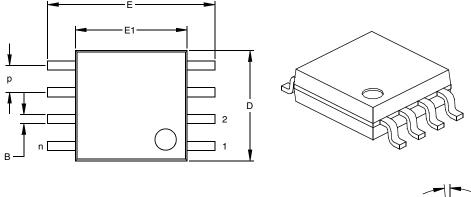
Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
			With Prescaler	10	—	—	ns	parameter 42
41* TtOL		T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet
			With Prescaler	10	-	_	ns	parameter 42
42* TtOP TOCH		T0CKI Period	No Prescaler	TCY + 40	—	_	ns	
			With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)
48	TCKE2tmr1	Delay from external clock edge to timer increment		2Tosc	_	7Tos c		

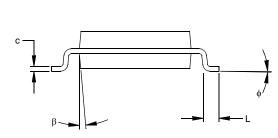
* These parameters are characterized but not tested.

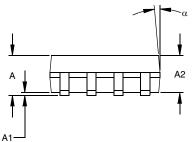
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-6: GPIO PULL-UP RESISTOR RANGES

VDD (Volts)	Temperature (°C)	Min	Тур	Мах	Units
		GP0/	/GP1		
2.5	-40	38K	42K	63K	Ω
	25	42K	48K	63K	Ω
	85	42K	49K	63K	Ω
	125	50K	55K	63K	Ω
5.5	-40	15K	17K	20K	Ω
	25	18K	20K	23K	Ω
	85	19K	22K	25K	Ω
	125	22K	24K	28K	Ω
		GI	P3		
2.5	-40	285K	346K	417K	Ω
	25	343K	414K	532K	Ω
	85	368K	457K	532K	Ω
	125	431K	504K	593K	Ω
5.5	-40	247K	292K	360K	Ω
	25	288K	341K	437K	Ω
	85	306K	371K	448K	Ω
	125	351K	407K	500K	Ω


* These parameters are characterized but not tested.


PIC12C67X


NOTES:

8-Lead Plastic Small Outline (SM) – Medium, 208 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	А	.070	.075	.080	1.78	1.97	2.03	
Molded Package Thickness	A2	.069	.074	.078	1.75	1.88	1.98	
Standoff	A1	.002	.005	.010	0.05	0.13	0.25	
Overall Width	Е	.300	.313	.325	7.62	7.95	8.26	
Molded Package Width	E1	.201	.208	.212	5.11	5.28	5.38	
Overall Length	D	.202	.205	.210	5.13	5.21	5.33	
Foot Length	L	.020	.025	.030	0.51	0.64	0.76	
Foot Angle	¢	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.014	.017	.020	0.36	0.43	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

Drawing No. C04-056