

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c671t-04-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC12C67X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC12C67X uses a Harvard architecture, in which program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses also allow instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single instruction cycle. A two-stage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The table below lists program memory (EPROM), data memory (RAM), and non-volatile memory (EEPROM) for each PIC12C67X device.

Device	Program Memory	RAM Data Memory	EEPROM Data Memory
PIC12C671	1K x 14	128 x 8	—
PIC12C672	2K x 14	128 x 8	—
PIC12CE673	1K x 14	128 x 8	16x8
PIC12CE674	2K x 14	128 x 8	16x8

The PIC12C67X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC12C67X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC12C67X simple yet efficient. In addition, the learning curve is reduced significantly.

PIC12C67X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets ⁽³⁾
Bank 1							•	•			
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physica	l register)	0000 0000	0000 0000
81h	OPTION	GPPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	Program Counter's (PC) Least Significant Byte								0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	ər					xxxx xxxx	uuuu uuuu
85h	TRIS	_	_	GPIO Data	Direction Re	gister				11 1111	11 1111
86h	_	Unimpleme	nted							_	—
87h	_	Unimpleme	nted							_	—
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	_	—	_	Write Buffe	r for the uppe	er 5 bits of th	e PC		0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	GPIE	TOIF	INTF	GPIF	0000 000x	0000 000u
8Ch	PIE1	_	ADIE	_	_	—	—	—	_	-0	-0
8Dh	_	Unimpleme	nted							_	—
8Eh	PCON	_	_	_	_	_	_	POR	_	0 -	u-
8Fh	OSCCAL	CAL3	CAL2	CAL1	CAL0	CALFST	CALSLW	_	_	0111 00	uuuu uu
90h	_	Unimpleme	nted							-	_
91h	_	Unimpleme	nted							_	—
92h	_	Unimpleme	nted							_	—
93h	_	Unimpleme	Inimplemented								_
94h	_	Unimpleme	nted							_	—
95h	_	Unimpleme	nted							_	_
96h	_	Unimpleme	nted							-	_
97h	—	Unimpleme	nted							-	—
98h	_	Unimpleme	nted							-	_
99h	—	Unimpleme	Inimplemented								—
9Ah	—	Unimpleme	nted							_	_
9Bh	_	Unimpleme	nted							-	_
9Ch	_	Unimpleme	nted							_	_
9Dh	—	Unimpleme	nted							_	_
9Eh	_	Unimpleme	nted							_	_
9Fh	ADCON1	_	_	_	_	—	PCFG2	PCFG1	PCFG0	000	000

TABLE 4-1: PIC12C67X SPECIAL FUNCTION REGISTER SUMMARY (CONT.)

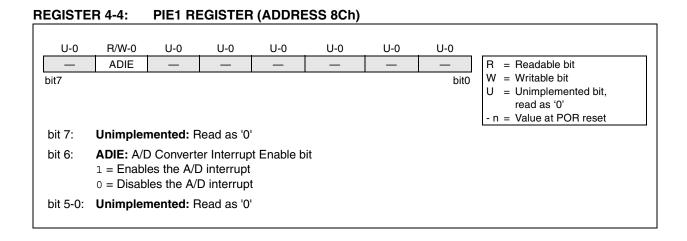
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.


4: The IRP and RP1 bits are reserved on the PIC12C67X; always maintain these bits clear.

5: The SCL (GP7) and SDA (GP6) bits are unimplemented on the PIC12C671/672 and read as '0'.

4.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the Peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

6.1.5 ACKNOWLEDGE

The EEPROM, when addressed, will generate an acknowledge after the reception of each byte. The processor must generate an extra clock pulse which is associated with this acknowledge bit.

Note: Acknowledge bits are not generated if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. The processor must signal an end of data to the EEPROM by not generating an acknowledge bit on the last byte that has been clocked out of the EEPROM. In this case, the EEPROM must leave the data line HIGH to enable the processor to generate the STOP condition (Figure 6-4).

FIGURE 6-1: BLOCK DIAGRAM OF GPIO6 (SDA LINE)

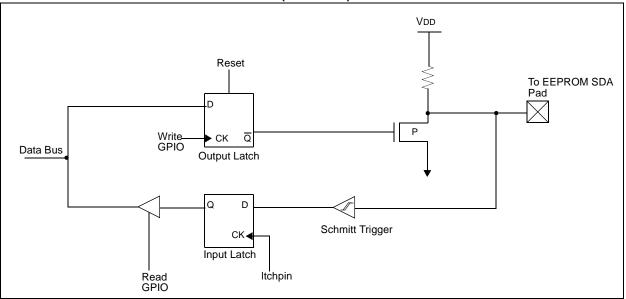
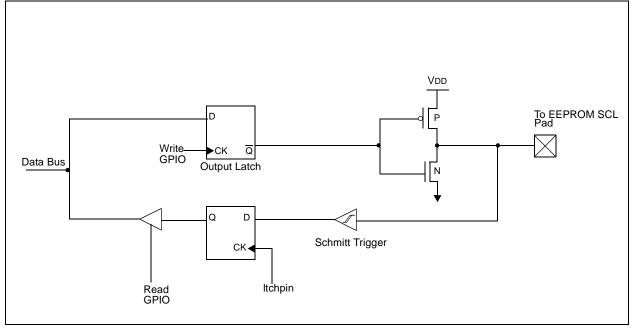



FIGURE 6-2: BLOCK DIAGRAM OF GPIO7 (SCL LINE)

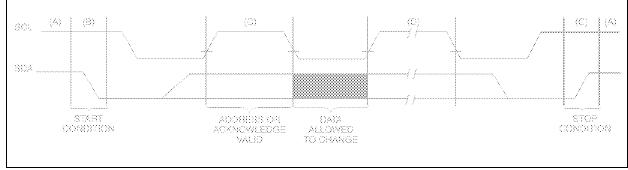
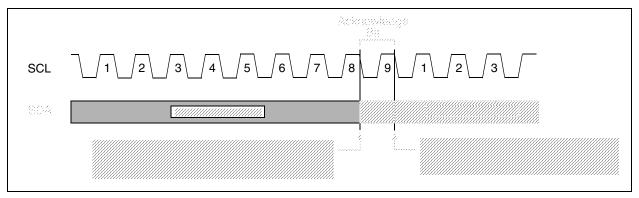
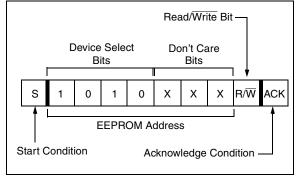



FIGURE 6-4: ACKNOWLEDGE TIMING

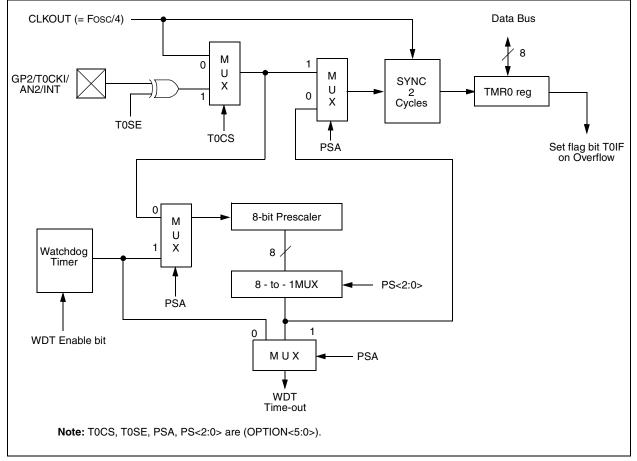


6.2 Device Addressing

After generating a START condition, the processor transmits a control byte consisting of a EEPROM address and a Read/Write bit that indicates what type of operation is to be performed. The EEPROM address consists of a 4-bit device code (1010) followed by three don't care bits.

The last bit of the control byte determines the operation to be performed. When set to a one, a read operation is selected, and when set to a zero, a write operation is selected (Figure 6-5). The bus is monitored for its corresponding EEPROM address all the time. It generates an acknowledge bit if the EEPROM address was true and it is not in a programming mode.

NOTES:


7.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, BSF 1, x..., etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

8.4 <u>A/D Conversions</u>

;

;

;

Example 8-2 shows how to perform an A/D conversion. The GPIO pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled and the A/D conversion clock is FRC. The conversion is performed on the GP0 channel.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 8-2: DOING AN A/D CONVERSION

BSF	STATUS,	RP0	;	Select Page 1
CLRF	ADCON1		;	Configure A/D inputs
BSF	PIE1,	ADIE	;	Enable A/D interrupts
BCF	STATUS,	RP0	;	Select Page 0
MOVLW	0xC1		;	RC Clock, A/D is on, Channel 0 is selected
MOVWF	ADCON0		;	
BCF	PIR1,	ADIF	;	Clear A/D interrupt flag bit
BSF	INTCON,	PEIE	;	Enable peripheral interrupts
BSF	INTCON,	GIE	;	Enable all interrupts
Ensure that	at the re	equired samp	li	ng time for the selected input channel has elapsed.

Then the conversion may be started.

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion

9.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC12C67X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC12C67X has a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC/EXTRC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.1 <u>Configuration Bits</u>

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

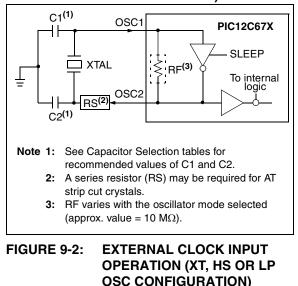
REGISTER 9-1: CONFIGURATION WORD

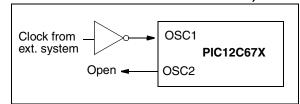
	CD -1-0-									Address	2007h
	1.861.05	• Code		ection k	hit nairs(1	1)			bit0	71001000	200711
 bit 13-8, CP<1:0>: Code Protection bit pairs⁽¹⁾ 6-5: 11 = Code protection off 10 = Locations 400h through 7FEh code protected (do not use for PIC12C671 and PIC12CE673) 01 = Locations 200h through 7FEh code protected 00 = All memory is code protected 											
	PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled										
	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled										
	FOSC<2 111 = EX 110 = EX 101 = IN 100 = IN 011 = In 010 = HS 001 = XT 000 = LF	KTRC, KTRC, TRC, TRC, Valid S S Osci F Oscil	Clocko OSC2 Clocko OSC2 electio Ilator lator	out on is I/O ut on 0 is I/O	OSC2	S					

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC12C67X can be operated in seven different oscillator modes. The user can program three configuration bits (Fosc<2:0>) to select one of these seven modes:


- LP: Low Power Crystal
- HS: High Speed Crystal/Resonator
- XT: Crystal/Resonator
- INTRC*: Internal 4 MHz Oscillator
- EXTRC*: External Resistor/Capacitor


*Can be configured to support CLKOUT

9.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, HS or LP modes, a crystal or ceramic resonator is connected to the GP5/OSC1/CLKIN and GP4/OSC2 pins to establish oscillation (Figure 9-1). The PIC12C67X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, HS or LP modes, the device can have an external clock source drive the GP5/OSC1/CLKIN pin (Figure 9-2).

FIGURE 9-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (XT, HS OR LP OSC CONFIGURATION)

TABLE 9-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS - PIC12C67X

Osc Type	Resonator Freq	Cap. Range C1	Cap. Range
XT	455 kHz	22-100,pF	22-100 pF
	2.0 MHz	15-68 pf	レ15-68 pF
	4.0 MHz	~ { 1 ,5+68 pf ~ ~	15-68 pF
HS	4.0-MHX	\ 15-68 pF	15-68 pF
	8,0 MHz	10-68 pF	10-68 pF
$\widehat{\Omega}$	tp:0 MHz	10-22 pF	10-22 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 9-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR - PIC12C67X

- FICI2007X							
Osc Type	Resonator Freq	Cap. Range C1	Cap. Range C2				
LP	32 kHz ⁽¹⁾	15 pF	15 pF 🚽				
	100 kHz	15-30 pF	30-47 p⊄				
	200 kHz	15-30 pF	15-83 pF				
XT	100 kHz	15-30 pF	200-300 pF				
	200 kHz	15-30 pE	100-200 pF				
	455 kHz	15-30 pF	[™] 15-100 pF				
	1 MHz 🔨	1,15-30.pF	15-30 pF				
	2, MM,Hz ∖∖	\ ∖ 15-30 pF	15-30 pF				
	(AMHz)	15-47 pF	15-47 pF				
HS	4 10AHz	15-30 pF	15-30 pF				
(\mathcal{O})	🖓 🖇 MHz	15-30 pF	15-30 pF				
VZ Z	10 MHz	15-30 pF	15-30 pF				

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

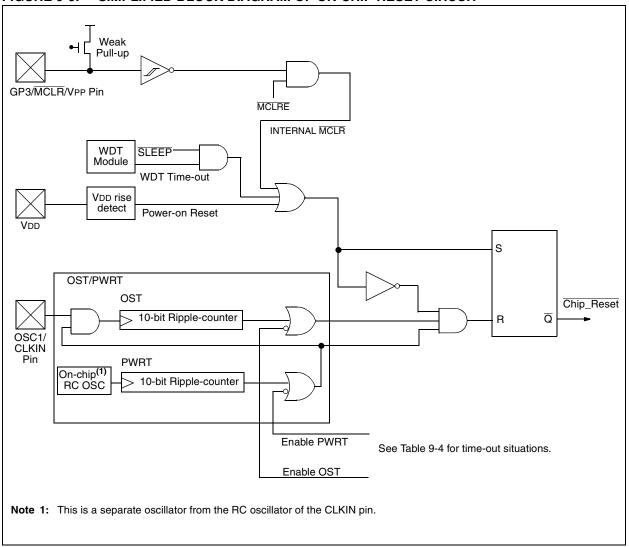


FIGURE 9-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

9.5.1 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0). The flag bit T0IF (INTCON<2>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.5.2 INT INTERRUPT

External interrupt on GP2/INT pin is edge triggered; either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP mode.

9.5.3 GPIO INTCON CHANGE

An input change on GP3, GP1 or GP0 sets flag bit GPIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit GPIE (INTCON<3>) (Section 5.1). This flag bit GPIF (INTCON<0>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and STATUS register). This will have to be implemented in software.

Example 9-1 shows the storing and restoring of the STATUS and W registers. The register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

Example 9-2 shows the saving and restoring of STA-TUS and W using RAM locations 0x70 - 0x7F. W_TEMP is defined at 0x70 and STATUS_TEMP is defined at 0x71.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.
- f) Returns from interrupt.

EXAMPLE 9-1: SAVING STATUS AND W REGISTERS USING GENERAL PURPOSE RAM (0x20 - 0x6F)

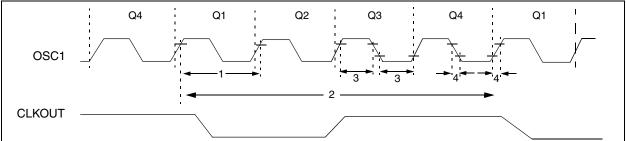
	W_TEMP STATUS,W STATUS,RP0 STATUS_TEMP	
MOVWF SWAPF	_ STATUS W_TEMP,F	;Swap STATUS_TEMP register into W ;(sets bank to original state) ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W ;Return from interrupt
EXAMPLE 9-2:	SAVING STATUS	AND W REGISTERS USING SHARED RAM (0x70 - 0x7F)
MOVWF MOVF	W_TEMP STATUS,W	AND W REGISTERS USING SHARED RAM (0x70 - 0x7F) ;Copy W to TEMP register (bank independent) ;Move STATUS register into W ;Save contents of STATUS register

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Encoding:	01 11bb bfff ffff
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction.
Words:	1
Cycles:	1(2)
Example	HERE BTFSS FLAG,1 FALSE GOTO PROCESS_CO TRUE • DE •
	Before Instruction
	PC = address HERE After Instruction if FLAG<1> = 0, PC = address FALSE
	if FLAG<1> = 1, PC = address TRUE
CALL	
CALL Syntax:	PC = address TRUE
	PC = address TRUE Call Subroutine
Syntax:	PC = address TRUE Call Subroutine [label] CALL k
Syntax: Operands:	PC = address TRUE Call Subroutine [label] CALL k $0 \le k \le 2047$ (PC)+ 1 \rightarrow TOS, $k \rightarrow$ PC<10:0>,
Syntax: Operands: Operation:	PC = address TRUE Call Subroutine [<i>label</i>] CALL k $0 \le k \le 2047$ (PC)+ 1 \rightarrow TOS, $k \rightarrow$ PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Syntax: Operands: Operation: Status Affected:	PC = address TRUE Call Subroutine [<i>label</i>] CALL k $0 \le k \le 2047$ (PC)+ 1 \rightarrow TOS, $k \rightarrow$ PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11> None
Syntax: Operands: Operation: Status Affected: Encoding:	PC =address TRUECall Subroutine[label] CALL k $0 \le k \le 2047$ (PC)+ 1 \rightarrow TOS, $k \rightarrow$ PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>None100kkkkkkkLog Rest (PC+1) is pushed onto the stack. The eleven bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is
Syntax: Operands: Operation: Status Affected: Encoding: Description:	$PC = address TRUE$ $\begin{bmatrix} label \end{bmatrix} CALL k \\ 0 \le k \le 2047 \\ (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0 >, \\ (PCLATH < 4:3 >) \rightarrow PC < 12:11 > \\ \hline None \\ \hline 10 0 kkk kkk kkk \\ \hline Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits < 10:0 >. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction. \\ \hline \end{tabular}$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$PC = address TRUE$ $[label] CALL k$ $0 \le k \le 2047$ $(PC)+1 \rightarrow TOS, k \rightarrow PC < 12:11 >$ $PC = Call Subroutine, brist, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits < 10:0 >. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.$
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$PC = address TRUE$ $\begin{bmatrix} label \end{bmatrix} CALL k \\ 0 \le k \le 2047 \\ (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<4:3>) \rightarrow PC<12:11> \\ \hline None \\ \hline 10 0kkk kkkk kkkk \\ \hline Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction. \\ 1 \\ 2 \\ HERE CALL \\ \underline{THER} \\ \hline HERE \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	00 0001 1fff ffff
Description:	The contents of register 'f' are cleared and the Z bit is set.
Words:	1
Cycles:	1
Example	CLRF FLAG_REG
	$\begin{array}{rcl} Before \ Instruction \\ FLAG_REG & = & 0x5A \\ After \ Instruction \\ FLAG_REG & = & 0x00 \\ Z & = & 1 \end{array}$

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{c} 00h \rightarrow (V \\ 1 \rightarrow Z \end{array}$	V)		
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W registe is set.	er is cle	ared. Zero	o bit (Z)
Words:	1			
Cycles:	1			
Example	CLRW			
	Before In	structio W =	on 0x5A	
		ruction W = Z =	0x00 1	

TABLE 11-1: DEVELOPMENT TOOLS FROM MICROCHIP

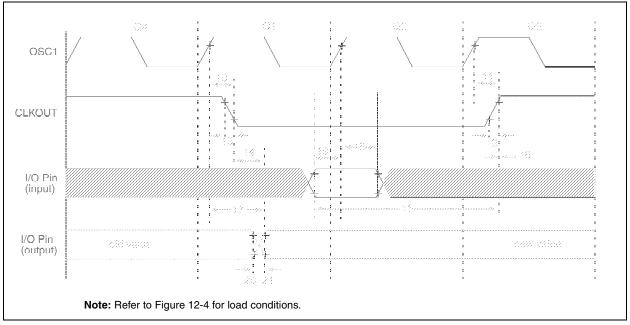

		PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	PIC16C7X	XX7Oðfolg	PIC16C8X	PIC16F8XX	PIC16C9XX	PIC17C4X	XXTOTIOI9	PIC18CXX2	63CXX 52CXX/ 54CXX/	хххэн	МСВЕХХХ	MCP2510
≥ ∩ s oo_	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
	MPLAB [®] C17 Compiler												>	>					
	MPLAB [®] C18 Compiler														>				
	MPASM/MPLINK	>	~	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
	MPLAB [®] -ICE	>	~	>	>	>	** `	>	>	>	>	>	>	>	>				
	PICMASTER/PICMASTER-CE	`	~	>	>	>		>	>	>		>	~	>					
nm⊒	ICEPIC™ Low-Cost In-Circuit Emulator	~		>	>	>		>	>	>		>							
ם ≤ Depnââeı	MPLAB [®] -ICD In-Circuit Debugger				*>			*>			>								
	PICSTART [®] Plus Low-Cost Universal Dev. Kit	>	>	>	>	>	**^	>	`	>	>	>	`	>	`				
с ⊐ Ргодгат	PRO MATE [®] II Universal Programmer	>	>	>	>	>	**^	>	>	>	>	>	>	>	>	>	>		
S	SIMICE	>		>						<u> </u>									
4	PICDEM-1			>		>		۲ ⁺		>			>						
₽.	PICDEM-2				à			à							>				
	PICDEM-3											~							
ם Pl K	PICDEM-14A		~																
	PICDEM-17													>					
	KEELoo [®] Evaluation Kit																>		
	KEELoo Transponder Kit																>		
	microlD™ Programmer's Kit																	~	
	125 kHz microID Developer's Kit																	~	
	125 kHz Anticollision microlD Developer's Kit																	>	
- 0	13.56 MHz Anticollision microlD Developer's Kit																	>	
ž	MCP2510 CAN Developer's Kit																		>
* * C C O O	* Contact the Microchip Technology Inc. web site at www.microchip.com for information on how to use the MPLAB [®] -ICD In-Circuit Debugger (DV164001) with PIC16C62, 63, 64, 65, 72, 73, 74, 76, ** Contact Microchip Technology Inc. for availability date.	nc. web si or availab	te at www ility date.	ı. microchi	p.com for	informatic	woh no n	to use the	e MPLAB	B-ICD In-	-Circuit D	ebugger (DV16400	1) with PI	C16C62,	63, 64, 6	5, 72, 73,	74, 76, 77	~

** Contact Microchip Technology Inc. for availability [†] Development tool is available on select devices.

NOTES:

12.6 <u>Timing Diagrams and Specifications</u>

TABLE 12-1: CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and EXTRC osc mode
		(Note 1)	DC	—	4	MHz	HS osc mode (PIC12CE67X-04)
			DC	—	10	MHz	HS osc mode (PIC12CE67X-10)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	EXTRC osc mode
		(Note 1)	.455	—	4	MHz	XT osc mode
			4	—	4	MHz	HS osc mode (PIC12CE67X-04)
			4	—	10	MHz	HS osc mode (PIC12CE67X-10)
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and EXTRC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (PIC12CE67X-04)
			100	—		ns	HS osc mode (PIC12CE67X-10)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	—	—	ns	EXTRC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (PIC12CE67X-04)
			100	—	250	ns	HS osc mode (PIC12CE67X-10)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	400	—	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High	50	—	—	ns	XT oscillator
	TosH	or Low Time	2.5	—	—	μS	LP oscillator
			10	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	—	—	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

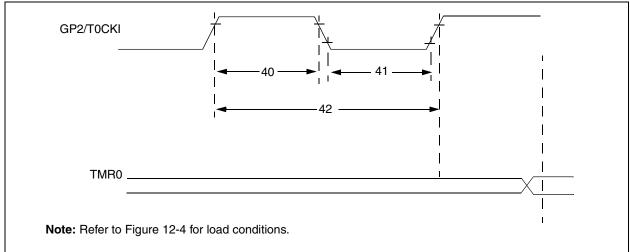
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC12C67X.

FIGURE 12-6: CLKOUT AND I/O TIMING

TABLE 12-3:	CLKOUT AND I/O TIMING REQUIREMENTS
--------------------	------------------------------------

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	Т↑	Tosc + 200	_	—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	↑	0		—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port c	out valid	—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC12 C 67X	100		—	ns	
18A*		input invalid (I/O in hold time)	PIC12 LC 67X	200		—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I time)	/O in setup	0	_	—	ns	
20*	TioR	Port output rise time	PIC12 C 67X	—	10	40	ns	
20A*			PIC12 LC 67X	—	_	80	ns	
21*	TioF	Port output fall time	PIC12 C 67X	—	10	40	ns	
21A*			PIC12 LC 67X	—	_	80	ns	
22††*	Tinp	GP2/INT pin high or low tim	e	Тсү	—	—	ns	
23††*	Trbp	GP0/GP1/GP3 change INT time	high or low	Тсү	—		ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in EXTRC and INTRC modes where CLKOUT output is 4 x Tosc.

FIGURE 12-8: TIMER0 CLOCK TIMINGS

TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteris	tic	Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
			With Prescaler	10	—	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet
			With Prescaler	10	-	_	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	—	_	ns	
			With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)
48	TCKE2tmr1	Delay from external clock of increment	edge to timer	2Tosc	_	7Tos c		

* These parameters are characterized but not tested.

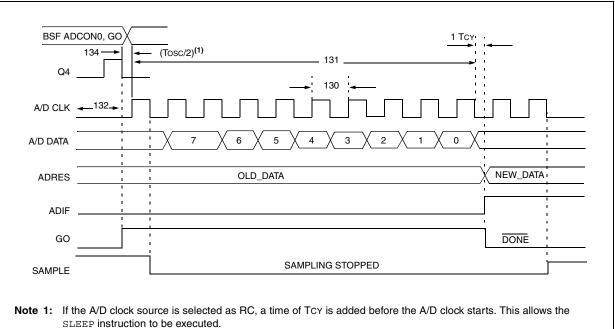

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-6: GPIO PULL-UP RESISTOR RANGES

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units
		GP0/	/GP1		
2.5	-40	38K	42K	63K	Ω
	25	42K	48K	63K	Ω
	85	42K	49K	63K	Ω
	125	50K	55K	63K	Ω
5.5	-40	15K	17K	20K	Ω
	25	18K	20K	23K	Ω
	85	19K	22K	25K	Ω
	125	22K	24K	28K	Ω
		GI	23		
2.5	-40	285K	346K	417K	Ω
	25	343K	414K	532K	Ω
	85	368K	457K	532K	Ω
	125	431K	504K	593K	Ω
5.5	-40	247K	292K	360K	Ω
	25	288K	341K	437K	Ω
	85	306K	371K	448K	Ω
	125	351K	407K	500K	Ω

* These parameters are characterized but not tested.

FIGURE 12-9: A/D CONVERSION TIMING

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	Tad	A/D clock period	PIC12 C 67X	1.6	_		μS	Tosc based, VREF $\geq 3.0V$
			PIC12 LC 67X	2.0	_	_	μS	TOSC based, VREF full range
			PIC12 C 67X	2.0	4.0	6.0	μS	A/D RC Mode
			PIC12 LC 67X	3.0	6.0	9.0	μS	A/D RC Mode
131	TCNV	Conversion time (not in time) (Note 1)	cluding S/H	11	—	11	Tad	
132	TACQ	Acquisition time		Note 2	20		μS	
				5*	_	_	μS	The minimum time is the amplifier setting time. This may be used if the "new" input voltage has not changed by more than 1 LSt (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start			Tosc/2 §			If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be exe cuted.
135	Tswc	Switching from convert	\rightarrow sample time	1.5 §		_	TAD	

These parameters are characterized but not tested.

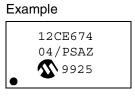
t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

This specification ensured by design. §

Note 1: ADRES register may be read on the following TCY cycle.

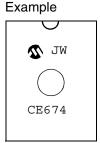
2: See Section 8.1 for min. conditions.

14.0 PACKAGING INFORMATION


14.1 Package Marking Information

8-Lead PDIP (300 mil)

8-Lead SOIC (208 mil)



8-Lead Windowed Ceramic Side Brazed (300 mil)

Lege	nd: MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line Mask revision number Assembly code of the plant or country of origin in which part was assembled
Note	be carried	nt the full Microchip part number cannot be marked on one line, it will I over to the next line thus limiting the number of available characters her specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.