

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12c672-04e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-2: PIC12C67X REGISTER FILE MAP

File Address	3		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	GPIO	TRIS	85h
06h			86h
07h			87h
08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh		OSCCAL	8Fh
10h			90h
11h			91h
12h			
13h			93h
14h			
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h		General Purpose Begister	A0h
	General	riegister	BFh
	Purpose		C0h
	Register		
			EFh
70h		Mapped in Bank 0	F0h
7Fh	Bank 0	Bank 1	_ ⊢⊢n
<u> </u>			
	Jnimplemented dat as '0'.	ta memory locatio	ons, read
Note 1:	Not a physical regis	ster.	

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The Special Function Registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

4.2.2.2 OPTION REGISTER

The OPTION Register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0 and the weak pull-ups on GPIO. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GPPU: We 1 = Weak 0 = Weak	eak Pull-u pull-ups c pull-ups e	ip Enable disabled enabled (C	3P0, GP1,	GP3)			
bit 6:	INTEDG: I 1 = Interru 0 = Interru	nterrupt E pt on risir pt on falli	Edge ng edge o ng edge o	f GP2/T00 of GP2/T00	KI/AN2/IN KI/AN2/IN	Г pin T pin		
bit 5:	TOCS: TM 1 = Transit 0 = Interna	R0 Clock ion on GI al instruct	Source S P2/T0CKI ion cycle	elect bit /AN2/INT clock (CLM	oin (OUT)			
bit 4:	TOSE: TM 1 = Increm 0 = Increm	R0 Sourc nent on hi nent on lo	e Edge S gh-to-low w-to-high	elect bit transition transition	on GP2/T0 on GP2/T0	CKI/AN2/II CKI/AN2/II	NT pin NT pin	
bit 3:	PSA: Pres 1 = Presca 0 = Presca	scaler Ass aler is ass aler is ass	signment b signed to t signed to t	oit he WDT he Timer0	module			
bit 2-0:	PS<2:0> :	Prescaler	Rate Sel	ect bits				
	Bit Value	TMR0 R	ate WD	Γ Rate				
	000 001 010 011 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 12 1 : 25	1 1 2 1 2 4 1 2 8 1 5 6 6 1	1 2 4 8 16 32 64 128				

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 Register overflow, GPIO port change and external GP2/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	T0IE	INTE	GPIE	TOIF	INTF	GPIF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	E: Global Interrupt Enable bit = Enables all un-masked interrupts = Disables all interrupts						
bit 6:	PEIE: Per 1 = Enabl 0 = Disab	ripheral In les all un-r les all per	terrupt En masked pe ipheral int	able bit eripheral ir errupts	nterrupts			
bit 5:	TOIE: TM 1 = Enabl 0 = Disab	R0 Overflo les the TN les the TN	ow Interru IR0 interru IR0 interru	ot Enable lpt upt	bit			
bit 4:	INTE: INT 1 = Enabl 0 = Disab	External es the ext les the ex	Interrupt I ernal inter ternal inte	Enable bit rupt on G rrupt on G	P2/INT/TOC P2/INT/TOC	CKI/AN2 pi CKI/AN2 p	n in	
bit 3:	GPIE: GF 1 = Enabl 0 = Disab	PIO Interru les the GF les the GF	ipt on Cha PIO Interru PIO Interru	nge Enab pt on Cha ıpt on Cha	le bit nge inge			
bit 2:	TOIF: TM 1 = TMR(0 = TMR(R0 Overflo) register l) register o	ow Interrup nas overflo did not ove	ot Flag bit wed (mus erflow	t be cleare	d in softwa	ire)	
bit 1:	INTF: INT 1 = The e 0 = The e	External external int external int	Interrupt I errupt on errupt on	Flag bit GP2/INT/ GP2/INT/	FOCKI/AN2 FOCKI/AN2	pin occurr pin did no	ed (must b t occur	e cleared in software)
bit 0:	GPIF: GF 1 = GP0, 0 = Neith	PIO Interru GP1 or G er GP0, G	pt on Cha P3 pins cł P1 nor GF	nge Flag b hanged sta 23 pins ha	bit ate (must be ve changed	e cleared in I state	n software)	

4.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL Register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any reset, the PC is cleared. Figure 4-3 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

4.3.1 COMPUTED GOTO

A Computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note *"Implementing a Table Read"* (AN556).

4.3.2 STACK

The PIC12C67X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address.

4.4 <u>Program Memory Paging</u>

The PIC12C67X ignores both paging bits PCLATH<4:3>, which are used to access program memory when more than one page is available. The use of PCLATH<4:3> as general purpose read/write bits for the PIC12C67X is not recommended since this may affect upward compatibility with future products.

4.5 Indirect Addressing, INDF and FSR Registers

The INDF Register is not a physical register. Addressing the INDF Register will cause indirect addressing.

Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF Register itself indirectly (FSR = '0') will read 00h. Writing to the INDF Register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR Register and the IRP bit (STATUS<7>), as shown in Figure 4-4. However, IRP is not used in the PIC12C67X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 4-4: DIRECT/INDIRECT ADDRESSING

TABLE 5-1:	SUMMARY OF PORT REGISTERS
------------	---------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
85h	TRIS	_	_	GPIO Da	ata Directi	on Regi	ster			11 1111	11 1111
81h	OPTION	GPPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
05h	GPIO	SCL ⁽²⁾	SDA ⁽²⁾	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, q = see tables in Section 9.4 for possible values.

Note 1: The IRP and RP1 bits are reserved on the PIC12C67X; always maintain these bits clear.

2: The SCL and SDA bits are unimplemented on the PIC12C671 and PIC12C672.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of GPIO will cause all eight bits of GPIO to be read into the CPU. Then the BSF operation takes place on bit5 and GPIO is written to the output latches. If another bit of GPIO is used as a bi-directional I/O pin (i.e., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown.

Reading the port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (i.e., BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch. Example 5-1 shows the effect of two sequential readmodify-write instructions on an I/O port.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;]	Initial	L GPIO	Sett	ings			
;	GPIO<5	5:3> Ir	nputs	5			
;	GPIO<2	2:0> Oi	utput	s			
;							
;				GPIC) latch	GPIC) pins
;							
	BCF	GPIO,	5	;01	-ppp	11	pppp
	BCF	GPIO,	4	;10	-ppp	11	pppp
	MOVLW	007h		;			
	TRIS	GPIO		;10	-ppp	10	pppp
;							

;Note that the user may have expected the pin ;values to be --00 pppp. The 2nd BCF caused ;GP5 to be latched as the pin value (High).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

PIC12C67X

NOTES:

7.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, BSF 1, x..., etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

9.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC12C67X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC12C67X has a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC/EXTRC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.1 <u>Configuration Bits</u>

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD

CP1	CP0	CP1	CP0	CP1	CP0	MCLRE	CP1	CP0	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13- 6-5 bit 7:	8, CI 5: 11 10 01 00 M	P<1:0> = Coo = Loo = Loo = All CLRE:	<1:0>: Code Protection bit pairs ⁽¹⁾ = Code protection off = Locations 400h through 7FEh code protected (do not use for PIC12C671 and PIC12CE673) = Locations 200h through 7FEh code protected = All memory is code protected CLRE: Master Clear Reset Enable bit												
	1 : 0 :	= Mast = Mast	Master Clear Disabled												
bit 4:	P\ 1 : 0 :	VRTE : = PWF = PWF	: Powe RT disa RT ena	r-up Ti bled bled	mer Ei	nable bit									
bit 3:	W 1 : 0 :	DTE: \ = WDT = WDT	PWRT enabled PTE: Watchdog Timer Enable bit WDT enabled WDT disabled												
bit 2-0	FC 11 11 10 10 10 01 01 00 00 00	DSC<2 11 = E 10 = E 11 = IN 10 = IN 11 = IN 10 = H 11 = X 10 = LF	2:0>: O XTRC, XTRC, ITRC, ITRC, Valid S S Osci T Oscil	Clocko OSC2 Clocko OSC2 electic llator lator lator	or Sele out on t is I/O out on C is I/O on	ction bit OSC2 OSC2	S								
Note	1: Al	l of the	e CP<1	:0> pa	irs hav	e to be o	given th	ne sam	e value t	o enable	e the co	de prote	ection sch	eme listed.	

9.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST)</u>

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create a Poweron Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See Table 11-4.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 TIME-OUT SEQUENCE

On power-up, the Time-out Sequence is as follows: first, PWRT time-out is invoked after the POR time delay has expired; then, OST is activated. The total time-out will vary, based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 9-7, Figure 9-8, and Figure 9-9 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 9-9). This is useful for testing purposes or to synchronize more than one PIC12C67X device operating in parallel.

9.4.5 POWER CONTROL (PCON)/STATUS REGISTER

The Power Control/Status Register, PCON (address 8Eh), has one bit. See Register 4-6 for register.

Bit1 is POR (Power-on Reset). It is cleared on a Poweron Reset and is unaffected otherwise. The user sets this bit following a Power-on Reset. On subsequent resets, if POR is '0', it will indicate that a Power-on Reset must have occurred.

Oscillator Configuration	Power	r-up	Wake-up from SLEEP
	PWRTE = 0	PWRTE = 1	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
INTRC, EXTRC	72 ms	_	_

TABLE 9-4: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	то	PD	
0	1	1	Power-on Reset
0	0	x	Illegal, TO is set on POR
0	x	0	Illegal, PD is set on POR
1	0	u	WDT Reset
1	0	0	WDT Wake-up
1	u	u	MCLR Reset during normal operation
1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

Legend: u = unchanged, x = unknown.

9.5.1 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0). The flag bit T0IF (INTCON<2>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.5.2 INT INTERRUPT

External interrupt on GP2/INT pin is edge triggered; either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the GP2/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 9.8 for details on SLEEP mode.

9.5.3 GPIO INTCON CHANGE

An input change on GP3, GP1 or GP0 sets flag bit GPIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit GPIE (INTCON<3>) (Section 5.1). This flag bit GPIF (INTCON<0>) will be set, regardless of the state of the enable bits. If used, this flag must be cleared in software.

9.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W register and STATUS register). This will have to be implemented in software.

Example 9-1 shows the storing and restoring of the STATUS and W registers. The register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

Example 9-2 shows the saving and restoring of STA-TUS and W using RAM locations 0x70 - 0x7F. W_TEMP is defined at 0x70 and STATUS_TEMP is defined at 0x71.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Executes the ISR code.
- d) Restores the STATUS register (and bank select bit).
- e) Restores the W register.
- f) Returns from interrupt.

EXAMPLE 9-1: SAVING STATUS AND W REGISTERS USING GENERAL PURPOSE RAM (0x20 - 0x6F)

MOVWF SWAPF BCF MOVWF : :(ISR)	W_TEMP STATUS,W STATUS,RP0 STATUS_TEMP	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Change to bank zero, regardless of current bank ;Save status to bank zero STATUS_TEMP register
: SWAPF MOVWF SWAPF SWAPF RETFIE	STATUS_TEMP,W STATUS W_TEMP,F W_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state) ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W ;Return from interrupt
NPLE 9-2:	SAVING STATUS	AND W REGISTERS USING SHARED RAM (0x70 - 0x7F)
MPLE 9-2: MOVWF MOVVF : : (ISR) :	SAVING STATUS A W_TEMP STATUS,W STATUS_TEMP	AND W REGISTERS USING SHARED RAM (0x70 - 0x7F) ;Copy W to TEMP register (bank independent) ;Move STATUS register into W ;Save contents of STATUS register
	MOVWF SWAPF BCF MOVWF : (ISR) : SWAPF SWAPF SWAPF RETFIE	MOVWF W_TEMP SWAPF STATUS,W BCF STATUS,RP0 MOVWF STATUS_TEMP : :(ISR) : SWAPF STATUS_TEMP,W MOVWF STATUS SWAPF W_TEMP,F SWAPF W_TEMP,W RETFIE

NOTES:

10.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC12C67X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

10.1.1 STATUS AS DESTINATION

If an instruction writes to STATUS, the Z, C and DC bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF STATUS will clear register STATUS, and then set the Z bit leaving 0000 0100b in the register.

10.1.2 TRIS AS DESTINATION

Bit 3 of the TRIS register always reads as a '1' since GP3 is an input only pin. This fact can affect some read-modify-write operations on the TRIS register.

10.1.3 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCL \rightarrow dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	PCL \rightarrow ALU operand PCLATH \rightarrow PCH; 8-bit result \rightarrow PCL

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

10.1.4 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

	Standard Operating Conditions (unless otherwise specified)								
		Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)							
DC CHA	RACTERISTICS		$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)						
		Operatin	g voltage VDD ra	inge as	describe	ed in DC	spec Section 12.1 and		
		Section	12.2.						
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions		
No.									
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD - 0.7	-	—	V	IOH = -3.0 mA, VDD = 4.5V, −40°C to +85°C		
D090A			VDD - 0.7	-	—	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C		
D092	OSC2/CLKOUT		VDD - 0.7	-	—	V	IOH = TBD, VDD = 4.5V, −40°С to +85°С		
D092A			Vdd - 0.7	-	—	V	IOH = TBD, VDD = 4.5V, -40°C to +125°C		
	Capacitive Loading Specs on								
	Output Pins								
D100	OSC2 pin	Cosc2	—	_	15	pF	In XT and LP modes when external clock is used to drive OSC1.		
D101	All I/O pins	Сю	_	—	50	pF			
+	† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not								

tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12C67X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

FIGURE 12-8: TIMER0 CLOCK TIMINGS

TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
			With Prescaler	10	—	—	ns	parameter 42
41*	TtOL	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
			With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	—	—	ns	
			With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	-	ns	N = prescale value (2, 4,, 256)
48	TCKE2tmr1	Delay from external clock edge to timer increment		2Tosc	_	7Tos c	_	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-6: GPIO PULL-UP RESISTOR RANGES

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units		
2.5	-40	38K	42K	63K	Ω		
	25	42K	48K	63K	Ω		
	85	42K	49K	63K	Ω		
	125	50K	55K	63K	Ω		
5.5	-40	15K	17K	20K	Ω		
	25	18K	20K	23K	Ω		
	85	19K	22K	25K	Ω		
	125	22K	24K	28K	Ω		
		G	P3				
2.5	-40	285K	346K	417K	Ω		
	25	343K	414K	532K	Ω		
	85	368K	457K	532K	Ω		
	125	431K	504K	593K	Ω		
5.5	-40	247K	292K	360K	Ω		
	25	288K	341K	437K	Ω		
	85	306K	371K	448K	Ω		
	125	351K	407K	500K	Ω		

* These parameters are characterized but not tested.

NOTES:

INDEX

A A/D

A/D	
Accuracy/Error	51
ADCON0 Register	45
ADIF bit	47
Analog Input Model Block Diagram	
Analog-to-Digital Converter	45
Configuring Analog Port Pins	
Configuring the Interrupt	47
Configuring the Module	47
Connection Considerations	51
Conversion Clock	
Conversions	50
Converter Characteristics	105
Delays	
Effects of a Reset	51
Equations	
Flowchart of A/D Operation	52
GO/DONE bit	47
Internal Sampling Switch (Rss) Impedence	
Operation During Sleep	51
Sampling Requirements	
Sampling Time	
Source Impedence	
Time Delays	
Transfer Function	51
Absolute Maximum Ratings	
ADDLW Instruction	72
ADDWF Instruction	72
ADIE bit	18
ADIF bit	19
ADRES Register 1	3, 45, 47
ALU	7
ANDLW Instruction	72
ANDWF Instruction	72
Application Notes	
AN546	
AN556	22
Architecture	_
Harvard	7
Overview	7
von Neumann	
Assembler	
MPASM Assembler	83
В	
BCF Instruction	73
Bit Manipulation	70
Block Diagrams	
Analog Input Model	
On-Chip Reset Circuit	57
Timer0	
Timer0/WDT Prescaler	
Watchdog Timer	65
BSF Instruction	73
BTFSC Instruction	73
BTFSS Instruction	74

С

C bit 1	15
CAL0 bit 2	21
CAL1 bit 2	21
CAL2 bit	21
CAL3 bit	21
CALFST bit 2	21
CALL Instruction	74
CALSLW bit	21
Carry bit	7
Clocking Scheme	10
CI BE Instruction 7	74
CI BW Instruction	74
CL BWDT Instruction 7	75
Code Examples	Ũ
Changing Prescaler (Timer() to WDT)	13
Changing Prescaler (WDT to Timer0)	13
Indirect Addressing	22
Code Protection 53 6	37
COME Instruction)/ 75
	20
Configuration Bits	22 20
	50
D	
DC and AC Characteristics 10)9
DC bit 1	15
DC Characteristics	
PIC12C671/672, PIC12CE673/674	92
PIC12LC671/672, PIC12LCE673/674	94
DECF Instruction	75
DECFSZ Instruction	75
Development Support	33
Digit Carry bit	7
Direct Addressing	23
EEPROM Peripheral Operation	33
Electrical Characteristics - PIC12C67X 8	39
Errata	2
External Brown-out Protection Circuit	51
External Power-on Reset Circuit	51
F	
Family of Devices	4
Features	1
FSR Register 13. 14. 2	23
C.	-
	_
General Description	3
	52
	6
	54 - 0
GPIO	59 19
GPIO Register 1	13
GPPU bit 1	16

Power-down Mode (SLEEP)
Prescaler Switching Between Timer() and WDT 43
PRO MATE NULL Server Provide And WD1
PRO MATE® II Universal Programmer85
Program Branches7
Program Memory
Paging 22
Program Verification 67
PS0 bit
PS1 bit16
PS2 bit
PSA bit 16
F 031122
R
PC Oppillator 55
Read Modify Write
Read-Modify-Write
Register File11
Begisters
Mar
мар
PIC12C67X12
Reset Conditions59
Beset 53.56
Poset Conditions for Special Pagisters 50
RETFIE Instruction
RETLW Instruction78
RETURN Instruction79
RI E Instruction 79
DD0 bit 11 15
RP1 bit
RRF Instruction79
s
5
SEEVAL® Evaluation and Programming System
Services
One-Time-Programmable (OTP) 5
Quick Turneround Breduction (OTB)
Serialized Quick-Turnaround Production (SQTP)5
SFR70
SFR As Source/Destination70
SLEEP 53.56
SI EED Instruction 70
Software Simulator (MPLAB-SIM)
Special Features of the CPU53
Special Function Register
PIC12C67X 13
Special Eurotion Registers 70
Special Function Registers, Section
Stack
Overflows
Underflow 22
STATUS Dogistor 15
SUBLIV Instruction 80
SUBWF Instruction

T	
TOCS bit	16
TAD	49
Timer0	
RTCC	59
Timers	
Timer0	
Block Diagram	39
External Clock	41
External Clock Timing	41
Increment Delay	41
Interrupt	39
Interrupt Timing	40
Prescaler	12
Prescaler Block Diagram	12
Section	30
Switching Prescaler Assignment	13
Synchronization	11
	+ I 1 1
	+1 24
Turing	24 20
	39
Tincing Diagram	54
	~~
A/D Conversion	30
	J2
	00
	50
	39
Timer0 Interrupt Timing	10
Timer0 with External Clock	11
Wake-up from Sleep via Interrupt	57
TO bit	15
TOSE bit	16
TRIS Instruction	31
TRIS Register 14, 25, 3	31
Two's Complement	7
U	
- LIV Frasable Devices	5
	5
W	
W Register	
ALU	7
Wake-up from SLEEP	66
Watchdog Timer (WDT) 53, 56, 59, 6	65
WDT	59
Block Diagram	65
Period	65
Programming Considerations	65
Timeout	59
WWW. On-Line Support	2
Υ	-
Λ	
XORLW Instruction	31
XORWF Instruction	31
Z	
7 bit	15
Zero hit	7
	'

PIC12C67X

NOTES: