

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lc671-04i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 Register overflow, GPIO port change and external GP2/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
GIE	PEIE	T0IE	INTE	GPIE	TOIF	INTF	GPIF	R = Readable bit			
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7:	bit 7: GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts										
bit 6:	PEIE: Per 1 = Enabl 0 = Disab	ripheral In les all un-r les all per	terrupt En masked pe ipheral int	able bit eripheral ir errupts	nterrupts						
bit 5:	it 5: TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
bit 4:	 INTE: INT External Interrupt Enable bit 1 = Enables the external interrupt on GP2/INT/T0CKI/AN2 pin 0 = Disables the external interrupt on GP2/INT/T0CKI/AN2 pin 										
bit 3:	 GPIE: GPIO Interrupt on Change Enable bit 1 = Enables the GPIO Interrupt on Change 0 = Disables the GPIO Interrupt on Change 										
bit 2:	 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow 										
bit 1:	 INTF: INT External Interrupt Flag bit 1 = The external interrupt on GP2/INT/T0CKI/AN2 pin occurred (must be cleared in software) 0 = The external interrupt on GP2/INT/T0CKI/AN2 pin did not occur 										
bit 0:	GPIF: GF 1 = GP0, 0 = Neith	PIO Interru GP1 or G er GP0, G	pt on Cha P3 pins cł P1 nor GF	nge Flag b hanged sta 23 pins ha	bit ate (must be ve changed	e cleared in I state	n software)				

4.5 Indirect Addressing, INDF and FSR Registers

The INDF Register is not a physical register. Addressing the INDF Register will cause indirect addressing.

Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF Register itself indirectly (FSR = '0') will read 00h. Writing to the INDF Register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR Register and the IRP bit (STATUS<7>), as shown in Figure 4-4. However, IRP is not used in the PIC12C67X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 4-4: DIRECT/INDIRECT ADDRESSING

FIGURE 5-4: BLOCK DIAGRAM OF GP4/OSC2/AN3/CLKOUT PIN

6.0 EEPROM PERIPHERAL OPERATION

The PIC12CE673 and PIC12CE674 each have 16 bytes of EEPROM data memory. The EEPROM memory has an endurance of 1,000,000 erase/write cycles and a data retention of greater than 40 years. The EEPROM data memory supports a bi-directional 2-wire bus and data transmission protocol. These two-wires are serial data (SDA) and serial clock (SCL), that are mapped to bit6 and bit7, respectively, of the GPIO register (SFR 06h). Unlike the GP0-GP5 that are connected to the I/O pins, SDA and SCL are only connected to the internal EEPROM peripheral. For most applications, all that is required is calls to the following functions:

;	Byte_Write: Byte write routine
;	Inputs: EEPROM Address EEADDR
;	EEPROM Data EEDATA
;	Outputs: Return 01 in W if OK, else
	return 00 in W
;	
;	Read_Current: Read EEPROM at address
cι	irrently held by EE device.
;	Inputs: NONE
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK, else
	return 00 in W
;	
;	Read_Random: Read EEPROM byte at supplied
ac	ldress
;	Inputs: EEPROM Address EEADDR
;	Outputs: EEPROM Data EEDATA
;	Return 01 in W if OK,
	else return 00 in W

The code for these functions is available on our web site (www.microchip.com). The code will be accessed by either including the source code FL67XINC.ASM or by linking FLASH67X.ASM. FLASH67X.INC provides external definition to the calling program.

6.0.1 SERIAL DATA

SDA is a bi-directional pin used to transfer addresses and data into and data out of the device.

For normal data transfer, SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.

6.0.2 SERIAL CLOCK

This SCL signal is used to synchronize the data transfer from and to the EEPROM.

6.1 Bus Characteristics

The following **bus protocol** is to be used with the EEPROM data memory. In this section, the term "processor" is used to denote the portion of the PIC12C67X that interfaces to the EEPROM via software.

• Data transfer may be initiated only when the bus is not busy.

During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition.

Accordingly, the following bus conditions have been defined (Figure 6-3).

6.1.1 BUS NOT BUSY (A)

Both data and clock lines remain HIGH.

6.1.2 START DATA TRANSFER (B)

A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.

6.1.3 STOP DATA TRANSFER (C)

A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.

6.1.4 DATA VALID (D)

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal.

The data on the line must be changed during the LOW period of the clock signal. There is one bit of data per clock pulse.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the available data EEPROM space.

6.3 Write Operations

6.3.1 BYTE WRITE

Following the start signal from the processor, the device code (4 bits), the don't care bits (3 bits), and the R/\overline{W} bit (which is a logic low) are placed onto the bus by the processor. This indicates to the addressed EEPROM that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore, the next byte transmitted by the processor is the word address and will be written into the address pointer. Only the lower four address bits are used by the device, and the upper four bits are don't cares. If the address byte is acknowledged, the processor will then transmit the data word to be written into the addressed memory location. The memory acknowledges again and the processor generates a stop condition. This initiates the internal write cycle, and during this time will not generate acknowledge signals. After a byte write command, the internal address counter will not be incremented and will point to the same address location that was just written. If a stop bit sequence is transmitted to the device at any point in the write command sequence before the entire sequence is complete, then the command will abort and no data will be written. If more than 8 data bits are transmitted before the stop bit sequence is sent, then the device will clear the previously loaded byte and begin loading the data buffer again. If more than one data byte is transmitted to the device and a stop bit is sent before a full eight data bits have been transmitted, then the write command will abort and no data will be written. The EEPROM memory employs a VCC threshold detector circuit, which disables the internal erase/write logic if the Vcc is below minimum VDD. Byte write operations must be preceded and immediately followed by a bus not busy bus cycle where both SDA and SCL are held high. (See Figure 6-7 for Byte Write operation.)

6.4 Acknowledge Polling

Since the EEPROM will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the processor, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the processor sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If no ACK is returned, then the start bit and control byte must be re-sent. If the cycle is complete, then the device will return the ACK and the processor can then proceed with the next read or write command. (See Figure 6-6 for flow diagram.)

FIGURE 6-6: ACKNOWLEDGE POLLING FLOW

FIGURE 6-7: BYTE WRITE

PIC12C67X

FIGURE 7-4: TIMER0 INTERRUPT TIMING

7.3 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (i.e., CLRF 1, MOVWF 1, BSF 1, x..., etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

8.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-To-Digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the GP1/AN1/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 Register, shown in Figure 8-1, controls the operation of the A/D module. The ADCON1 Register, shown in Figure 8-2, configures the functions of the port pins. The port pins can be configured as analog inputs (GP1 can also be a voltage reference) or as digital I/O.

- Note 1: If the port pins are configured as analog inputs (reset condition), reading the port (MOVF GPIO,W) results in reading '0's.
 - 2: Changing ADCON1 Register can cause the GPIF and INTF flags to be set in the INTCON Register. These interrupts should be disabled prior to modifying ADCON1.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADCS1 ADCS0 CHS1 CHS0 GO/DONE ADON R = Readable bit reserved reserved W = Writable bit bit0 bit7 U = Unimplemented bit, read as '0' n = Value at POR reset bit 7-6: ADCS<1:0>: A/D Conversion Clock Select bits 00 = Fosc/201 = Fosc/810 = Fosc/3211 = FRC (clock derived from an RC oscillation) Reserved bit 5: bit 4-3: CHS<1:0>: Analog Channel Select bits 00 = channel 0, (GP0/AN0) 01 = channel 1, (GP1/AN1) 10 = channel 2, (GP2/AN2) 11 = channel 3, (GP4/AN3) GO/DONE: A/D Conversion Status bit bit 2: If ADON = 11 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete) bit 1: Reserved bit 0: ADON: A/D on bit 1 = A/D converter module is operating 0 = A/D converter module is shut off and consumes no operating current

REGISTER 8-1: ADCON0 REGISTER (ADDRESS 1Fh)

9.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC12C67X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC12C67X has a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC/EXTRC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

9.1 <u>Configuration Bits</u>

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h-3FFFh), which can be accessed only during programming.

REGISTER 9-1: CONFIGURATION WORD

CP1	CP0	CP1	CP0	CP1	CP0	MCLRE	CP1	CP0	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13- 6-5 bit 7:	bit 13-8, CP<1:0>: Code Protection bit pairs ⁽¹⁾ 6-5: 11 = Code protection off 10 = Locations 400h through 7FEh code protected (do not use for PIC12C671 and PIC12CE673) 01 = Locations 200h through 7FEh code protected 00 = All memory is code protected bit 7: MCLRE: Master Clear Reset Enable bit														
	1 : 0 :	= Mast = Mast	ter Clei ter Clei	ar Ena ar Disa	bled abled										
bit 4:	PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled														
bit 3:	 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled 														
bit 2-0	FC 11 11 10 10 10 01 01 00 00 00	DSC<2 11 = E 10 = E 11 = IN 10 = IN 11 = IN 10 = H 11 = X 10 = LF	2:0>: O XTRC, XTRC, ITRC, ITRC, Valid S S Osci T Oscil	Clocko OSC2 Clocko OSC2 electic llator lator lator	or Sele out on t is I/O out on C is I/O on	ction bit OSC2 OSC2	S								
Note	1: Al	l of the	e CP<1	:0> pa	irs hav	e to be o	given th	ne sam	e value t	o enable	e the co	de prote	ection sch	eme listed.	

NOTES:

10.2 Instruction Descriptions

ADDLW	Add Literal and W						
Syntax:	[<i>label</i>] ADDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) + k –	→ (W)					
Status Affected:	C, DC, Z						
Encoding:	11	111x	kkkk	kkkk			
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W regis- ter.						
Words:	1						
Cycles:	1						
Example	ADDLW	0x15					
	Before Inst	struction W = ruction	0x10				
		vv =	0123				

ANDLW	And Literal with W						
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .AND. (k) \rightarrow (W)						
Status Affected:	Z						
Encoding:	11 1001 kkkk kkkk						
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W reg- ister.						
Words:	1						
Cycles:	1						
Example	ANDLW 0x5F						
	Before Instruction W = 0xA3 After Instruction W = 0x03						

ADDWF	Add W and f						
Syntax:	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(W) + (f) \to (dest)$						
Status Affected:	C, DC, Z						
Encoding:	00 0111 dfff ffff						
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.						
Words:	1						
Cycles:	1						
Example	ADDWF FSR, O						
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0xD9 FSR = 0xC2						

ANDWF	AND W with f						
Syntax:	[label] ANDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .AND. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0101 dfff ffff						
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ANDWF FSR, 1						
	Before Instruction W = 0x17 FSR = 0xC2 After Instruction W = 0x17 FSR = 0x02						

CLRWDT	Clear Watchdog Timer						
Syntax:	[label] CLRWDT						
Operands:	None						
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow PD \end{array}$						
Status Affected:	TO, PD						
Encoding:	00 0000 0110 0100						
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.						
Words:	1						
Cycles:	1						
Example	CLRWDT						
	Before Instruction WDT counter = ? After Instruction WDT counter = 0x00 WDT prescaler = 0 TO = 1						
	PD = 1						
COMF	PD = 1 Complement f						
COMF Syntax:	PD = 1 Complement f [label] COMF f,d						
COMF Syntax: Operands:	$\overline{PD} = 1$ $\hline \begin{array}{c} \hline \hline$						
COMF Syntax: Operands: Operation:	$\overline{PD} = 1$ Complement f $[label] COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$						
COMF Syntax: Operands: Operation: Status Affected:	$\overline{PD} = 1$ $\hline Complement f$ $[label] COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$ Z						
COMF Syntax: Operands: Operation: Status Affected: Encoding:	$\overline{PD} = 1$ $\hline Complement f$ $[label] COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$ Z $\boxed{00 1001 dfff fff}$						
COMF Syntax: Operands: Operation: Status Affected: Encoding: Description:	$\overline{PD} = 1$ $\hline Complement f$ $\begin{bmatrix} label \end{bmatrix} COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$ Z $\boxed{00 1001 dfff ffff}$ The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.						
COMF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	$\overline{PD} = 1$ $\hline Complement f$ $[label] COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$ Z $\boxed{00 1001 dfff ffff}$ The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'. 1						
COMF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$\overline{PD} = 1$ $\hline Complement f$ $\begin{bmatrix} label \end{bmatrix} COMF f,d \\ 0 \le f \le 127 \\ d \in [0,1] \\ (\overline{f}) \rightarrow (dest) \\ Z$ $\boxed{00 1001 dfff ffff} \\ The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'. \\ 1 \\ 1$						
COMF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	$\overrightarrow{PD} = 1$ $\overrightarrow{Complement f}$ $[label] COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$ Z $\boxed{00 1001 dfff ffff}$ The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'. 1 1 $COMF \qquad REG1, 0$						
COMF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	$\overrightarrow{PD} = 1$ $\overrightarrow{Complement f}$ $[label] COMF f,d$ $0 \le f \le 127$ $d \in [0,1]$ $(\overline{f}) \rightarrow (dest)$ Z $\boxed{00 1001 dfff ffff}$ The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'. 1 1 $COMF \qquad REG1, 0$ Before Instruction $REG1 = 0x13$ After Instruction						

DECF	Decrement f						
Syntax:	[label] DECF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(f) - 1 \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0011 dfff ffff						
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	DECF CNT, 1						
	Before Instruction CNT = 0x01 Z = 0						
	After Instruction CNT = 0x00 Z = 1						
DECFSZ	Decrement f, Skip if 0						
Syntax:	[label] DECFSZ f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$						
Operation:	(f) - 1 \rightarrow (dest); skip if result = 0						
Status Affastad							
Status Allected:	None						
Encoding:	None 00 1011 dfff ffff						
Encoding: Description:	None001011dfffffffThe contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.						
Encoding: Description: Words:	None001011dfffffffThe contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed 						
Encoding: Description: Words: Cycles:	None001011dfffffffThe contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.If the result is 0, the next instruc- tion, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction.11(2)						
Words: Cycles: Example	None 00 1011 dfff ffff The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction. 1 1(2) HERE DECFSZ CNT, 1						
Words: Cycles: Example	None 00 1011 dfff ffff The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two cycle instruction. 1 1(2) HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE •						

RETURN	Return from Subroutine	RRF	Rotate Right f through Carry			
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d			
Operands:	None	Operands:	$0 \le f \le 127$			
Operation:	$TOS \rightarrow PC$					
Status Affected:	None	Operation:	See description below			
Encoding:	00 0000 0000 1000	Status Affected:	С			
Description:	Return from subroutine. The stack	Encoding:	00 1100 dfff ffff			
Words:	is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg-			
worus.			ister 'f'.			
Cycles:	2		C Register f			
Example	RETURN	Wordo:	1			
	After Interrupt PC = TOS					
		Cycles:	1			
		Example	rrf REG1, 0			
			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			

RLF	Rotate Left f through Carry	SLEEP				
Syntax:	[<i>label</i>] RLF f,d	Svntax:	[label] SIEED			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	None			
Operation:	See description below	Operation:	$00h \rightarrow WDT,$			
Status Affected:	С		$0 \rightarrow WD$ prescaler, 1 $\rightarrow TO$,			
Encoding:	00 1101 dfff ffff		$0 \rightarrow \overline{PD}$ TO, PD			
Description:	The contents of register 'f' are	Status Affected: Encoding: Description:				
	rotated one bit to the left through		00 0000 0110 0011			
	is placed in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.		The power-down status bit, \overline{PD} is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.			
Words:	1	Words:	1			
Cycles:	1	Cycles:	1			
Example	RLF REG1,0	Example:	SLEEP			
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					

NOTES:

- Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
 - **2:** The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 12-2: PIC12C67X VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le TA \le +70^{\circ}C$

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

NOTES:

FIGURE 13-11: VIL, VIH OF NMCLR AND TOCKI vs. VDD

8-Lead Ceramic Side Brazed Dual In-line with Window (JW) - 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.145	.165	.185	3.68	4.19	4.70
Top of Body to Seating Plane	A2	.103	.123	.143	2.62	3.12	3.63
Standoff	A1	.025	.035	.045	0.64	0.89	1.14
Package Width	E1	.280	.290	.300	7.11	7.37	7.62
Overall Length	D	.510	.520	.530	12.95	13.21	13.46
Tip to Seating Plane	L	.130	.140	.150	3.30	3.56	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.018	.020	0.41	0.46	0.51
Overall Row Spacing	eB	.296	.310	.324	7.52	7.87	8.23
Window Diameter	W	.161	.166	.171	4.09	4.22	4.34
Lid Length	Т	.440	.450	.460	11.18	11.43	11.68
Lid Width	U	.260	.270	.280	6.60	6.86	7.11

*Controlling Parameter JEDC Equivalent: MS-015 Drawing No. C04-083

INDEX

A A/D

A/D	
Accuracy/Error	51
ADCON0 Register	45
ADIF bit	47
Analog Input Model Block Diagram	
Analog-to-Digital Converter	45
Configuring Analog Port Pins	49
Configuring the Interrupt	47
Configuring the Module	47
Connection Considerations	51
Conversion Clock	
Conversions	50
Converter Characteristics	105
Delays	
Effects of a Reset	51
Equations	
Flowchart of A/D Operation	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedence	
Operation During Sleep	51
Sampling Requirements	
Sampling Time	
Source Impedence	
Time Delays	
Transfer Function	51
Absolute Maximum Ratings	
ADDLW Instruction	72
ADDWF Instruction	72
ADIE bit	18
ADIF bit	19
ADRES Register 1	3, 45, 47
ALU	7
ANDLW Instruction	72
ANDWF Instruction	72
Application Notes	
AN546	
AN556	22
Architecture	_
Harvard	7
Overview	
von Neumann	
Assembler	
MPASM Assembler	83
В	
BCF Instruction	73
Bit Manipulation	70
Block Diagrams	
Analog Input Model	
On-Chip Reset Circuit	57
Timer0	
Timer0/WDT Prescaler	
Watchdog Timer	65
BSF Instruction	73
BTFSC Instruction	73
BTFSS Instruction	74

С

C bit 1	15
CAL0 bit 2	21
CAL1 bit 2	21
CAL2 bit	21
CAL3 bit	21
CALFST bit 2	21
CALL Instruction	74
CALSLW bit	21
Carry bit	7
Clocking Scheme	10
CI BE Instruction 7	74
CI BW Instruction	74
CI BWDT Instruction	75
Code Examples	Ũ
Changing Prescaler (Timer() to WDT)	13
Changing Prescaler (WDT to Timer0)	13
Indirect Addressing	22
Code Protection 53 6	37
COME Instruction)/ 75
	20
Configuration Bits	12 20
	50
D	
DC and AC Characteristics 10)9
DC bit 1	15
DC Characteristics	
PIC12C671/672, PIC12CE673/674	92
PIC12LC671/672, PIC12LCE673/674	94
DECF Instruction	75
DECFSZ Instruction	75
Development Support	33
Digit Carry bit	7
Direct Addressing	23
EEPROM Peripheral Operation	33
Electrical Characteristics - PIC12C67X 8	39
Errata	2
External Brown-out Protection Circuit	51
External Power-on Reset Circuit	51
F	
Family of Devices	4
Features	1
FSR Register 13. 14. 2	23
C.	-
	_
General Description	3
	52
	6
	54 - 0
GPIO	59 19
GPIO Register 1	13
GPPU bit 1	16