

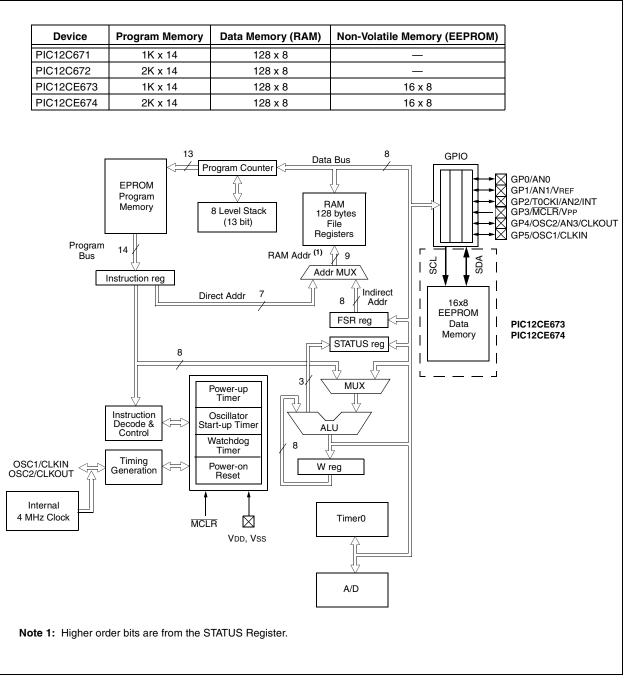
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lc671-04i-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC12C67X BLOCK DIAGRAM

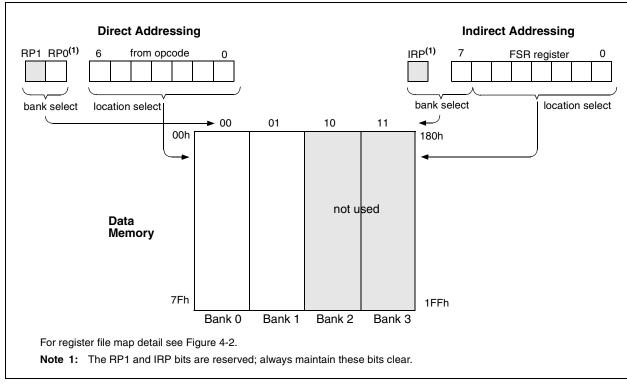
4.2.2.2 OPTION REGISTER

The OPTION Register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0 and the weak pull-ups on GPIO. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81h)

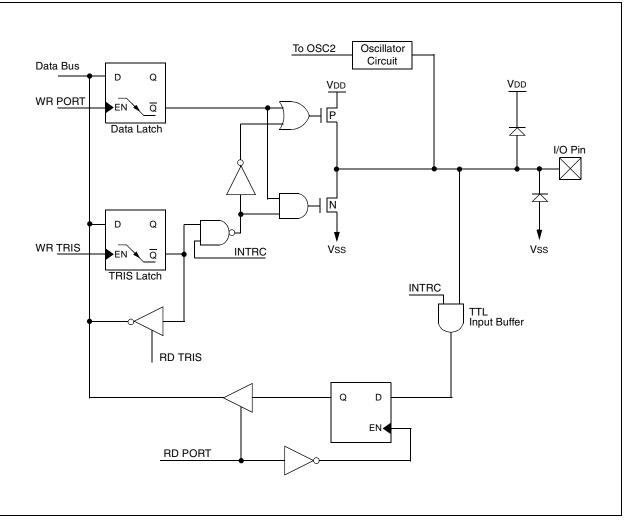
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit		
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset		
bit 7:										
bit 6:		pt on risi	ng edge of		KI/AN2/IN KI/AN2/IN					
bit 5:	TOCS: TM 1 = Transit 0 = Interna	ion on Gl	P2/T0CKI/	AN2/INT						
bit 4:		nent on hi	gh-to-low	transition	on GP2/T0 on GP2/T0					
bit 3:	PSA: Pres 1 = Presca 0 = Presca	aler is ass	signed to t	he WDT	module					
bit 2-0:	PS<2:0> :	Prescaler	Rate Sel	ect bits						
	Bit Value	TMR0 R	ate WD	Γ Rate						
	000 1:2 1:1 001 1:4 1:2 010 1:8 1:4 011 1:16 1:8 100 1:32 1:16 101 1:64 1:32 110 1:128 1:64 111 1:256 1:128									

4.5 Indirect Addressing, INDF and FSR Registers


The INDF Register is not a physical register. Addressing the INDF Register will cause indirect addressing.

Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF Register itself indirectly (FSR = '0') will read 00h. Writing to the INDF Register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR Register and the IRP bit (STATUS<7>), as shown in Figure 4-4. However, IRP is not used in the PIC12C67X.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.


EXAMPLE 4-1: INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	;to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR,F	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;no clear next
CONTINUE			
	:		;yes continue

FIGURE 4-4: DIRECT/INDIRECT ADDRESSING

NOTES:

FIGURE 5-5: BLOCK DIAGRAM OF GP5/OSC1/CLKIN PIN

6.1.5 ACKNOWLEDGE

The EEPROM, when addressed, will generate an acknowledge after the reception of each byte. The processor must generate an extra clock pulse which is associated with this acknowledge bit.

Note: Acknowledge bits are not generated if an internal programming cycle is in progress.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. The processor must signal an end of data to the EEPROM by not generating an acknowledge bit on the last byte that has been clocked out of the EEPROM. In this case, the EEPROM must leave the data line HIGH to enable the processor to generate the STOP condition (Figure 6-4).

FIGURE 6-1: BLOCK DIAGRAM OF GPIO6 (SDA LINE)

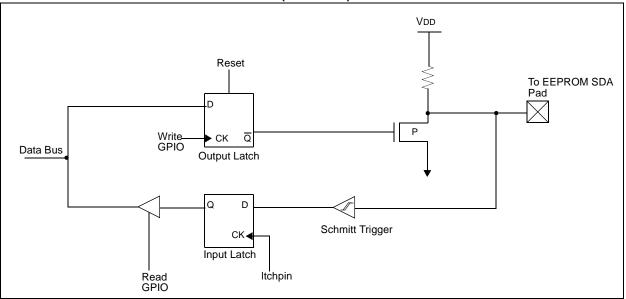
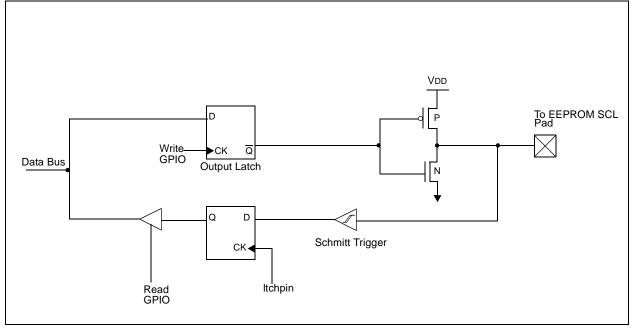



FIGURE 6-2: BLOCK DIAGRAM OF GPIO7 (SCL LINE)

8.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-To-Digital (A/D) converter module has four analog inputs.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the GP1/AN1/VREF pin. The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode.

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

The ADCON0 Register, shown in Figure 8-1, controls the operation of the A/D module. The ADCON1 Register, shown in Figure 8-2, configures the functions of the port pins. The port pins can be configured as analog inputs (GP1 can also be a voltage reference) or as digital I/O.

- Note 1: If the port pins are configured as analog inputs (reset condition), reading the port (MOVF GPIO,W) results in reading '0's.
 - 2: Changing ADCON1 Register can cause the GPIF and INTF flags to be set in the INTCON Register. These interrupts should be disabled prior to modifying ADCON1.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 ADCS1 ADCS0 CHS1 CHS0 GO/DONE ADON R = Readable bit reserved reserved W = Writable bit bit0 bit7 U = Unimplemented bit, read as '0' n = Value at POR reset bit 7-6: ADCS<1:0>: A/D Conversion Clock Select bits 00 = Fosc/201 = Fosc/810 = Fosc/3211 = FRC (clock derived from an RC oscillation) Reserved bit 5: bit 4-3: CHS<1:0>: Analog Channel Select bits 00 = channel 0, (GP0/AN0) 01 = channel 1, (GP1/AN1) 10 = channel 2, (GP2/AN2) 11 = channel 3, (GP4/AN3) GO/DONE: A/D Conversion Status bit bit 2: If ADON = 11 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete) bit 1: Reserved bit 0: ADON: A/D on bit 1 = A/D converter module is operating 0 = A/D converter module is shut off and consumes no operating current

REGISTER 8-1: ADCON0 REGISTER (ADDRESS 1Fh)

8.4 <u>A/D Conversions</u>

;

;

;

Example 8-2 shows how to perform an A/D conversion. The GPIO pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled and the A/D conversion clock is FRC. The conversion is performed on the GP0 channel.

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel.

EXAMPLE 8-2: DOING AN A/D CONVERSION

BSF	STATUS,	RP0	;	Select Page 1
CLRF	ADCON1		;	Configure A/D inputs
BSF	PIE1,	ADIE	;	Enable A/D interrupts
BCF	STATUS,	RP0	;	Select Page 0
MOVLW	0xC1		;	RC Clock, A/D is on, Channel 0 is selected
MOVWF	ADCON0		;	
BCF	PIR1,	ADIF	;	Clear A/D interrupt flag bit
BSF	INTCON,	PEIE	;	Enable peripheral interrupts
BSF	INTCON,	GIE	;	Enable all interrupts
Ensure that	at the re	equired samp	li	ng time for the selected input channel has elapsed.

Then the conversion may be started.

BSF	ADCON0, GO	; Start A/D Conversion
:		; The ADIF bit will be set and the GO/DONE bit
:		; is cleared upon completion of the A/D Conversion

9.4 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT) and Oscillator Start-up</u> <u>Timer (OST)</u>

9.4.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, just tie the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create a Poweron Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting.*"

9.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See Table 11-4.

9.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

9.4.4 TIME-OUT SEQUENCE

On power-up, the Time-out Sequence is as follows: first, PWRT time-out is invoked after the POR time delay has expired; then, OST is activated. The total time-out will vary, based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 9-7, Figure 9-8, and Figure 9-9 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (Figure 9-9). This is useful for testing purposes or to synchronize more than one PIC12C67X device operating in parallel.

9.4.5 POWER CONTROL (PCON)/STATUS REGISTER

The Power Control/Status Register, PCON (address 8Eh), has one bit. See Register 4-6 for register.

Bit1 is POR (Power-on Reset). It is cleared on a Poweron Reset and is unaffected otherwise. The user sets this bit following a Power-on Reset. On subsequent resets, if POR is '0', it will indicate that a Power-on Reset must have occurred.

Oscillator Configuration	Power	Wake-up from SLEEP	
	PWRTE = 0	PWRTE = 1	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	1024Tosc
INTRC, EXTRC	72 ms	_	—

TABLE 9-4: TIME-OUT IN VARIOUS SITUATIONS

TABLE 9-5: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	то	PD	
0	1	1	Power-on Reset
0	0	х	Illegal, TO is set on POR
0	x	0	Illegal, PD is set on POR
1	0	u	WDT Reset
1	0	0	WDT Wake-up
1	u	u	MCLR Reset during normal operation
1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

Legend: u = unchanged, x = unknown.

9.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input, if enabled, should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on GPIO should be considered.

The $\overline{\text{MCLR}}$ pin, if enabled, must be at a logic high level (VIHMC).

9.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. GP2/INT interrupt, interrupt GPIO port change or some Peripheral Interrupts.

External MCLR Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device reset. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupt can wake the device from SLEEP:

1. A/D conversion (when A/D clock source is RC).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

9.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

11.17 <u>SEEVAL Evaluation and Programming</u> <u>System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

11.18 <u>KEELOQ Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

12.0 ELECTRICAL SPECIFICATIONS FOR PIC12C67X

Absolute Maximum Ratings †

Ambient temperature under bias	–40° to +125°C
Storage temperature	–65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR)	–0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0 to +7.0V
Voltage on MCLR with respect to Vss (Note 2)	0 to +14V
Total power dissipation (Note 1)	700 mW
Maximum current out of Vss pin	200 mA
Maximum current into VDD pin	
Input clamp current, liк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by GPIO pins combined	100 mA
Maximum current sourced by GPIO pins combined	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VC)	ЭН) х ІОН} + Σ (VOI х ІОL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CH4	ARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parm No.	Characteristic	stic Sym Min _{Typ} ⁽¹⁾ Max Units Conditions							
	LP Oscillator Operating Frequency INTRC/EXTRC Oscillator Operating Frequency	Fosc	0		200 4 ⁽⁶⁾	kHz MHz	All temperatures All temperatures		
	XT Oscillator Operating Frequency		0		4	MHz	All temperatures		
	HS Oscillator Operating 0 10 MHz All temperatures Frequency 0 10 10 10 10								

I hese parameters are characterized but not tested.

Note 1: Data in Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

2: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern, and temperature also have an impact on the current consumption.

a) The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tristated, pulled to Vss, T0CKI = VDD,

 $\overline{MCLR} = VDD; WDT$ disabled.

b) For standby current measurements, the conditions are the same, except that the device is in SLEEP mode.

4: For EXTRC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula:

Ir = VDD/2REXT (mA) with REXT in kOhm.

5: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

6: INTRC calibration value is for 4MHz nominal at 5V, 25°C.

TABLE 12-7:A/D CONVERTER CHARACTERISTICS:
PIC12C671/672-04/PIC12CE673/674-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC12C671/672-10/PIC12CE673/674-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC12LC671/672-04/PIC12LCE673/674-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	_	8-bits	bit	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A02	Eabs	Total absolute erro	r	_	_	< ±1	LSb	VREF = VDD = 5.12V, VSS \leq VAIN \leq VREF
A03	EIL	Integral linearity er	ror	_	_	< ±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	Edl	Differential linearity	/ error	_	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A05	EFS	Full scale error		_	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset error		—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	_	Monotonicity		_	guaranteed (Note 3)	_	—	$Vss \leq Vain \leq Vref$
A20	VREF	Reference voltage		2.5V	—	VDD + 0.3	V	
A25	VAIN	Analog input voltag	je	Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended im analog voltage sou		_	_	10.0	kΩ	
A40	IAD	A/D conversion	PIC12 C 67X	_	180	—	μA	Average current con-
		current (VDD) PIC12LC67X		_	90	_	μA	sumption when A/D is on. (Note 1)
A50	IREF	VREF input current (Note 2)		10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 8.1.
				—		10	μA	During A/D Conversion cycle

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from GP1 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage, and has no missing codes.

TABLE 12-9: EEPROM MEMORY BUS TIMING REQUIREMENTS - PIC12CE673/674 ONLY.

AC Characteristics	AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$, Vcc = 3.0V to 5.5V (commerci- $-40^{\circ}C \le TA \le +85^{\circ}C$, Vcc = 3.0V to 5.5V (industrial $-40^{\circ}C \le TA \le +125^{\circ}C$, Vcc = 4.5V to 5.5V (extended)							
	Operating	Voltage V			ibed in Section 12.1			
Parameter	Symbol	Min	Max	Units	Conditions			
Clock frequency	FCLK		100 100 400	kHz	$\begin{array}{l} 4.5 V \leq V cc \leq 5.5 V \text{ (E Temp range)} \\ 3.0 V \leq V cc \leq 4.5 V \\ 4.5 V \leq V cc \leq 5.5 V \end{array}$			
Clock high time	Тнідн	4000 4000 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
Clock low time	TLOW	4700 4700 1300		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
SDA and SCL rise time (Note 1)	TR		1000 1000 300	ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
SDA and SCL fall time	TF	—	300	ns	(Note 1)			
START condition hold time	THD:STA	4000 4000 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
START condition setup time	TSU:STA	4700 4700 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
Data input hold time	THD:DAT	0	_	ns	(Note 2)			
Data input setup time	TSU:DAT	250 250 100		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
STOP condition setup time	Tsu:sto	4000 4000 600		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
Output valid from clock (Note 2)	ΤΑΑ		3500 3500 900	ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
Bus free time: Time the bus must be free before a new transmis- sion can start	TBUF	4700 4700 1300		ns	$\begin{array}{l} 4.5V \leq Vcc \leq 5.5V \text{ (E Temp range)} \\ 3.0V \leq Vcc \leq 4.5V \\ 4.5V \leq Vcc \leq 5.5V \end{array}$			
Output fall time from VIH minimum to VIL maximum	Tof	20+0.1 CB	250	ns	(Note 1), CB ≤ 100 pF			
Input filter spike suppression (SDA and SCL pins)	TSP	—	50	ns	(Notes 1, 3)			
Write cycle time	Twc		4	ms				
Endurance		1M	_	cycles	25°C, Vcc = 5.0V, Block Mode (Note 4)			

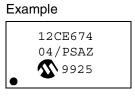
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.

2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL and avoid unintended generation of START or STOP conditions.

3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation.

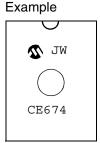
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on Microchip's website.

14.0 PACKAGING INFORMATION

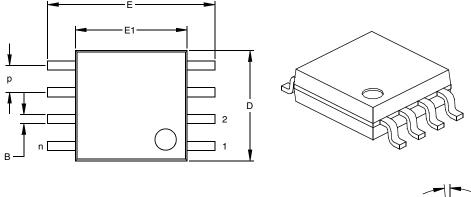

14.1 Package Marking Information

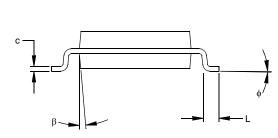
8-Lead PDIP (300 mil)

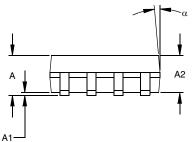
8-Lead SOIC (208 mil)



8-Lead Windowed Ceramic Side Brazed (300 mil)




Legen	d: MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line Mask revision number Assembly code of the plant or country of origin in which part was assembled			
Note:	In the event the full Microchip part number cannot be marked on one line, it we be carried over to the next line thus limiting the number of available character for customer specific information.				

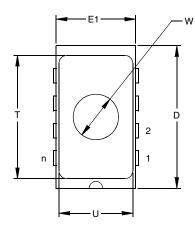

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

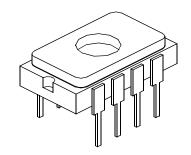
8-Lead Plastic Small Outline (SM) – Medium, 208 mil (SOIC)

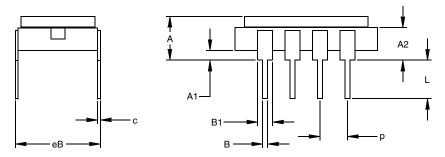
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	А	.070	.075	.080	1.78	1.97	2.03
Molded Package Thickness	A2	.069	.074	.078	1.75	1.88	1.98
Standoff	A1	.002	.005	.010	0.05	0.13	0.25
Overall Width	Е	.300	.313	.325	7.62	7.95	8.26
Molded Package Width	E1	.201	.208	.212	5.11	5.28	5.38
Overall Length	D	.202	.205	.210	5.13	5.21	5.33
Foot Length	L	.020	.025	.030	0.51	0.64	0.76
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.014	.017	.020	0.36	0.43	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

*Controlling Parameter


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.


Drawing No. C04-056

8-Lead Ceramic Side Brazed Dual In-line with Window (JW) - 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension	I Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.145	.165	.185	3.68	4.19	4.70
Top of Body to Seating Plane	A2	.103	.123	.143	2.62	3.12	3.63
Standoff	A1	.025	.035	.045	0.64	0.89	1.14
Package Width	E1	.280	.290	.300	7.11	7.37	7.62
Overall Length	D	.510	.520	.530	12.95	13.21	13.46
Tip to Seating Plane	L	.130	.140	.150	3.30	3.56	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.018	.020	0.41	0.46	0.51
Overall Row Spacing	eB	.296	.310	.324	7.52	7.87	8.23
Window Diameter	W	.161	.166	.171	4.09	4.22	4.34
Lid Length	Т	.440	.450	.460	11.18	11.43	11.68
Lid Width	U	.260	.270	.280	6.60	6.86	7.11

*Controlling Parameter JEDC Equivalent: MS-015 Drawing No. C04-083

INDEX

A A/D

A/D	
Accuracy/Error	
ADCON0 Register	
ADIF bit	
Analog Input Model Block Diagram	
Analog-to-Digital Converter	
Configuring Analog Port Pins	
Configuring the Interrupt	
Configuring the Module	
Connection Considerations	
Conversion Clock	-
Conversions	
Converter Characteristics	
Delays	
Effects of a Reset	
Equations	
Flowchart of A/D Operation	
GO/DONE bit	
Internal Sampling Switch (Rss) Impedence	
Operation During Sleep Sampling Requirements	
Sampling Time	
Source Impedence	
Time Delays	
Transfer Function	
Absolute Maximum Ratings	
ADDLW Instruction	
ADDWF Instruction	
ADIE bit	
ADIF bit	
ADRES Register	
ALU	
ANDLW Instruction	
ANDWF Instruction	
Application Notes	
AN546	
AN556	
Architecture	
Harvard	7
Overview	
von Neumann	7
Assembler	
MPASM Assembler	
В	
BCF Instruction	73
Ber Instruction	
Block Diagrams	
Analog Input Model	48
On-Chip Reset Circuit	
Timer0	
Timer0/WDT Prescaler	
Watchdog Timer	
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	-

С

C bit 1	5
CAL0 bit 2	21
CAL1 bit 2	21
CAL2 bit	21
CAL3 bit	21
CALFST bit 2	21
CALL Instruction	74
CALSLW bit	
Carry bit	
Clocking Scheme	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	
Code Examples	5
Changing Prescaler (Timer0 to WDT) 4	10
Changing Prescaler (WDT to Timer0)	
Indirect Addressing	
Code Protection	
COMF Instruction	
Computed GOTO	
Configuration Bits 5	53
D	
DC and AC Characteristics10)9
DC bit1	
DC Characteristics	
PIC12C671/672, PIC12CE673/674	22
PIC12LC671/672, PIC12LCE673/674	
DECF Instruction	
DECFSZ Instruction	-
Development Support	
Development Support	
Digit Carly bit	
-	20
E	
EEPROM Peripheral Operation	33
Electrical Characteristics - PIC12C67X 8	
Errata	2
External Brown-out Protection Circuit	51
External Power-on Reset Circuit6	51
F	
Family of Devices	4
Features	1
FSR Register 13, 14, 2	
G	
General Description	~
GIE bit	
GOTO Instruction	
GPIF bit	
GPIO	
GPIO Register 1	
GPPU bit 1	6