

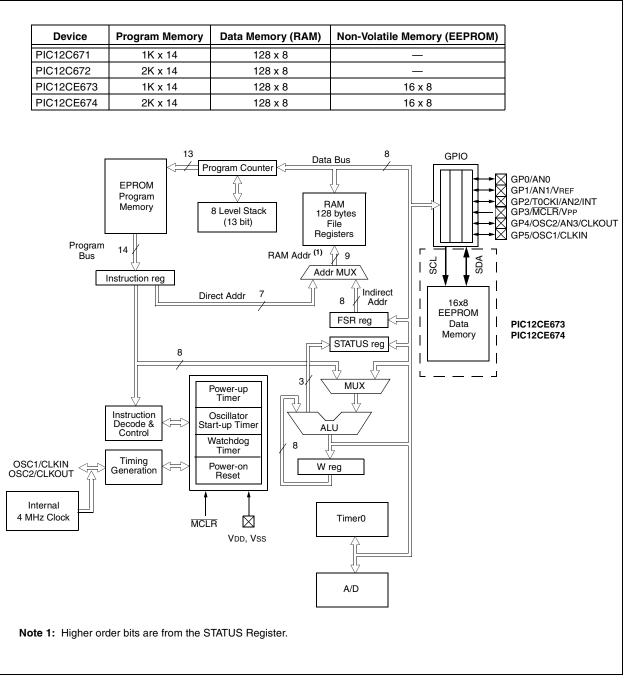
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIJ
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lc672-04-sm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PIC12C67X BLOCK DIAGRAM

FIGURE 4-2: PIC12C67X REGISTER FILE MAP

	WAF		
File Address	6		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
02h	STATUS	STATUS	83h
03h	FSR	FSR	84h
0411 05h	GPIO	TRIS	85h
	GFIO	INIS	_
06h 07h			86h 87h
07h 08h			88h
09h			89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh		PCON	8Eh
0Fh		OSCCAL	8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES		9Eh
1Fh	ADCON0	ADCON1	9Fh
20h			A0h
2011		General	AUII
		Purpose	
	General	Register	BFh
	Purpose		C0h
	Register		
			EFh
70h		Mapped	F0h
		in Bank 0	
7Fh	Bank 0	Bank 1	_ FFh
	Banko	Dunki	
	Unimplemented dat	ta memory locatio	ns, read
	as '0'.		
Note 1:	Not a physical regis	ster.	

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The Special Function Registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

4.2.2.2 OPTION REGISTER

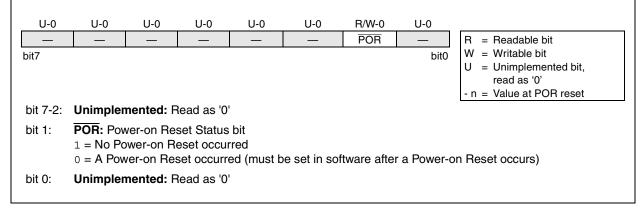
The OPTION Register is a readable and writable register, which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0 and the weak pull-ups on GPIO. Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION<3>).

REGISTER 4-2: OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	R = Readable bit
bit7		bit0 bit0 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset						
bit 7:	GPPU: We 1 = Weak 0 = Weak	pull-ups o	disabled	3P0, GP1,	GP3)			
bit 6:		pt on risi	ng edge of		KI/AN2/IN KI/AN2/IN			
bit 5:	TOCS: TM 1 = Transit 0 = Interna	ion on Gl	P2/T0CKI/	AN2/INT				
bit 4:		nent on hi	gh-to-low	transition	on GP2/T0 on GP2/T0			
bit 3:	PSA: Pres 1 = Presca 0 = Presca	aler is ass	signed to t	he WDT	module			
bit 2-0:	PS<2:0> :	Prescaler	Rate Sel	ect bits				
	Bit Value	TMR0 R	ate WD	Γ Rate				
	000 001 010 011 100 101 110 111	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 12 1 : 25	2 1: 4 1: 28 1:	2 4				

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various enable and flag bits for the TMR0 Register overflow, GPIO port change and external GP2/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).


REGISTER 4-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
GIE bit7	PEIE	PEIE TOIE INTE GPIE TOIF INTF GPIF R = Readable bit bit0 W Writable bit U U Unimplemented bit, read as '0' - n Value at POR reset							
bit 7:	GIE: Glob 1 = Enabl 0 = Disab	es all un-r	nasked in						
bit 6:	1 = Enabl	PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts							
bit 5:	1 = Enabl	FOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 2 = Disables the TMR0 interrupt							
bit 4:		es the ext	ernal inter	rupt on GI	P2/INT/T00 P2/INT/T00				
bit 3:	GPIE: GPIO Interrupt on Change Enable bit 1 = Enables the GPIO Interrupt on Change 0 = Disables the GPIO Interrupt on Change								
bit 2:	TOIF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow								
bit 1:		xternal int	errupt on	GP2/INT/1				e cleared in software)	
bit 0:	 0 = The external interrupt on GP2/INT/T0CKI/AN2 pin did not occur GPIF: GPIO Interrupt on Change Flag bit 1 = GP0, GP1 or GP3 pins changed state (must be cleared in software) 0 = Neither GP0, GP1 nor GP3 pins have changed state 								

4.2.2.6 PCON REGISTER

The Power Control (PCON) Register contains a flag bit to allow differentiation between a Power-on Reset (POR), an external MCLR Reset and a WDT Reset.

REGISTER 4-6: PCON REGISTER (ADDRESS 8Eh)

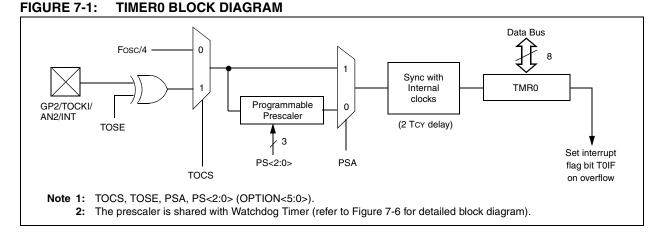
7.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

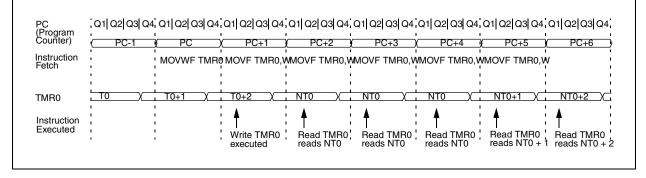
- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit TOCS (OPTION<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/TOCKI. The incrementing edge is determined by the bit TOSE

(OPTION<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

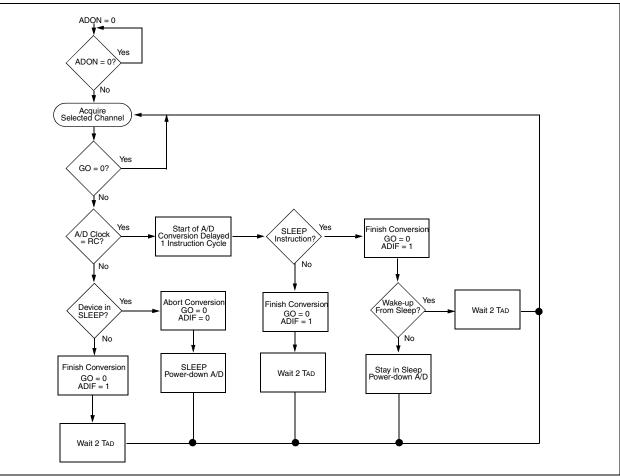

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

TABLE 8-2: SUMMARY OF A/D REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
0Bh/8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	GPIE	T0IF	INTF	GPIF	x000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	—	-	—	—	-0	-0
8Ch	PIE1	—	ADIE	—	_	_	_	—	—	-0	-0
1Eh	ADRES	A/D Res	sult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	reserved	CHS1	CHS0	GO/DONE	reserved	ADON	0000 0000	0000 0000
9Fh	ADCON1	_	_	_		-	PCFG2	PCFG1	PCFG0	000	000
05h	GPIO	SCL ⁽²⁾	SDA ⁽²⁾	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu
85h	TRIS	_	_	TRIS5	TRIS4	TRIS3	TRIS2	TRIS1	TRIS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers can be addressed from either bank.

2: The SCL (GP7) and SDA (GP6) bits are unimplemented on the PIC12C671/672 and read as '0'.

9.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at $V_{DD} = 5V$ and 25° C. See Section 13.0 for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the last address of the program memory which contains the calibration value for the internal RC oscillator. This value is programmed as a RETLW XX instruction where XX is the calibration value. In order to retrieve the calibration value, issue a CALL YY instruction where YY is the last location in program memory (03FFh for the PIC12C671 and the PIC12CE673, 07FFh for the PIC12C672 and the PIC12CE674). Control will be returned to the user's program with the calibration value loaded into the W register. The program should then perform a MOVWF OSCCAL instruction to load the value into the internal RC oscillator trim register.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency. Bits <7:4>, CAL<3:0> are used for fine calibration, while bit 3, CALFST, and bit 2, CALSLW, are used for more coarse adjustment. Adjusting CAL<3:0> from 0000 to 1111 yields a higher clock speed. Set CALFST = 1 for greater increase in frequency or set CALSLW = 1 for greater decrease in frequency. Note that bits 1 and 0 of OSCCAL are unimplemented and should be written as 0 when modifying OSCCAL for compatibility with future devices.

Note:	Please note that erasing the device will
	also erase the pre-programmed internal
	calibration value for the internal oscillator.
	The calibration value must be saved prior
	to erasing the part.

9.2.6 CLKOUT

The PIC12C67X can be configured to provide a clock out signal (CLKOUT) on pin 3 when the configuration word address (2007h) is programmed with Fosc2, Fosc1, and Fosc0, equal to 101 for INTRC or 111 for EXTRC. The oscillator frequency, divided by 4, can be used for test purposes or to synchronize other logic.

9.3 <u>Reset</u>

The PIC12C67X differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), MCLR Reset, WDT Reset, and MCLR Reset during SLEEP. They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations, as indicated in Table 9-5. These bits are used in software to determine the nature of the reset. See Table 9-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 9-6.

The PIC12C67X has a MCLR noise filter in the MCLR reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

When MCLR is asserted, the state of the OSC1/CLKIN and CLKOUT/OSC2 pins are as follows:

TABLE 9-3:CLKIN/CLKOUT PIN STATESWHEN MCLR ASSERTED

Oscillator Mode	OSC1/CLKIN Pin	OSC2/CLKout Pin
EXTRC, CLKOUT on OSC2	OSC1 pin is tristated and driven by external circuit	OSC2 pin is driven low
EXTRC, OSC2 is I/O	OSC1 pin is tristated and driven by external circuit	OSC2 pin is tristate input
INTRC, CLKOUT on OSC2	OSC1 pin is tristate input	OSC2 pin is driven low
INTRC, OSC2 is I/O	OSC1 pin is tristate input	OSC2 pin is tristate input

TABLE 9-6: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0-
MCLR Reset during normal operation	000h	000u uuuu	u-
MCLR Reset during SLEEP	000h	0001 0uuu	u-
WDT Reset during normal operation	000h	0000 uuuu	u-
WDT Wake-up from SLEEP	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 9-7: INITIALIZATION CON\DITIONS FOR ALL REGISTERS

Power-on Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
xxxx xxxx	<u>uuuu</u> uuuu	սսսս սսսս
0000 0000	0000 0000	0000 0000
xxxx xxxx	นนนน นนนน	սսսս սսսս
0000 0000	0000 0000	PC + 1 ⁽²⁾
0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
xxxx xxxx	นนนน นนนน	սսսս սսսս
11xx xxxx	11uu uuuu	11uu uuuu
xx xxxx	uu uuuu	uu uuuu
0 0000	0 0000	u uuuu
0000 000x	0000 000u	uuuu uqqq ⁽¹⁾
-0	-0	- <u>q</u> (4)
0000 0000	0000 0000	uuuu uquu ⁽⁵⁾
1111 1111	1111 1111	սսսս սսսս
11 1111	11 1111	uu uuuu
-0	-0	-u
0-	u-	u-
0111 00	uuuu uu	uuuu uu
000	000	uuu
	xxxx xxxx 0000 0000 xxxx xxxx 0000 0000 0001 1xxx xxxx xxxx 11xx xxx 11xx xxxx xx xxxx xx xxxx 0 0000 0000 000x -0 0000 0000 1111 1111 11 1111 -0 0.011 00	WDT Reset xxxx xxxx uuuu uuuu 0000 0000 0000 0000 xxxx xxxx uuuu uuuu 0000 0000 0000 0000 xxxx xxxx uuuu uuuu 0001 1xxx 000q quuu ⁽³⁾ xxxx xxxx uuuu uuuu 11xx xxxx 11uu uuuu 11xx xxxx 11uu uuuu xx xxxx uu uuuu xx xxxx uu uuuu 0 0000 0 0000 0000 000x 0000 000u -0 -0 0000 0000 0000 0000 1111 111 1111 111 11 111 11 1111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0111 00 uuuu uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 9-5 for reset value for specific condition.

4: If wake-up was due to A/D completing then bit 6 = 1, all other interrupts generating a wake-up will cause bit 6 = u.

5: If wake-up was due to A/D completing then bit 3 = 0, all other interrupts generating a wake-up will cause bit 3 = u.

PIC12C67X

NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	0 0	0000	0xx0	0000
Description:	No opera	ation.		
Words:	1			
Cycles:	1			
Example	NOP			

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} \text{TOS} \rightarrow \text{PC}, \\ 1 \rightarrow \text{GIE} \end{array}$
Status Affected:	None
Encoding:	00 0000 0000 1001
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Inter- rupt Enable bit, GIE (INTCON<7>). This is a two cycle instruction.
Words:	1
Cycles:	2
Example	RETFIE
	After Interrupt PC = TOS GIE = 1

OPTION	Load Option Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION$
Status Affected:	None
Encoding:	00 0000 0110 0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a read- able/writable register, the user can directly address it.
Words:	1
Cycles:	1
Example	

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC							
Status Affected:	None							
Encoding:	11 01xx kkkk kkkk							
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.							
Words:	1							
Cycles:	2							
Example	CALL TABLE;W contains table :offset value							
TABLE	• ;W now has table value							
	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;							
	RETLW kn ;End of table							
	Before Instruction W = 0x07							
	After Instruction W = value of k8							

RETURN	N Return from Subroutine RRF	RRF	Rotate Right f through Carry				
Syntax:	[label] RETURN	Syntax:	[<i>label</i>] RRF f,d				
Operands:	None	Operands:	$0 \le f \le 127$				
Operation:	$TOS \rightarrow PC$	Operation:	d ∈ [0,1]				
Status Affected:	None		See description below				
Encoding:	00 0000 0000 1000	Status Affected:	C				
Description:	Return from subroutine. The stack	Encoding:	00 1100 dfff ffff				
	is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right throug the Carry Flag. If 'd' is 0, the resu is placed in the W register. If 'd' 1, the result is placed back in re				
Words:	1	ister 'f'.					
Cycles: Example	2 RETURN		C Register f				
	After Interrupt	Words:	1				
	PC = TOS	Cycles:	1				
		Example	rrf REG1 , 0				
			Before Instruction				
			REG1 = 1110 0110 C = 0				
			After Instruction REG1 = 1110 0110				
			W = 0111 0011				
			C = 0				

RLF	Rotate Left f through Carry	SLEEP			
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[label] SLEEP		
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	None		
Operation:	See description below	Operation:	$00h \rightarrow WDT,$		
Status Affected:	С		$0 \rightarrow \underline{WDT}$ prescaler, 1 $\rightarrow \underline{TO}$,		
Encoding:	00 1101 dfff ffff		$0 \rightarrow PD$		
Description:	The contents of register 'f' are	Status Affected:			
	rotated one bit to the left through the Carry Flag. If 'd' is 0, the result	Encoding:	00 0000 0110 0011		
	is placed in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.	Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.		
Words:	1	Words:	1		
Cycles:	1	Cycles:	1		
Example	RLF REG1,0	Example:	SLEEP		
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- · Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- · Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

11.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- · Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

11.2 MPASM Assembler

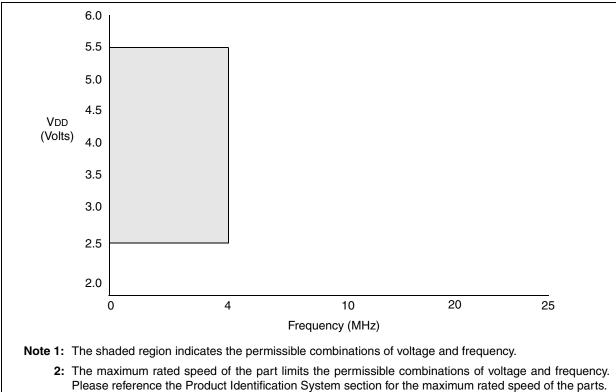
MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

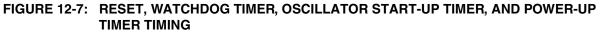
MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

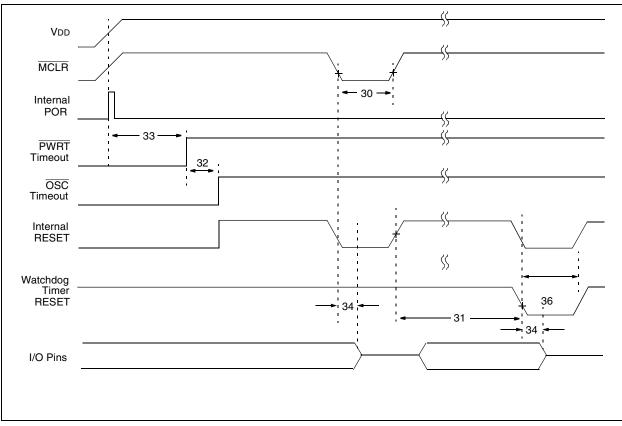
11.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

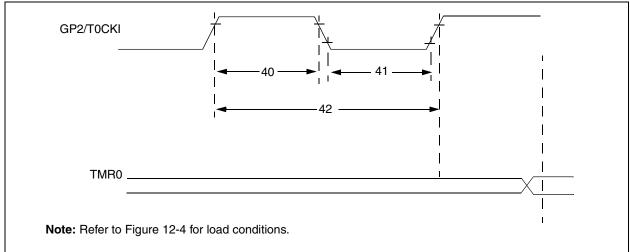

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.


For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

11.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.




TABLE 12-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μS	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset		_	2.1	μS	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-8: TIMER0 CLOCK TIMINGS

TABLE 12-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteris	Characteristic		Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
			With Prescaler	10	—	—	ns	parameter 42
41*	1* Tt0L T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	-	_	ns	Must also meet
			With Prescaler	10	-	_	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	—	_	ns	
			With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value (2, 4,, 256)
48	TCKE2tmr1	Delay from external clock of increment	2Tosc	_	7Tos c			

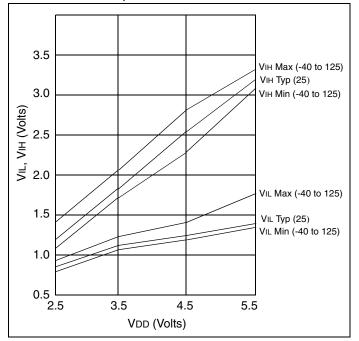
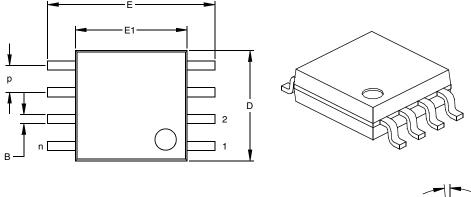
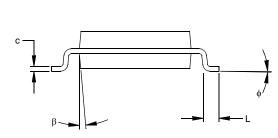
* These parameters are characterized but not tested.

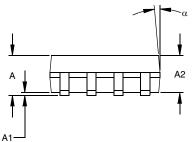
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 12-6: GPIO PULL-UP RESISTOR RANGES

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units
		GP0/	/GP1		
2.5	-40	38K	42K	63K	Ω
	25	42K	48K	63K	Ω
	85	42K	49K	63K	Ω
	125	50K	55K	63K	Ω
5.5	-40	15K	17K	20K	Ω
	25	18K	20K	23K	Ω
	85	19K	22K	25K	Ω
	125	22K	24K	28K	Ω
		GI	23		
2.5	-40	285K	346K	417K	Ω
	25	343K	414K	532K	Ω
	85	368K	457K	532K	Ω
	125	431K	504K	593K	Ω
5.5	-40	247K	292K	360K	Ω
	25	288K	341K	437K	Ω
	85	306K	371K	448K	Ω
	125	351K	407K	500K	Ω

* These parameters are characterized but not tested.

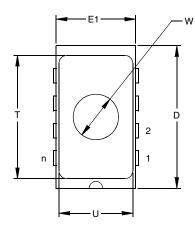

FIGURE 13-11: VIL, VIH OF NMCLR AND TOCKI vs. VDD

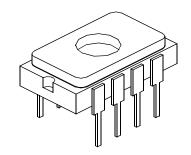
8-Lead Plastic Small Outline (SM) – Medium, 208 mil (SOIC)

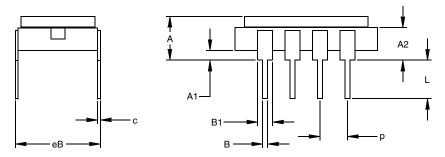
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units INCHES*			MILLIMETERS			
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	А	.070	.075	.080	1.78	1.97	2.03	
Molded Package Thickness	A2	.069	.074	.078	1.75	1.88	1.98	
Standoff	A1	.002	.005	.010	0.05	0.13	0.25	
Overall Width	Е	.300	.313	.325	7.62	7.95	8.26	
Molded Package Width	E1	.201	.208	.212	5.11	5.28	5.38	
Overall Length	D	.202	.205	.210	5.13	5.21	5.33	
Foot Length	L	.020	.025	.030	0.51	0.64	0.76	
Foot Angle	¢	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.014	.017	.020	0.36	0.43	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

*Controlling Parameter


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.


Drawing No. C04-056

8-Lead Ceramic Side Brazed Dual In-line with Window (JW) - 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units INCHES*				Ν	IILLIMETERS	6
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.145	.165	.185	3.68	4.19	4.70
Top of Body to Seating Plane	A2	.103	.123	.143	2.62	3.12	3.63
Standoff	A1	.025	.035	.045	0.64	0.89	1.14
Package Width	E1	.280	.290	.300	7.11	7.37	7.62
Overall Length	D	.510	.520	.530	12.95	13.21	13.46
Tip to Seating Plane	L	.130	.140	.150	3.30	3.56	3.81
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.055	.060	1.27	1.40	1.52
Lower Lead Width	В	.016	.018	.020	0.41	0.46	0.51
Overall Row Spacing	eB	.296	.310	.324	7.52	7.87	8.23
Window Diameter	W	.161	.166	.171	4.09	4.22	4.34
Lid Length	Т	.440	.450	.460	11.18	11.43	11.68
Lid Width	U	.260	.270	.280	6.60	6.86	7.11

*Controlling Parameter JEDC Equivalent: MS-015 Drawing No. C04-083

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12