

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

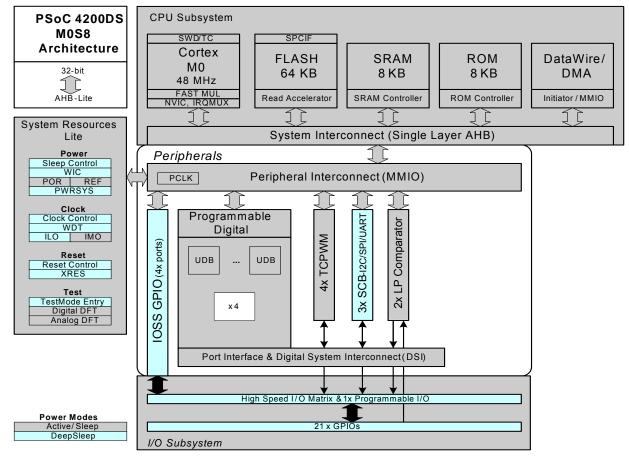
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-UFBGA, WLCSP
Supplier Device Package	25-WLCSP (2.07×2.11)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4245fni-ds402t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Contents

PSoC 4200DS Block Diagram	4
Functional Definition	5
CPU and Memory Subsystem	5
System Resources	5
Analog Block	6
Programmable Digital	6
Fixed Function Digital	7
GPIO	
Pinouts	
Power	
Unregulated External Supply	
Regulated External Supply	
Development Support	10
Development Support	10 10
Development Support	10
Development Support Documentation Online	10 10 10 10
Development Support Documentation Online Tools	10 10

Analog Peripherals	11
Digital Peripherals	15
Memory	17
System Resources	17
Ordering Information	20
Part Numbering Conventions	
Packaging	22
Acronyms	
Document Conventions	26
Units of Measure	26
Revision History	27
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	28
PSoC® Solutions	
Cypress Developer Community	28
Technical Support	28

PSoC 4200DS Block Diagram

The PSoC 4200DS devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial_Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator Integrated Development Environment (IDE) provides fully integrated programming and debug support for PSoC 4200DS devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4200DS family provides a level of security not possible with multi-chip application solutions or with microcontrollers. This is due to its ability to disable debug features, robust flash protection, and

because it allows customer-proprietary functionality to be implemented in on-chip programmable blocks.

The debug circuits are enabled by default and can only be disabled in firmware. If not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4200DS with device security enabled may not be returned for failure analysis. This is a trade-off the PSoC 4200DS allows the customer to make.

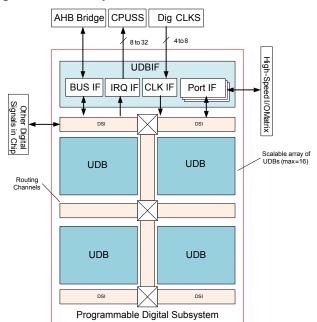
Reset

The PSoC 4200DS can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration.

Analog Block

Low-power Comparators

The PSoC 4200DS has a pair of low-power comparators, with two different power modes allowing trade-off of power versus response time.


Programmable Digital

Universal Digital Blocks (UDBs) and Port Interfaces

The PSoC 4200DS has four UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control. The UDB array is shown in the following figure.

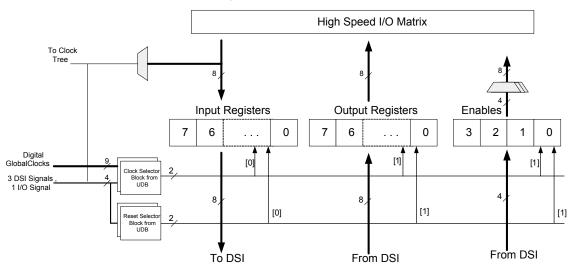

UDBs can be clocked from a clock divider block, from a port interface (required for peripherals such as SPI), and from the DSI network directly or after synchronization.

Figure 3. UDB Array

A port interface is defined, which acts as a register that can be clocked with the same source as the PLDs inside the UDB array. This allows faster operation because the inputs and outputs can be registered at the port interface close to the I/O pins and at the edge of the array. The port interface registers can be clocked by one of the I/Os from the same port. This allows interfaces such as SPI to operate at higher clock speeds by eliminating the delay for the port input to be routed over DSI and used to register other inputs. The port interface is shown in Figure 4.

The UDBs can generate interrupts (one UDB at a time) to the interrupt controller. The UDBs retain the ability to connect to any pin on the chip through the DSI.

Figure 4. Port Interface

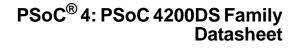
Pinouts

The following is the pin list for the PSoC 4200DS. Pins 16, 17, and 18 are No-Connects in the 28-pin SSOP package.

Table 1. PSoC 4200DS Pin Description

28-Pin	SSOP	25-Ba	III CSP			Alternate Funct	ions for Pins			Din Description
Pin	Name	Pin	Name	Analog	PRGIO	Alt 1	Alt 2	Alt 3	Alt 4	Pin Description
19	P0.0	E4	P0.0	lpcomp.in_p[0]		tcpwm.line[2]			scb[0].spi_select 1	P0.0, LPC0, TCPWM2, SCB0
20	P0.1	E3	P0.1	lpcomp.in_n[0]		tcpwm.line_compl[2]			scb[0].spi_select 2	P0.1, LPC0, TCPWM2, SCB0
21	P0.2	D3	P0.2			tcpwm.line[3]			scb[0].spi_select 3	P0.2, TCPWM3, SCB0
22	P0.4	E2	P0.4				scb[1].uart_rx	scb[1].i2c_sc I	scb[1].spi_mosi	P0.4, SCB1
23	P0.5	C4	P0.5				scb[1].uart_tx	scb[1].i2c_sd a	scb[1].spi_miso	P0.5, SCB1
24	P0.6	C3	P0.6			ext_clk	scb[1].uart_cts		scb[1].spi_clk	P0.6, Ext Clock, SCB1
25	XRES	D2	XRES							XRES
26	VCCD	E1	VCCD							Regulator Output
28	VSSD	D1	VSSD							Power Supply
27	VDDD	C1	VDDD							Ground
1	P1.0	C2	P1.0			tcpwm.line[2]	scb[0].uart_rx	scb[0].i2c_sc I	scb[0].spi_mosi	P1.0, TCPWM2, SCB0
2	P1.1	B2	P1.1			tcpwm.line_compl[2]	scb[0].uart_tx	scb[0].i2c_sd a	scb[0].spi_miso	P1.1, TCPWM2, SCB0
3	P1.2	B1	P1.2			tcpwm.line[3]	scb[0].uart_cts		scb[0].spi_clk	P1.2, TCPWM3, SCB0
4	P1.3	A1	P1.3			tcpwm.line_compl[3]	scb[0].uart_rts		scb[0].spi_select 0	P1.3, TCPWM3, SCB0
5	P2.2	B3	P2.2		prgio[0].io[2]		scb[2].uart_rx	scb[2].i2c_sc I	scb[2].spi_mosi	P2.2, PRG, SCB2
6	P2.3	A2	P2.3		prgio[0].io[3]		scb[2].uart_tx	scb[2].i2c_sd a	scb[2].spi_miso	P2.3, PRG. SCB2
7	P2.4	B4	P2.4		prgio[0].io[4]	tcpwm.line[0]	scb[2].uart_cts	lpcomp.comp [0]	scb[2].spi_clk	P2.4, PRG, TCPWM0, SCB2, LPC0
8	P2.5	A4	P2.5		prgio[0].io[5]	tcpwm.line_compl[0]	scb[2].uart_rts		scb[2].spi_select	
9	P2.6	A3	P2.6		prgio[0].io[6]	tcpwm.line[1]			scb[2].spi_select 1	P2.6, PRG, TCPWM1, SCB2
10	P2.7	A5	P2.7		prgio[0].io[7]	tcpwm.line_compl[1]			scb[2].spi_select 2	P2.7, PRG, TCPWM1, SCB2

Table 1. PSoC 4200DS Pin Description (continued)


28-Pin	28-Pin SSOP 25-Ball CSP		Alternate Functions for Pins						Pin Description	
Pin	Name	Pin	Name	Analog	PRGIO	Alt 1	Alt 2	Alt 3	Alt 4	Fill Description
11	P3.0	D5	P3.0			tcpwm.line[0]	scb[1].uart_rx	scb[1].i2c_sc I	scb[1].spi_mosi	P3.0, TCPWM0, SCB1
12	P3.1	C5	P3.1			tcpwm.line_compl[0]	scb[1].uart_tx	scb[1].i2c_sd a	scb[1].spi_miso	P3.1, TCPWM0, SCB1
13	P3.2	E5	P3.2			tcpwm.line[1]	scb[1].uart_cts	swd_data	scb[1].spi_clk	P3.2, TCPWM1, SCB1, SWD_IO
14	P3.3	B5	P3.3			tcpwm.line_compl[1]	scb[1].uart_rts	swd_clk	scb[1].spi_select 0	P3.3, TCPWM1, SCB1, SWD_CLK
15	P3.4	D4	P3.4						scb[1].spi_select 1	P3.4, SCB1

Descriptions of the power pin functions are as follows:

VDDD: Power supply for the chip.

VSSD: Ground pin.

VCCD: Regulated digital supply (1.8 V ±5% if supplied externally).

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	-	6	V	Absolute maximum
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SSD}	-0.5	-	1.95	V	Absolute maximum
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	-	V _{DD} +0. 5	V	Absolute maximum
SID4	I _{GPIO_ABS}	Current per GPIO	-25	_	25	mA	Absolute maximum
SID5	I _{G-PIO_injection}	GPIO injection current per pin	-0.5	-	0.5	mA	Absolute maximum
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	
BID46	LU	Pin current for latch-up	-140	_	140	mA	

Device Level Specifications

All specifications are valid for -40 °C \leq TA \leq 85 °C and TJ \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Spec Id#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID53	V _{DDD}	Power supply input voltage unregulated	1.8	-	5.5	V	With on-chip internal regulator enabled
SID255	V _{DDD}	Power supply input voltage externally regulated	1.71	1.8	1.89	V	Externally regulated within this range
SID54	V _{CCD}	Output voltage (for core logic)	_	1.8	-	V	
SID55	C _{EFC}	External regulator voltage bypass	-	0.1	-	μF	X5R ceramic or better
SID56	C _{EXC}	Power supply decoupling capacitor	-	1	-	μF	X5R ceramic or better
Active Mod	le	· · ·				•	
SID6	I _{DD1}	Execute from flash; CPU at 6 MHz	_	2.1	2.85	mA	
SID7	I _{DD2}	Execute from flash; CPU at 12 MHz	_	3.6	4	mA	
SID8	I _{DD3}	Execute from flash; CPU at 24 MHz	_	5.3	6	mA	
SID9	I _{DD4}	Execute from flash; CPU at 48 MHz	_	9.8	13	mA	
Sleep Mod	9						·
SID21	I _{DD16}	I ² C wakeup, WDT, and comparators on. Regulator off.	-	1.45	1.65	mA	V _{DD} = 1.71 to 1.89, 6 MHz
SID22	I _{DD17}	I ² C wakeup, WDT, and comparators on.	_	1.8	2.45	mA	V _{DD} = 1.8 to 5.5, 6 MHz
SID23	I _{DD18}	I ² C wakeup, WDT, and comparators on. Regulator off.	_	1.6	1.9	mA	V _{DD} = 1.71 to 1.89, 12 MHz

Note

 Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 3. DC Specifications (continued)

Spec Id#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions			
SID24	I _{DD19}	I ² C wakeup, WDT, and comparators on.	_	2	2.7	mA	V _{DD} = 1.8 to 5.5, 12 MHz			
Deep Sleep Mode, -40 °C to + 60 °C (Guaranteed by characterization)										
SID30	I _{DD25}	I ² C wakeup and WDT on. Regulator off.	_	2	15	μA	V _{DD} = 1.71 to 1.89			
SID31	I _{DD26}	I ² C wakeup and WDT on.	_	2	15	μA	V _{DD} = 1.8 to 3.6			
SID32	I _{DD27}	I ² C wakeup and WDT on.	_	2	15	μA	V _{DD} = 3.6 to 5.5			
Deep Sleep) Mode, +85 °C (Gเ	aranteed by characterization)								
SID33	I _{DD28}	I ² C wakeup and WDT on. Regulator off.	_	4	45	μA	V _{DD} = 1.71 to 1.89			
SID34	I _{DD29}	I ² C wakeup and WDT on.	_	4	45	μA	V _{DD} = 1.8 to 3.6			
SID35	I _{DD30}	I ² C wakeup and WDT on.	-	4	45	μA	V _{DD} = 3.6 to 5.5			
XRES curre	XRES current									
SID307	I _{DD_XR}	Supply current while XRES (Active Low) asserted	_	2	5	mA				

Table 4. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49	T _{SLEEP}	Wakeup from sleep mode	-	0	_	μs	Guaranteed by characterization
SID50	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	-	35	μs	Guaranteed by characterization
SID52	T _{RESETWIDTH}	External reset pulse width	1	-	_	μs	Guaranteed by characterization

GPIO

Table 5. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	—	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	_	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-	V	I _{OH} =4 mA at 3 V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8 V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8 V V _{DDD}

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 8 mA at 3 V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3 V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID66	C _{IN}	Input capacitance	-	-	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDD} \ge 2.7 \text{ V}$
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	-	-	mV	
SID69	IDIODE	Current through protection diode to V _{DD} /Vss	-	-	100	μA	Guaranteed by characterization
SID69A	I _{TOT_GPIO}	Maximum Total Source or Sink Chip Current	-	-	200	mA	Guaranteed by characterization

Table 5. GPIO DC Specifications (continued)

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)^[3]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	ns	3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	ns	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	33	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	_	-	16.7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	_	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	_	-	3.5	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	-	-	48	MHz	90/10% V _{IO}

Note
3. Simultaneous switching transitions on many fully-loaded GPIO pins may cause ground perturbations depending on several factors including PCB and decoupling capacitor design. For applications that are very sensitive to ground perturbations, the slower GPIO slew rate setting may be used.

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Guaranteed by characterization
SID82	I _{DIODE}	Current through protection diode to V_{DDD}/V_{SS}	_	_	100	μA	Guaranteed by characterization

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	Ι	μs	Guaranteed by characterization

Analog Peripherals

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	-	-	±4	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V _{DD} -1.	-	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low-power mode	0	-	V _{DDD}	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	Guaranteed by characterization
SID90	Z _{CMP}	DC input impedance of comparator	35	_	-	MΩ	Guaranteed by characterization

Table 10. Comparator AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID91	T _{RESP1}	Response time, normal mode	-	-	110	ns	50-mV overdrive
SID258	T _{RESP2}	Response time, low power mode	-	-	200	ns	50-mV overdrive

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.

Timer/Counter/PWM

Table 11. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	-	45	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	-	155	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	_	650	μA	All modes (Timer/Counter/PWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	-	-	Fc	MHz	Fc max = Fcpu. Maximum = 48 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	_	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	_	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	_	_	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

βC

Table 12. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μΑ	
SID150	I _{I2C2}	Block current consumption at 400 kHz	_	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	_	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	_	1.4	μA	

Table 13. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Mbps	

Table 14. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	Ι	55	μA	
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	_	_	312	μA	

Table 15. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	Ι	Ι	1	Mbps	

SPI Specifications

Table 16. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mbits/sec	-	-	360	μA	
SID164	I _{SPI2}	Block current consumption at 4 Mbits/sec	_	-	560	μA	
SID165	I _{SPI3}	Block current consumption at 8 Mbits/sec	-	-	600	μA	

Table 17. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	011	SPI operating frequency (master; 6X oversampling)	-	-	8	MHz	

Table 18. Fixed SPI Master mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID167	T _{DMO}	MOSI valid after Sclock driving edge	-	-	15	ns
SID168	T _{DSI}	MISO valid before Sclock capturing edge. Full clock, late MISO Sampling used	20	-	-	ns
SID169	T _{HMO}	Previous MOSI data hold time with respect to capturing edge at Slave	0	-	-	ns

Table 19. Fixed SPI Slave mode AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units
SID170	T _{DMI}	MOSI valid before Sclock capturing edge	40	-	_	ns
SID171	T _{DSO}	MISO valid after Sclock driving edge	-	-	42 + 3 × (1/FCPU)	ns
SID171A	T _{DSO_ext}	MISO valid after Sclock driving edge in Ext. Clock mode	-	-	48	ns
SID172	T _{HSO}	Previous MISO data hold time	0	-	_	ns
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	_	_	ns

Memory

Table 20. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 21. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE}	Row (block) write time (erase and program)	-	_	20	ms	Row (block) = 256 bytes
SID175	T _{ROWERASE}	Row erase time	-	-	13	ms	
SID176	T _{ROWPROGRAM}	Row program time after erase	-	-	7	ms	
SID178	T _{BULKERASE}	Bulk erase time (64 KB)	-	-	35	ms	
SID180	T _{DEVPROG}	Total device program time	-	-	15	seconds	Guaranteed by charac- terization
SID181	F _{END}	Flash endurance	100 K	-	-	cycles	Guaranteed by charac- terization
SID182	F _{RET}	Flash retention. $T_A \le 55 \text{ °C}$, 100 K P/E cycles	20	-	-	years	Guaranteed by charac- terization
SID182A		Flash retention. $T_A \leq 85~^\circ\text{C},~10~\text{K}$ P/E cycles	10	_	-	years	Guaranteed by charac- terization

System Resources

Power-on-Reset and Brown-out Detect (BOD) Specifications

Table 22. Power On Reset

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45		Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4		Guaranteed by charac- terization
BID51	Twupo	Initialization after Power-On	-	-	3	ms	

Table 23. Brown-out Detect (BOD) for $\mathrm{V}_{\mathrm{CCD}}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	-	1.62	V	Guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	-	1.5	V	Guaranteed by characterization

SWD Interface

Table 24. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \le V_{DD} \le 5.5~V$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \leq \text{V}_{DD} \leq 3.3 \text{ V}$	-	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	-	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	-	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 25. IMO DC Specifications

(Guaranteed by Design)

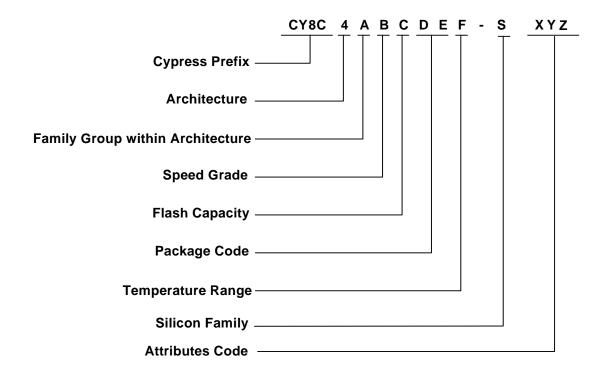
Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	250	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	_	180	μA	

Table 26. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation	_	-	±2	%	
SID226	T _{STARTIMO}	IMO startup time	_	-	7	μs	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	_	145	_	ps	

Internal Low-Speed Oscillator

Table 27. ILO DC Specifications


(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current	-	0.3	1.05	μA	Guaranteed by Characterization

Part Numbering Conventions

The part number fields are defined as follows.

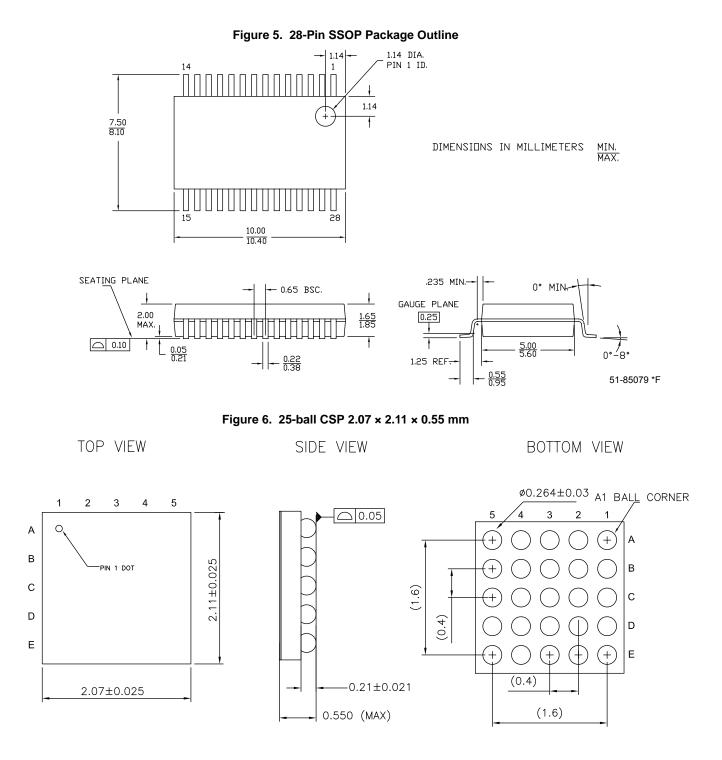
Packaging

The description of the PSoC 4200D package dimensions follows.

Spec Id#	Package	Description	Package Dwg #
PKG_1		28-pin SSOP, 8 mm × 10 mm × 2.0 mm height with 0.65-mm pitch	51-85079
PKG_2		25-ball CSP, 2.07 mm × 2.11 mm × 0.55 mm height with 0.4-mm pitch	001-97945

Table 33. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40		100	°C
T _{JA}	Package θ _{JA} (28-pin SSOP)		_	67	-	°C/Watt
T _{JC}	Package θ _{JC} (28-pin SSOP)		_	26	-	°C/Watt
T _{JA}	Package θ _{JA} (25-ball CSP)		-	48	-	°C/Watt
T _{JC}	Package θ_{JC} (25-ball CSP)		_	0.47	-	°C/Watt


Table 34. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All packages	260 °C	30 seconds

Table 35. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3
25-ball CSP	MSL 1

Note: 1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18 2. ALL DIMENSIONS ARE IN MILLIMETER 001-97945 **

Acronyms

Table 36. Acronyms Used in this Document

Acronym	Description		
abus	analog local bus		
ADC	analog-to-digital converter		
AG	analog global		
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus		
ALU	arithmetic logic unit		
AMUXBUS	analog multiplexer bus		
API	application programming interface		
APSR	application program status register		
ARM®	advanced RISC machine, a CPU architecture		
ATM	automatic thump mode		
BW	bandwidth		
CAN	Controller Area Network, a communications protocol		
CMRR	common-mode rejection ratio		
CPU	central processing unit		
CRC	cyclic redundancy check, an error-checking protocol		
DAC	digital-to-analog converter, see also IDAC, VDAC		
DFB	digital filter block		
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.		
DMIPS	Dhrystone million instructions per second		
DMA	direct memory access, see also TD		
DNL	differential nonlinearity, see also INL		
DNU	do not use		
DR	port write data registers		
DSI	digital system interconnect		
DWT	data watchpoint and trace		
ECC	error correcting code		
ECO	external crystal oscillator		
EEPROM	electrically erasable programmable read-only memory		
EMI	electromagnetic interference		
EMIF	external memory interface		
EOC	end of conversion		
EOF	end of frame		
EPSR	execution program status register		
ESD	electrostatic discharge		

Acronym	Description		
ETM	embedded trace macrocell		
FIR	finite impulse response, see also IIR		
FPB	flash patch and breakpoint		
FS	full-speed		
GPIO	general-purpose input/output, applies to a PSoC pin		
HVI	high-voltage interrupt, see also LVI, LVD		
IC	integrated circuit		
IDAC	current DAC, see also DAC, VDAC		
IDE	integrated development environment		
l ² C, or IIC	Inter-Integrated Circuit, a communications protocol		
lir	infinite impulse response, see also FIR		
ILO	internal low-speed oscillator, see also IMO		
IMO	internal main oscillator, see also ILO		
INL	integral nonlinearity, see also DNL		
I/O	input/output, see also GPIO, DIO, SIO, USBIO		
IPOR	initial power-on reset		
IPSR	interrupt program status register		
IRQ	interrupt request		
ITM	instrumentation trace macrocell		
LCD	liquid crystal display		
LIN	Local Interconnect Network, a communications protocol.		
LR	link register		
LUT	lookup table		
LVD	low-voltage detect, see also LVI		
LVI	low-voltage interrupt, see also HVI		
LVTTL	low-voltage transistor-transistor logic		
MAC	multiply-accumulate		
MCU	microcontroller unit		
MISO	master-in slave-out		
NC	no connect		
NMI	nonmaskable interrupt		
NRZ	non-return-to-zero		
NVIC	nested vectored interrupt controller		
NVL	nonvolatile latch, see also WOL		
opamp	operational amplifier		
PAL	programmable array logic, see also PLD		
PC	program counter		
PCB	printed circuit board		

Document Conventions

Units of Measure

Table 37. Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
dB	decibel		
fF	femto farad		
Hz	hertz		
KB	1024 bytes		
kbps	kilobits per second		
Khr	kilohour		
kHz	kilohertz		
kΩ	kilo ohm		
ksps	kilosamples per second		
LSB	least significant bit		
Mbps	megabits per second		
MHz	megahertz		
MΩ	mega-ohm		
Msps	megasamples per second		
μA	microampere		
μF	microfarad		
μH	microhenry		
μs	microsecond		
μV	microvolt		
μW	microwatt		
mA	milliampere		
ms	millisecond		
mV	millivolt		
nA	nanoampere		
ns	nanosecond		
nV	nanovolt		
Ω	ohm		
pF	picofarad		
ppm	parts per million		
ps	picosecond		
S	second		
sps	samples per second		
sqrtHz	square root of hertz		
V	volt		

Revision History

Description Title: PSoC [®] 4: PSoC 4200DS Family Datasheet Programmable System-on-Chip (PSoC [®]) Document Number: 001-98044					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	4795389	WKA	06/23/2015	New datasheet	
*A	4931127	WKA	09/23/2015	/23/2015 Removed 28-pin SSOP package. Updated Pinouts. Updated DC Specifications. Removed SID85A, SID247A, SID259, and SID92. Added BID51.	
*В	4958966	WKA	10/12/2015	Updated package dimensions. Updated bulk erase time to 64 KB. Changed SID226 max to 7. Updated T_{JA} typ to 48 and T_{JC} typ to 0.47.	
*C	5759255	WKA	05/31/2017	Added 28-pin SSOP package. Updated to new template.	
*D	5825921	WKA	07/20/2017	Updated Document Title to read as "PSoC® 4: PSoC 4200DS Family Datasheet Programmable System-on-Chip (PSoC®)". Replaced "PSoC 4200D" with "PSoC 4200DS" in all instances across the document.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/timing
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-98044 Rev. *D

[©] Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress parents you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.