E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	72
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str750fv0t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Introduction

This Datasheet contains the description of the STR750F family features, pinout, Electrical Characteristics, Mechanical Data and Ordering information.

For complete information on the Microcontroller memory, registers and peripherals. Please refer to the STR750F Reference Manual.

For information on the ARM7TDMI-S core please refer to the ARM7TDMI-S Technical Reference Manual available from Arm Ltd.

For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual

For information on third-party development tools, please refer to the http://www.st.com/mcu website.

3.1 Functional description

The STR750F family includes devices in 2 package sizes: 64-pin and 100-pin. Both types have the following common features:

ARM7TDMI-S™ core with embedded Flash & RAM

STR750F family has an embedded ARM core and is therefore compatible with all ARM tools and software. It combines the high performance ARM7TDMI-S[™] CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage FLASH memory and high-speed RAM.

Figure 1 shows the general block diagram of the device family.

Embedded Flash memory

Up to 256 KBytes of embedded Flash is available in Bank 0 for storing programs and data. An additional Bank 1 provides 16 Kbytes of RWW (Read While Write) memory allowing it to be erased/programmed on-the-fly. This partitioning feature is ideal for storing application parameters.

- When configured in burst mode, access to Flash memory is performed at CPU clock speed with 0 wait states for sequential accesses and 1 wait state for random access (maximum 60 MHz).
- When not configured in burst mode, access to Flash memory is performed at CPU clock speed with 0 wait states (maximum 32 MHz)

Embedded SRAM

16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

Enhanced interrupt controller (EIC)

In addition to the standard ARM interrupt controller, the STR750F embeds a nested interrupt controller able to handle up to 32 vectors and 16 priority levels. This additional hardware block provides flexible interrupt management features with minimal interrupt latency.

Serial memory interface (SMI)

The Serial Memory interface is directly able to access up to 4 serial FLASH devices. It can be used to access data, execute code directly or boot the application from external memory. The memory is addressed as 4 banks of up to 16 Mbytes each.

Clocks and start-up

After RESET or when exiting from Low Power Mode, the CPU is clocked immediately by an internal RC oscillator (FREEOSC) at a frequency centered around 5 MHz, so the application code can start executing without delay. In parallel, the 4/8 MHz Oscillator is enabled and its stabilization time is monitored using a dedicated counter.

An oscillator failure detection is implemented: when the clock disappears on the XT1 pin, the circuit automatically switches to the FREEOSC oscillator and an interrupt is generated.

In Run mode, the AHB and APB clock speeds can be set at a large number of different frequencies thanks to the PLL and various prescalers: up to 60 MHz for AHB and up to 32 MHz for APB when fetching from Flash (64 MHz and 32 MHz when fetching from SRAM).

In SLOW mode, the AHB clock can be significantly decreased to reduce power consumption.

The built-in Clock Controller also provides the 48 MHz USB clock directly without any extra oscillators or PLL. For instance, starting from the 4 MHz crystal source, it is possible to obtain in parallel 60 MHz for the AHB clock, 48 MHz for the USB clock and 30 MHz for the APB peripherals.

Boot modes

At start-up, boot pins are used to select one of five boot options:

- Boot from internal flash
- Boot from external serial Flash memory
- Boot from internal boot loader
- Boot from internal SRAM

Booting from SMI memory allows booting from a serial flash. This way, a specific boot monitor can be implemented. Alternatively, the STR750F can boot from the internal boot loader that implements a boot from UART.

Power supply schemes

You can connect the device in any of the following ways depending on your application.

- Power Scheme 1: Single external 3.3V power source. In this configuration the V_{CORE} supply required for the internal logic is generated internally by the main voltage regulator and the V_{BACKUP} supply is generated internally by the low power voltage regulator. This scheme has the advantage of requiring only one 3.3V power source.
- Power Scheme 2: Dual external 3.3V and 1.8V power sources. In this configuration, the internal voltage regulators are switched off by forcing the VREG_DIS pin to high level. V_{CORE} is provided externally through the V₁₈ and V_{18REG} power pins and V_{BACKUP} through the V_{18_BKP} pin. This scheme is intended to save power consumption for applications which already provide an 1.8V power supply.
- Power Scheme 3: Single external 5.0V power source. In this configuration the V_{CORE} supply required for the internal logic is generated internally by the main voltage

ADC_IN13 / P1.12 ADC_IN13 / P1.12 ADC_IN14 P0.03 / TIM2_T11 / ADC_IN1 ADC_IN14 P0.03 / TIM2_T11 / ADC_IN14 ADC_IN16 P0.03 / TIM2_T11 / ADC_IN16 ADC_IN17 SSP0_IN28 ADC_IN17 SSP0_IN28 ADC_IN17 SSP0_IN28 ADC_IN16 P0.06 / SMI_DIN7 SSP0_IN28 ADC_IN16 P0.06 / SMI_DIN7 SSP0_IN28 ADC_IN17 / SSP0_IN28 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP 49 47 → V_{REG_DIS} 47 → V_{SS_IO_2} 46 → V_{SSA_ADC} 45 → V_{DDA_ADC} 44 → V_{DD_IO_2} 43 → P1.03 / TIM2_TI2 43 → P1.03 / TIM2_TI2 BOOT0 / TIM0_OC1 / P0.00 4 ADC_IN8 / TIM1_TI1 / P0.29 5 TIM1_OC1 / P0.28 G P0.14 / CAN_RX or USB_DP
 P0.15 / CAN_TX or USB_DN TEST 7 ⊲42 V_{SS_IO_4} [8 UART1_TX / P0.21 [9 41 LQFP64 □ NRSTIN *(*40 UART1_IX / P0.20 [10 JTMS / P1.19 [11 JTCK / P1.18 [12 JTDO / P1.17 [13 JTDI / P1.16 [14 NRSTOUT 39 XRTC2 38 V_{18BKP} I/Os 37 □ XRTC1 36 □ V_{18BKP} 35 □ V_{SSBKP} 34 □ V_{SS18} 33 U V_{18REG} V_{DDD_IO_3} C V_{DDA_PLL} C XT2 C XT1 C V_{SS_I0_3} | SMI_CS1 / ADC_IN2 / UART0_CTS / UART2_RX /P0.12 SSA_PLL

Figure 3. LQFP64 pinout

							1			
	1	2	3	4	5	6	7	8	9	10
A	P0.03	P1.13	P1.14	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07	P1.02
в	P1.12	P0.02	P0.01	P1.05	P1.07	P1.09	P0.04	P2.13	P1.03	P2.10
с	P0.31	P0.00	V _{DD_IO}	V ₁₈	P1.10	P2.09	V _{SS_IO}	V _{SSA_ADC}	P2.11	USB_DP
D	P0.29	P0.30	V _{SS_IO}	V _{SS18}	P1.01	P1.15	V _{DD_IO}	V _{DDA_ADC}	P2.12	USB_DN
Е	P0.28	P0.23	P0.22	V _{SS_IO}	TEST	P1.00	NRSTOUT	VREG_DIS	NRSTIN	P0.14
F	P2.03	P0.21	P0.20	P2.02	P2.04	P2.05	P2.06	V _{SS18}	V _{SSBKP}	P0.15
G	NJTRST	P1.18	P1.19	P2.01	P2.00	P2.07	2.08	V _{18REG}	V _{18BKP}	XRTC2
н	P0.13	P1.16	P1.17	P2.19	P2.18	P2.17	P0.24	P2.14	P2.16	XRTC1
J	P0.11	P0.12	P1.11	P0.27	P0.19	P0.26	P0.25	P2.15	V _{DD_IO}	V _{SS_IO}
к	P0.10	P0.09	P0.08	P0.18	P0.17	P0.16	XT1	XT2	V _{DDA_PLL}	V _{SSA_PLL}

Table 4. LFBGA100 ball connections

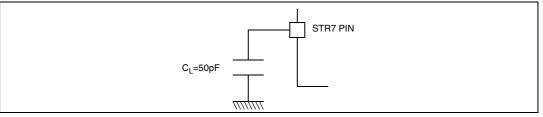
 Table 5.
 LFBGA64 ball connections

	1	2	3	4	5	6	7	8
А	P0.03	V _{SS_IO}	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07
В	P1.12	V _{DD_IO}	P1.05	P1.07	P1.09	P0.04	P1.10	P1.03
С	P0.01	P0.02	P0.00	V ₁₈	V _{SS18}	V _{DD_IO}	V _{SS_IO}	P0.14
D	P0.29	P0.28	TEST	V _{SS_IO}	VREG_DIS	V _{DDA_ADC}	V _{SSA_ADC}	P0.15
E	P1.18	P1.19	P0.20	P0.21	NRSTOUT	NRSTIN	V _{18BKP}	XRTC2
F	P0.13	NJTRST	P1.16	P1.17	V _{18REG}	V _{SS18}	V _{SSBKP}	XRTC1
G	P0.11	P0.12	P1.11	P0.19	V _{DD_IO}	V _{SS_IO}	V _{DDA_PLL}	V _{SSA_PLL}
н	P0.10	P0.09	P0.08	P0.17	P0.18	P0.16	XT2	XT1

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
7	D1	5	D1	P0.29 / TIM1_TI1 / ADC_IN8	I/O	Τ _Τ	x	х		02	х	х		Port 0.29	TIM1: Input Capture 1	ADC: Analog input 8
8	E1	6	D2	P0.28 / TIM1_OC1	I/O	Τ _Τ	х	х		02	х	х		Port 0.28	TIM1: Output Cor	npare 1
9	E5	7	D3	TEST	Ι									Reserved, mu	ist be tied to groun	d
10	E4	8	D4	VSS_IO	S									Ground Voltag	ge for digital I/Os	
11	E2			P0.23 / UART1_RTS / ADC_IN6	I/O	Τ _Τ	x	x		O2	x	x		Port 0.23	UART1: Ready To Send output ⁽⁴⁾	ADC analog input 6
12	F5			P2.04 / TIM2_OC1	I/O	Τ _Τ	x	х		02	х	х		Port 2.04	TIM2: Output Compare 1 ⁽⁴⁾	
13	F1			P2.03 / UART1_RTS	I/O	т _т	x	x		02	x	x		Port 2.03	UART1: Ready To Send output ⁽⁴⁾	
14	F4			P2.02	I/O	Τ _T	х	х		02	Х	Х		Port 2.02		
15	E3			P0.22 / UART1_CTS / ADC_IN5	I/O	Τ _Τ	x	x		O2	x	x		Port 0.22	UART1: Clear To Send input	ADC: Analog input 5
16	F2	9	E4	P0.21 / UART1_TX	I/O	Τ _Τ	x	х		02	х	х		Port 0.21	UART1: Transmit (remappable to P	data output 0.15) ⁽⁴⁾
17	F3	10	E3	P0.20 / UART1_RX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.20	UART1: Receive (remappable to P	data input 0.14) ⁽⁴⁾
18	G3	11	E2	P1.19 / JTMS	I/O	Τ _Τ	х	х		O2	х	х		JTAG mode selection input ⁽⁶⁾	Port 1.19	
19	G2	12	E1	P1.18 / JTCK	I/O	Τ _Τ	х	х		02	х	х		JTAG clock input ⁽⁶⁾	Port 1.18	
20	H3	13	F4	P1.17 / JTDO	I/O	Τ _Τ	х	х		O8	х	х		JTAG data output ⁽⁶⁾	Port 1.17	
21	H2	14	F3	P1.16 / JTDI	I/O	Τ _Τ	х	х		02	х	х		JTAG data input ⁽⁶⁾	Port 1.16	
22	G1	15	F2	NJTRST	Ι	TT								JTAG reset in	put ⁽⁵⁾	
23	G4			P2.01	I/O	T_T	х	х		02	х	Х		Port 2.01		
24	G5			P2.00	I/O	TT	X	х		O2	х	х		Port 2.00		
														ITAC	Port 0.13	
25	H1	16	F1	P0.13 / RTCK / UART0_RTS UART2_TX	I/O	Τ _Τ	х	x		O8	х	х		JTAG return clock output ⁽⁶⁾	UART0: Ready To Send output ⁽⁴⁾	UART2: Transmit Data output (when remapped) ⁽⁸⁾

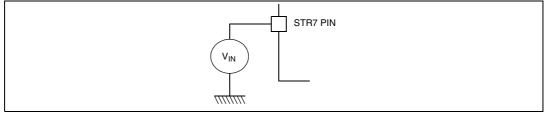
Table 6. STR750F pin description (continued)

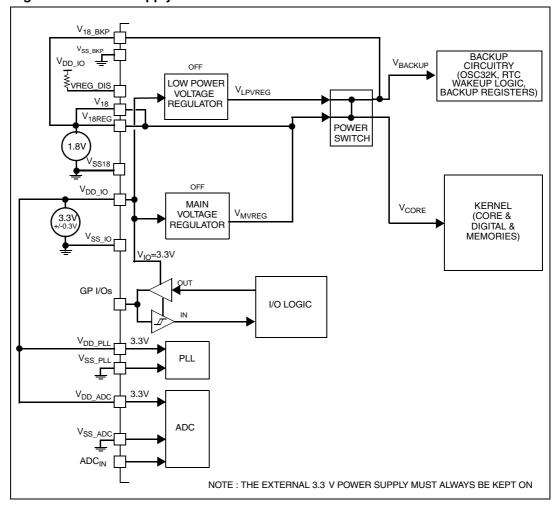
	Pin	n°					In	put		C)utpu	ıt	Š			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
68	A10			P1.02 / TIM2_OC2	I/O	Τ _Τ	х	х		02	х	х		Port 1.02	TIM2: Output con (remappable to P	npare 2 0.06) ⁽⁸⁾
69	D7	44	C6	VDD_IO	S									Supply Voltag	e for digital I/Os	
70	D8	45	D6	VDDA_ADC	S									Supply Voltag	e for A/D converte	r
71	C9			P2.11	I/O	TT	х	х		02	Х	Х		Port 2.11		
72	B10			P2.10	I/O	TT	х	х		02	Х	Х		Port 2.10		
73	C8	46	D7	VSSA_ADC	S									Ground Volta	ge for A/D converte	er
74	C7	47	C7	VSS_IO	S									Ground Volta	ge for digital I/Os	
75	E8	48	D5	VREG_DIS	I	TT								Voltage Regu	lator Disable input	
76	A9	49	A8	P0.07 / SMI_DOUT / SSP0_MOSI	I/O	TT	x	х	EIT2	O4	x	x		Port 0.07	Serial Memory Interface: data output	SSP0: Master out Slave in data
77	A8	50	A7	P0.06 / SMI_DIN / SSP0_MISO	I/O	Τ _Τ	x	х		O4	x	х		Port 0.06	Serial Memory Interface: data input	SSP0: Master in Slave out data
78	A7	51	A6	P0.05 / SSP0_SCLK / SMI_CK	I/O	Τ _Τ	x	х	EIT1	04	x	x		Port 0.05	SSP0: Serial clock	Serial Memory Interface: Serial clock output
79	B7	52	B6	P0.04 / SMI_CS0 / SSP0_NSS	I/O	Τ _Τ	x	х		O4	x	x		Port 0.04	Serial Memory Interface: chip select output 0	SSP0: Slave select input
80	C5	53	B7	P1.10 PWM_EMERGE NCY	I/O	Τ _Τ	x	х	EIT10	O2	x	x		Port 1.10	PWM: Emergency	y input
81	B6	54	B5	P1.09 / PWM1	I/O	TT	х	х	EIT9	04	Х	Х		Port 1.09	PWM: PWM1 out	put
82	C6			P2.09 / PWM1N	I/O	Τ _Τ	x	х		O2	х	х		Port 2.09	PWM: PWM1 cor output ⁽⁴⁾	nplementary
83	G7			P2.08 / PWM2	I/O	T_T	х	х		02	Х	Х		Port 2.08	PWM: PWM2 out	put ⁽⁴⁾
84	G6			P2.07 / PWM2N	I/O	Τ _Τ	х	х		02	х	х		Port 2.07	PWM: PWM2 cor output ⁽⁴⁾	nplementary
85	F7			P2.06 / PWM3	I/O	TT	х	х		02	х	х		Port 2.06	PWM: PWM3 out	put ⁽⁴⁾
86	F6			P2.05 / PWM3N	I/O	Τ _Τ	x	х		02	х	х		Port 2.05	PWM: PWM3 cor output ⁽⁴⁾	nplementary
87	A6	55	A5	P1.08 / PWM1N / ADC_IN11	I/O	Τ _Τ	x	х		04	х	х		Port 1.08	PWM: PWM1 complementary output ⁽⁸⁾	ADC: analog input 11
88	B5	56	B4	P1.07 / PWM2	I/O	TT	х	х	EIT8	04	х	Х		Port 1.07	PWM: PWM2 out	put ⁽⁴⁾
89	A5	57	A4	P1.06 / PWM2N / ADC_IN10	I/O	T _T	x	х		04	x	х		Port 1.06	PWM: PWM2 complementary output ⁽⁴⁾	ADC: analog input 10
90	B4	58	B3	P1.05 / PWM3	I/O	TT	х	х	EIT7	O4	х	Х		Port 1.05	PWM: PWM3 out	put ⁽⁴⁾


Table 6. STR750F pin description (continued)

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.


Figure 6. Pin loading conditions


6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

Figure 7. Pin input voltage

Figure 9. Power supply scheme 2

Power supply scheme 2: Dual external 1.8V and 3.3V supply

6.2.2 Current characteristics

Table 8.Current characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	150	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) ⁽²⁾	150	
	Output current sunk by any I/O and control pin	25	
IIO	Output current source by any I/Os and control pin	- 25	mA
	Injected current on NRSTIN pin	± 5	ША
I _{INJ(PIN)} ^{(3) & (4)}	Injected current on XT1 and XT2 pins	± 5	
	Injected current on any other pin ⁽⁵⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

1. The user can use GPIOs to source or sink high current (up to 20 mA for O8 type High Sink I/Os). In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption) and must follow the rules described in *Section 6.3.8: I/O port pin characteristics on page 54*.

- 2. All 3.3 V or 5.0 V power (V_{DD_IO} , V_{DDA_ADC} , V_{DDA_PLL}) and ground (V_{SS_IO} , V_{SSA_ADC} , V_{DDA_ADC}) pins must always be connected to the external 3.3V or 5.0V supply.
- 3. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. Data based on T_A=25°C.
- 4. Negative injection disturbs the analog performance of the device. See note in *Section 6.3.12: 10-bit ADC characteristics on page 72.*
- 5. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

6.2.3 Thermal characteristics

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

300

250

200

150 100

50

0

-40

25

IStop (uA)

Figure 16. Power consumption in STOP mode Figure 17. Pow in Single supply scheme (3.3 V Sing range)

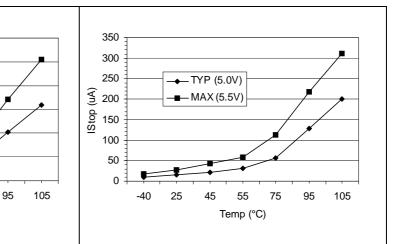
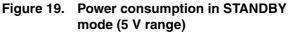
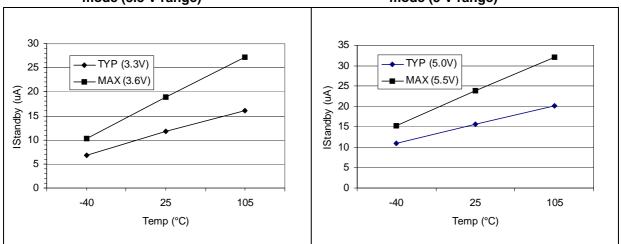


Figure 18. Power consumption in STANDBY mode (3.3 V range)

-TYP (3.3V)


MAX (3.6V)


45

55

Temp (°C)

75

7. Power consumption in STOP mode Single supply scheme (5 V range)

Table 16.Dual supply supply typical power consumption in Run, WFI, Slow and
Slow-WFI modes

To calculate the power consumption in Dual supply mode, refer to the values given in *Table 15*. and consider that this consumption is split as follows: $I_{DD}(single supply) \sim I_{DD}(dual supply) = I_{DD} \vee 18 + I_{DD}(VDD_{IO})$

For 3.3V range: $I_{DD(VDD_IO)} \sim 1$ to 2 mA For 5V range: $I_{DD(VDD_IO)} \sim 2$ to 3 mA Therefore most of the consumption is sunk on the V₁₈ power supply This formula does not apply in STOP and STANDBY modes, refer to *Table 17*.

Subject to general operating conditions for $V_{\text{DD_IO}}\text{,}$ and T_{A}

Table 17. Typical power consumption in STOP and STANDBY modes

Symbol	Parameter	Conditions		3.3V Typ ⁽¹⁾	5V Typ ⁽²⁾	Unit
		LP_PARAM bits: ALL OFF ⁽⁵⁾	Typ(1) Typ(2) Typ(2) $F^{(5)}$ 12 15 GON, OSC4M OFF, FLASH 130 135 GON, OSC4M OFF, FLASH 130 135 GON, OSC4M OFF, FLASH 1950 1930 GON, OSC4M OFF, FLASH 1950 1930 GON, OSC4M OFF, FLASH ON (6) 630 635 GON, OSC4M OFF, FLASH ON (6) 2435 2425 with $V_{18}=1.8$ V I_{DD_V18} 5 I_{DD_V33} <1			
	Supply current	LP_PARAM bits : MVREG ON, OSC4M OFF, F OFF ⁽⁶⁾	LASH	130	135	
	in STOP mode ⁽⁴⁾	LP_PARAM bits: MVREG ON, OSC4M ON , FI	_ASH	1950	1930	μA
		LP_PARAM bits: MVREG ON, OSC4M OFF, FL	_ASH ON ⁽⁶⁾	630	635	
		LP_PARAM bits: MVREG ON, OSC4M ON, FL	ASH ON ⁽⁶⁾	2435	2425	
I _{DD} ⁽³⁾		LPPARAM bits: ALL OFF, with V ₁₈ =1.8 V	_	-	-	
	Supply current	LP_PARAM bits: OSC4M ON, FLASH OFF	-		-	μA
	mode ⁽⁷⁾	LP_PARAM bits: OSC4M OFF, FLASH ON				μΛ
		LP_PARAM bits: OSC4M ON, FLASH ON	_			
	Supply current	RTC OFF		11	14	
	in STANDBY mode ⁽⁴⁾	RTC ON clocked by OSC32K		14	18	μA

1. Typical data are based on $T_A=25^{\circ}$ C, $V_{DD IO}=3.3$ V and $V_{18}=1.8$ V unless otherwise indicated in the table.

2. Typical data are based on $T_A=25^{\circ}C$, $V_{DD_IO}=5.0$ V and $V_{18}=1.8$ V unless otherwise indicated in the table.

3. The conditions for these consumption measurements are described at the beginning of Section 6.3.4 on page 36.

4. Single supply scheme see Figure 12.

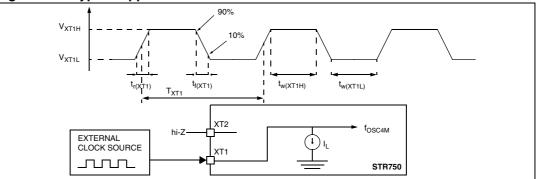
5. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4 V, which significantly reduces the leakage currents.

6. In this mode, the whole digital circuitry is powered internally by the MVREG at 1.8 V.

7. Dual supply scheme see Figure 13.

XRTC1 external clock source

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$


Table 21. XRTC1 external clock source

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{XRTC1}	External clock source frequency			32.768	500	kHz
V _{XRTC1H}	XRTC1 input pin high level voltage		0.7xV _{DD_IO}		V _{DD_IO}	V
V _{XRTC1L}	XRTC1 input pin low level voltage	see Figure 20	V _{SS}		0.3xV _{DD_IO}	v
t _{w(XRTC1H)} t _{w(XRTC1L)}	XRTC1 high or low time ⁽²⁾		900			ns
t _{r(XRTC1)} t _{f(XRTC1)}	XRTC1 rise or fall time ⁽²⁾				50	115
ΙL	XRTCx Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD_I} o			±1	μA
C _{IN(RTC1)}	XRTC1 input capacitance ⁽²⁾			5		pF
DuCy _(RTC1)	Duty cycle		30		70	%

1. Data based on typical application software.

2. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 20. Typical application with an external clock source

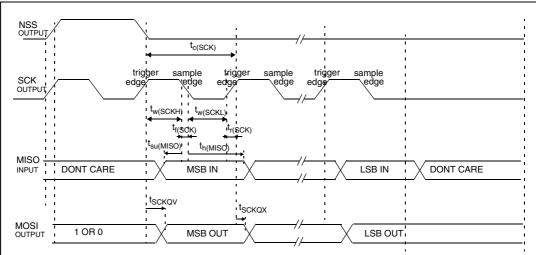
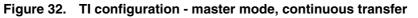
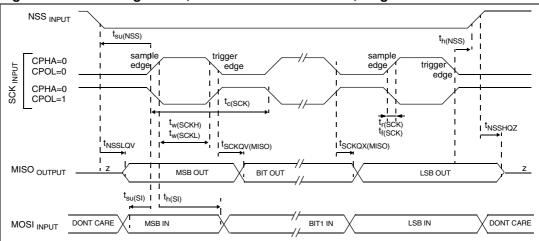



Figure 31. TI configuration - master mode, single transfer

t _{c(S0}	CK)	t _{c(SCK)}		
NSS OUTPUT	//			1 1
SCK OUTPUT	e trigger, sample trigger sample	trigger sample trigger sample	trigger sample trigger sample	
	XXX			OUT
MISO INPUT DONT CARE MSB IN	X/X		N X // LSB	
	FRAME 1	.	FRAME 2	→

SSP synchronous serial peripheral in slave mode (SPI or TI mode)


Subject to general operating conditions with $C_L\approx 45~\text{pF}$

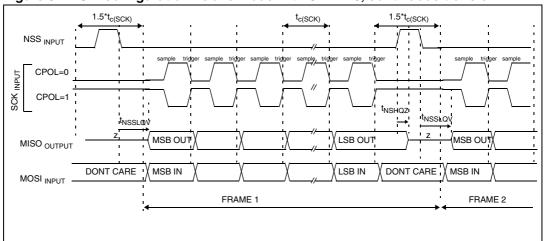
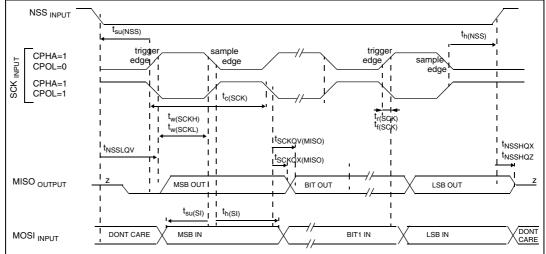
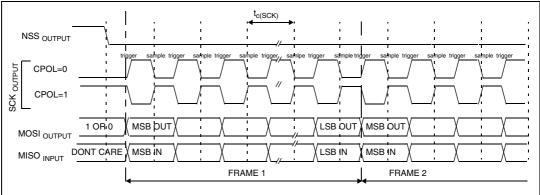

Table 39.	SSP Slave mode charac	teristic	63.7			
Symbol	Parameter	Con	ditions	Min	Max	Unit
f	SPI clock frequency		SSP0		2.66 MHz	MHz
f _{SCK}	SPI clock frequency		SSP1		(f _{PLCK} /12)	
+	NSS input setup time w.r.t		SSP0	0		
t _{su(NSS)}	SCK first edge		SSP1	0		
+	NSS input hold time w.r.t		SSP0	t _{PCLK} +15ns		
t _{h(NSS)}	SCK last edge		SSP1	t _{PCLK} +15ns		
+	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +30 ns	
t _{NSSLQV}	MISO valid time		SSP1	2t _{PCLK}	3t _{PCLK} +30 ns	
+	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +15 ns	
t _{NSSLQZ}	MISO invalid time		SSP1	2t _{PCLK}	3t _{PCLK} +15 ns	ns
t	SCK trigger edge to data		SSP0		15	115
t _{SCKQV}	output MISO valid time		SSP1		30	
t	SCK trigger edge to data		SSP0	2t _{PCLK}		
t _{SCKQX}	output MISO invalid time		SSP1	2t _{PCLK}		
t areas	MOSI setup time w.r.t SCK		SSP0	0		
t _{su(MOSI)}	sampling edge		SSP1	0		
tu u com	MOSI hold time w.r.t SCK		SSP0	3t _{PCLK} +15 ns		
t _{h(MOSI)}	sampling edge		SSP1	3t _{PCLK} +15 ns		

 Table 39.
 SSP slave mode characteristics⁽¹⁾


1. Data based on characterisation results, not tested in production.


Figure 33. SPI configuration, slave mode with CPHA=0, single transfer



6.3.12 10-bit ADC characteristics

Subject to general operating conditions for $V_{DDA_ADC},\,f_{PCLK},$ and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
f _{ADC}	ADC clock frequency		0.4		8	MHz
V _{AIN}	Conversion voltage range ⁽²⁾		V_{SSA_ADC}		V_{DDA_ADC}	V
R _{AIN}	External input impedance ⁽³⁾⁽⁴⁾				10	kΩ
C _{AIN}	External capacitor on analog input ⁽³⁾⁽⁴⁾				6.8	pF
		+400 µA injected on any pin			1	μA
I _{lkg}	Induced input leakage current	-400 μ A injected on any pin except specific adjacent pins in <i>Table 46</i>			1	μΑ
		-400µA injected on specific adjacent pins in <i>Table 46</i>		40		μA
C _{ADC}	Internal sample and hold capacitor			3.5		pF
+	Calibration Time	f _{CK_ADC} =8 MHz		725.25	•	μs
t _{CAL}				5802		1/f _{ADC}
	Total Conversion time	f _{CK_ADC} =8 MHz		3.75		μs
t _{CONV}	(including sampling time)				ng + 19 for eximation)	1/f _{ADC}
I _{ADC}		Sunk on V _{DDA_ADC}		3.7		mA

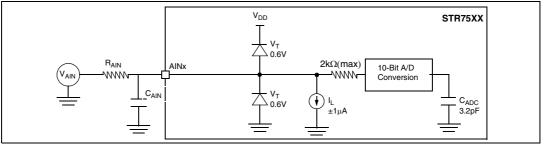
Table 45.10-bit ADC characteristics

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$. They are given only as design guidelines and are not tested.

2. Calibration is needed once after each power-up.

 C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

4. Depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies ≤ 8 MHz.


ADC accuracy vs. negative injection current

Injecting negative current on specific pins listed in *Table 46* (generally adjacent to the analog input pin being converted) should be avoided as this significantly reduces the accuracy of the conversion being performed. It is recommended to add a Schottky diode (pin to ground) to pins which may potentially inject negative current.

Table 46. List of adjacent pi

Analog input	Related adjacent pins
a	None
AIN1/P0.03	None
AIN2/P0.12	P0.11
AIN3/P0.17	P0.18 and P0.16
AIN4/P0.19	P0.24
AIN5/P0.22	None
AIN6/P0.23	P2.04
AIN7/P0.27	P1.11 and P0.26
AIN8/P0.29	P0.30 and P0.28
AIN9/P1.04	None
AIN10/P1.06	P1.05
AIN11/P1.08	P1.04 and P1.13
AIN12/P1.11	P2.17 and P0.27
AIN13/P1.12	None
AIN14/P1.13	P1.14 and P1.01
AIN15/P1.14	None

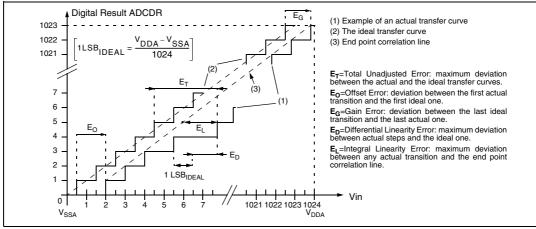
Figure 42. Typical application with ADC

Analog power supply and reference pins

The V_{DDA_ADC} and V_{SSA_ADC} pins are the analog power supply of the A/D converter cell.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see : *General PCB design guidelines on page 74*).

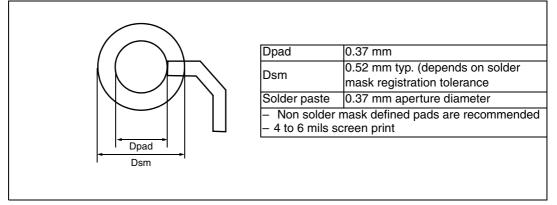
ADC accuracy with f_{CK_SYS} = 20 MHz, f_{ADC} =8 MHz, R_{AIN} < 10 k Ω This assumes that the ADC is calibrated ⁽¹⁾					
Symbol	Parameter	Conditions	Тур	Max	Unit
IE _T I	Total unadjusted error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	1	1.2	
		V _{DDA_ADC} =5.0 V	1	1.2	
IE _O I	Offset error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.15	0.5	
		V _{DDA_ADC} =5.0 V	0.15	0.5	
E _G	Gain Error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	-0.8	-0.2	LSB
		V _{DDA_ADC} =5.0 V	-0.8	-0.2	LOD
IE _D I	Differential linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.7	0.9	
		V _{DDA_ADC} =5.0 V	0.7	0.9	
IELI	Integral linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.6	0.8	
		V _{DDA_ADC} =5.0 V	0.6	0.8	


Table 47. ADC accuracy

1. Calibration is needed once after each power-up.

2. Refer to ADC accuracy vs. negative injection current on page 73

3. ADC Accuracy vs. MCO (Main Clock Output): the ADC accuracy can be significantly degraded when activating the MCO on pin P0.01 while converting an analog channel (especially those which are close to the MCO pin). To avoid this, when an ADC conversion is launched, it is strongly recommended to disable the MCO.



75/84

SEATING PLANE 3	Dim.	mm			inches ⁽¹⁾		
SETTING PLANE [C] +	Dini.	Min	Тур	Max	Min	Тур	Max
	Α			1.700			0.0669
গ্ৰাহা হাব	A1	0.270			0.0106		
	A2		1.085			0.0427	
	A3		0.30			0.0118	
	A4			0.80			0.0315
« 60 000000 0 ,]	b	0.45	0.50	0.55	0.0177	0.0197	0.0217
J 000000000 4	D	9.85	10.00	10.15	0.3878	0.3937	0.3996
	D1		7.20			0.2835	
	E	9.85	10.00	10.15	0.3878	0.3937	0.3996
	E1		7.20			0.2835	
	е		0.80			0.0315	
1 2 3 4 5 6 7 8 9 10	F		1.40			0.055	
	ddd			0.12			0.005
▲ 11 CORNER INDEX AREA ∞b (100 BALLS) (SEE NOTE.5) ▲ #eee@D C A B	eee			0.15			0.006
○ (@ m •] [♥]	fff			0.08			0.003
🗩 🕀 воттом игм		Number of Balls					
	Ν			1(00		
	1. Values digits.	in inches a	are converte	ed from mm	and round	ed to 4 dec	imal

Figure 48. 100-ball low profile fine pitch ball grid array package

9 Revision history

Table 50.	Document revision history
-----------	---------------------------

Date	Revision	Description of Changes
25-Sep-2006	1	Initial release
30-Oct-2006	2	Added power consumption data for 5V operation in Section 6
04-Jul-2007	3	Changed datasheet title from STR750F to STR750FXX STR751Fxx STR752Fxx STR755xx. Added <i>Table 1: Device summary on page 1</i> Added note 1 to <i>Table 6</i> Added STOP mode IDD max. values in <i>Table 14</i> Updated XT2 driving current in <i>Table 23</i> . Updated RPD in <i>Table 32</i> Updated <i>Table 21: XRTC1 external clock source on page 45</i> Updated <i>Table 34: Output speed on page 57</i> Added characteristics for <i>SSP synchronous serial peripheral in master</i> <i>mode (SPI or TI mode) on page 62</i> and <i>SSP synchronous serial</i> <i>peripheral in slave mode (SPI or TI mode) on page 65</i> Added characteristics for <i>SMI - serial memory interface on page 68</i> Added <i>Table 42: USB startup time on page 70</i>
23-Oct-2007	4	Updated Section 6.2.3: Thermal characteristics on page 33 Updated P _D , T _J and T _A in Section 6.3: Operating conditions on page 34 Updated Table 20: XT1 external clock source on page 44 Updated Table 21: XRTC1 external clock source on page 45 Updated Section 7: Package characteristics on page 76 (inches rounded to 4 decimal digits instead of 3) Updated Ordering information Section 8: Order codes on page 81
17-Feb-2009	5	Modified note 3 below <i>Table 8: Current characteristics on page 33</i> Added AHB clock frequency for write access to Flash registers in <i>Table 10: General operating conditions on page 34</i> Modified note 3 below <i>Table 41: SDA and SCL characteristics on</i> <i>page 69</i>

