E·XFL

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	72
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str750fv1t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Serial memory interface (SMI)

The Serial Memory interface is directly able to access up to 4 serial FLASH devices. It can be used to access data, execute code directly or boot the application from external memory. The memory is addressed as 4 banks of up to 16 Mbytes each.

Clocks and start-up

After RESET or when exiting from Low Power Mode, the CPU is clocked immediately by an internal RC oscillator (FREEOSC) at a frequency centered around 5 MHz, so the application code can start executing without delay. In parallel, the 4/8 MHz Oscillator is enabled and its stabilization time is monitored using a dedicated counter.

An oscillator failure detection is implemented: when the clock disappears on the XT1 pin, the circuit automatically switches to the FREEOSC oscillator and an interrupt is generated.

In Run mode, the AHB and APB clock speeds can be set at a large number of different frequencies thanks to the PLL and various prescalers: up to 60 MHz for AHB and up to 32 MHz for APB when fetching from Flash (64 MHz and 32 MHz when fetching from SRAM).

In SLOW mode, the AHB clock can be significantly decreased to reduce power consumption.

The built-in Clock Controller also provides the 48 MHz USB clock directly without any extra oscillators or PLL. For instance, starting from the 4 MHz crystal source, it is possible to obtain in parallel 60 MHz for the AHB clock, 48 MHz for the USB clock and 30 MHz for the APB peripherals.

Boot modes

At start-up, boot pins are used to select one of five boot options:

- Boot from internal flash
- Boot from external serial Flash memory
- Boot from internal boot loader
- Boot from internal SRAM

Booting from SMI memory allows booting from a serial flash. This way, a specific boot monitor can be implemented. Alternatively, the STR750F can boot from the internal boot loader that implements a boot from UART.

Power supply schemes

You can connect the device in any of the following ways depending on your application.

- Power Scheme 1: Single external 3.3V power source. In this configuration the V_{CORE} supply required for the internal logic is generated internally by the main voltage regulator and the V_{BACKUP} supply is generated internally by the low power voltage regulator. This scheme has the advantage of requiring only one 3.3V power source.
- Power Scheme 2: Dual external 3.3V and 1.8V power sources. In this configuration, the internal voltage regulators are switched off by forcing the VREG_DIS pin to high level. V_{CORE} is provided externally through the V₁₈ and V_{18REG} power pins and V_{BACKUP} through the V_{18_BKP} pin. This scheme is intended to save power consumption for applications which already provide an 1.8V power supply.
- Power Scheme 3: Single external 5.0V power source. In this configuration the V_{CORE} supply required for the internal logic is generated internally by the main voltage

periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.

WDG (watchdog timer)

The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management.

Timebase timer (TB)

The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system.

Synchronizable standard timers (TIM2:0)

The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same

I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices, timer Alternate Function I/Os can be connected, or "remapped", to other I/O ports as summarized in *Table 3* and detailed in *Table 6*. This remapping is done by the application via a control register.

		Nu	Number of alternate function I/Os							
Star	ndard timer functions	100-pin	64-pin package							
			Default mapping	Remapped						
ΤΙΜ Ο	Input Capture	2	1	2						
T IIVI O	Output Compare/PWM	2	1	2						
TIM 1	Input Capture	2	1	1						
	Output Compare/PWM	2	1	1						
TIM 2	Input Capture	2	2	2						
111112	Output Compare/PWM	2	1	2						

Table 3. Standard timer alternate function I/Os

Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is mapped to a DMA channel.

Motor control PWM timer (PWM)

The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6 channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or centre-aligned patterns and supports dead-time insertion. It has many features in common with the standard TIM timers which has the same architecture and it can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. The PWM timer is mapped to a DMA channel.

GPIOs (general purpose input/output)

Each of the 72 GPIO pins (38 GPIOs in 64-pin devices) can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Port 1.15 is an exception, it can be used as general-purpose input only or wake-up from STANDBY mode (WKP_STDBY). Most of the GPIO pins are shared with digital or analog alternate functions.

ADC_IN13 / P1.12 ADC_IN13 / P1.12 ADC_IN14 P0.03 / TIM2_T11 / ADC_IN1 ADC_IN14 P0.03 / TIM2_T11 / ADC_IN14 ADC_IN16 P0.03 / TIM2_T11 / ADC_IN16 ADC_IN17 SSP0_IN28 ADC_IN17 SSP0_IN28 ADC_IN17 SSP0_IN28 ADC_IN16 P0.06 / SMI_DIN7 SSP0_IN28 ADC_IN16 P0.06 / SMI_DIN7 SSP0_IN28 ADC_IN17 / SSP0_IN28 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP 49 47 → V_{REG_DIS} 47 → V_{SS_IO_2} 46 → V_{SSA_ADC} 45 → V_{DDA_ADC} 44 → V_{DD_IO_2} 43 → P1.03 / TIM2_TI2 43 → P1.03 / TIM2_TI2 BOOT0 / TIM0_OC1 / P0.00 4 ADC_IN8 / TIM1_TI1 / P0.29 5 TIM1_OC1 / P0.28 G P0.14 / CAN_RX or USB_DP
 P0.15 / CAN_TX or USB_DN TEST 7 ⊲42 V_{SS_IO_4} [8 UART1_TX / P0.21 [9 41 LQFP64 □ NRSTIN *(*40 UART1_IX / P0.20 [10 JTMS / P1.19 [11 JTCK / P1.18 [12 JTDO / P1.17 [13 JTDI / P1.16 [14 NRSTOUT 39 XRTC2 38 V_{18BKP} I/Os 37 □ XRTC1 36 □ V_{18BKP} 35 □ V_{SSBKP} 34 □ V_{SS18} 33 U V_{18REG} V_{DDD_IO_3} C V_{DDA_PLL} C XT2 C XT1 C V_{SS_I0_3} | SMI_CS1 / ADC_IN2 / UART0_CTS / UART2_RX /P0.12 SSA_PLL

Figure 3. LQFP64 pinout

4.1 Pin description table

Legend / abbreviations for Table 6:

Туре:	I = input, O = output, S = supply,
Input levels:	All Inputs are LVTTL at $V_{DD_IO} = 3.3V+/-0.3V$ or TTL at $V_{DD_IO} = 5V\pm 0.5V$. In both cases, T_T means $V_{ILmax} = 0.8V V_{IHmin} = 2.0V$
Inputs:	All inputs can be configured as floating or with internal weak pull-up or pull down (pu/pd)
Outputs:	 All Outputs can be configured as Open Drain (OD) or Push-Pull (PP) (see also note 6 below <i>Table 6</i>). There are 3 different types of Output with different drives and speed characteristics: - O8: f_{max} = 40 MHz on C_L=50pF and 8 mA static drive capability for V_{OL}=0.4V and up to 20 mA for
	 V_{OL}=1.3V (see<i>Output driving current on page 55</i>) O4: f_{max} = 20 MHz on C_L=50pF and 4 mA static drive capability for V_{OL}=0.4V (see<i>Output driving</i>)
	<i>current on page 55</i>) - O2: $f_{max} = 10 \text{ MHz on } C_L=50 \text{pF}$ and 2 mA static
	drive capability of for V _{OL} =0.4V (see <i>Output driving current on page 55</i>)
External interrupts/wake-up lines:	EITx

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
7	D1	5	D1	P0.29 / TIM1_TI1 / ADC_IN8	I/O	Τ _Τ	x	х		02	х	х		Port 0.29	TIM1: Input Capture 1	ADC: Analog input 8
8	E1	6	D2	P0.28 / TIM1_OC1	I/O	Τ _Τ	х	х		02	х	х		Port 0.28	TIM1: Output Cor	npare 1
9	E5	7	D3	TEST	Ι									Reserved, mu	ist be tied to groun	d
10	E4	8	D4	VSS_IO	S									Ground Voltag	ge for digital I/Os	
11	E2			P0.23 / UART1_RTS / ADC_IN6	I/O	Τ _Τ	x	x		O2	x	x		Port 0.23	UART1: Ready To Send output ⁽⁴⁾	ADC analog input 6
12	F5			P2.04 / TIM2_OC1	I/O	Τ _Τ	х	х		02	х	х		Port 2.04	TIM2: Output Compare 1 ⁽⁴⁾	
13	F1			P2.03 / UART1_RTS	I/O	т _т	x	x		02	x	x		Port 2.03	UART1: Ready To Send output ⁽⁴⁾	
14	F4			P2.02	I/O	Τ _T	х	х		02	Х	Х		Port 2.02		
15	E3			P0.22 / UART1_CTS / ADC_IN5	I/O	Τ _Τ	x	x		O2	x	x		Port 0.22	UART1: Clear To Send input	ADC: Analog input 5
16	F2	9	E4	P0.21 / UART1_TX	I/O	Τ _Τ	x	х		02	х	х		Port 0.21	UART1: Transmit (remappable to P	data output 0.15) ⁽⁴⁾
17	F3	10	E3	P0.20 / UART1_RX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.20	UART1: Receive (remappable to P	data input 0.14) ⁽⁴⁾
18	G3	11	E2	P1.19 / JTMS	I/O	Τ _Τ	х	х		O2	х	х		JTAG mode selection input ⁽⁶⁾	Port 1.19	
19	G2	12	E1	P1.18 / JTCK	I/O	Τ _Τ	х	х		02	х	х		JTAG clock input ⁽⁶⁾	Port 1.18	
20	H3	13	F4	P1.17 / JTDO	I/O	Τ _Τ	х	х		O8	х	х		JTAG data output ⁽⁶⁾	Port 1.17	
21	H2	14	F3	P1.16 / JTDI	I/O	Τ _Τ	х	х		02	х	х		JTAG data input ⁽⁶⁾	Port 1.16	
22	G1	15	F2	NJTRST	Ι	TT								JTAG reset in	put ⁽⁵⁾	
23	G4			P2.01	I/O	T_T	х	х		02	х	Х		Port 2.01		
24	G5			P2.00	I/O	TT	X	х		O2	х	х		Port 2.00		
														ITAC	Port 0.13	
25	H1	16	F1	P0.13 / RTCK / UART0_RTS UART2_TX	I/O	Τ _Τ	х	x		O8	х	х		JTAG return clock output ⁽⁶⁾	UART0: Ready To Send output ⁽⁴⁾	UART2: Transmit Data output (when remapped) ⁽⁸⁾

Table 6. STR750F pin description (continued)

Tab	le 6.		ST	R750F pin de	escri	ptic	on (o	con	tinue	d)						
	Pin	n°					In	put		C)utpu	ıt	λ			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
				P0.12 /											UART0: Clear To Send input	ADC: Analog input 2
26	J2	17	G2	UART2_RX / UART0_CTS / ADC_IN2 / SMI_CS1	I/O	Τ _Τ	x	х		04	x	х		Port 0.12	Serial Memory Interface: chip select output 1	UART2: Receive Data input (when remapped) ⁽⁸⁾
27	J1	18	G1	P0.11 / UART0_TX / BOOT1 / SMI_CS2	I/O	Τ _Τ	x	x		O4	x	x		Port 0.11/Boot mode selection input 1	UART0: Transmit data output	Serial Memory Interface: chip select output 2
28	K1	19	H1	P0.10 / UART0_RX / SMI_CS3	I/O	Τ _Τ	x	x	EIT4	02	x	x		Port 0.10	UART0: Receive Data input	Serial Memory Interface: chip select output 3
29	K2	20	H2	P0.09 / I2C_SDA	I/O	TT	х	Х		04	Х	Х		Port 0.09	I2C: Serial Data	
30	K3	21	НЗ	P0.08 / I2C_SCL	I/O	TT	х	х	EIT3	O4	х	Х		Port 0.08	I2C: Serial clock	
31	H4			P2.19	I/O	TT	х	Х		02	Х	Х		Port 2.19		
32	H5			P2.18	I/O	TT	х	х		O2	х	Х		Port 2.18		
33	H6			P2.17 / UART2_RTS	I/O	TT	x	х		O2	х	х		Port 2.17	UART2: Ready To	Send output ⁽⁴⁾
34	J3	22	G3	P1.11 /UART0_RTS ADC_IN12	I/O	Τ _Τ	x	х	EIT11	O8	x	х		Port 1.11	UART0: Ready To Send output ⁽⁴⁾	ADC: Analog input 12
35	J4			P0.27 / UART2_RTS / ADC_IN7	I/O	Τ _Τ	x	х		02	x	x		Port 0.27	UART2: Ready To Send output ⁽⁸⁾	ADC: Analog input 7
36	J6			P0.26 / UART2_CTS	I/O	Τ _Τ	x	х		O2	х	х		Port 0.26	UART2: Clear To	Send input
37	J7			P0.25 / UART2_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.25	UART2: Transmit (remappable to P	
38	H7			P0.24 / UART2_RX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.24	UART2: Receive ((remappable to P	
39	J5	23	G4	P0.19/USB_CK/ SSP1_NSS/	I/O	T _T	x	x	EIT6	O2	x	x		Port 0.19	SSP1: Slave select input (remappable to P0.11) ⁽⁸⁾	ADC: Analog input 4
				ADC_IN4											USB: 48 MHz Clock input	
40	K4	24	H5	P0.18 / SSP1_MOSI	I/O	Τ _Τ	x	х		O2	х	х		Port 0.18	SSP1: Master out (remappable to P	
41	K5	25	H4	P0.17 / SSP1_MISO / ADC_IN3	I/O	Τ _Τ	x	х		O2	x	x		Port 0.17	SSP1: Master in/slave out data (remappable to P0.09) ⁽⁸⁾	ADC: Analog input 3
42	K6	26	H6	P0.16 / SSP1_SCLK	I/O	Τ _Τ	x	х		O2	х	х		Port 0.16	SSP1: serial clock P0.08) ⁽⁸⁾	(remappable to

Table 6.	STR750F pin description (continued)
----------	-------------------------------------

	Pin	n°					In	put		C)utpu	ıt	Š			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
68	A10			P1.02 / TIM2_OC2	I/O	Τ _Τ	х	х		02	х	х		Port 1.02	TIM2: Output con (remappable to P	npare 2 0.06) ⁽⁸⁾
69	D7	44	C6	VDD_IO	S									Supply Voltag	e for digital I/Os	
70	D8	45	D6	VDDA_ADC	S									Supply Voltag	e for A/D converte	r
71	C9			P2.11	I/O	TT	х	х		02	Х	Х		Port 2.11		
72	B10			P2.10	I/O	TT	х	х		02	Х	Х		Port 2.10		
73	C8	46	D7	VSSA_ADC	S									Ground Volta	ge for A/D converte	er
74	C7	47	C7	VSS_IO	S									Ground Volta	ge for digital I/Os	
75	E8	48	D5	VREG_DIS	I	TT								Voltage Regu	lator Disable input	
76	A9	49	A8	P0.07 / SMI_DOUT / SSP0_MOSI	I/O	TT	x	x	EIT2	O4	x	x		Port 0.07	Serial Memory Interface: data output	SSP0: Master out Slave in data
77	A8	50	A7	P0.06 / SMI_DIN / SSP0_MISO	I/O	Τ _Τ	x	х		O4	x	х		Port 0.06	Serial Memory Interface: data input	SSP0: Master in Slave out data
78	A7	51	A6	P0.05 / SSP0_SCLK / SMI_CK	I/O	Τ _Τ	x	х	EIT1	04	x	x		Port 0.05	SSP0: Serial clock	Serial Memory Interface: Serial clock output
79	B7	52	B6	P0.04 / SMI_CS0 / SSP0_NSS	I/O	Τ _Τ	x	х		O4	x	x		Port 0.04	Serial Memory Interface: chip select output 0	SSP0: Slave select input
80	C5	53	B7	P1.10 PWM_EMERGE NCY	I/O	Τ _Τ	x	х	EIT10	O2	x	x		Port 1.10	PWM: Emergency	y input
81	B6	54	B5	P1.09 / PWM1	I/O	TT	х	х	EIT9	04	Х	Х		Port 1.09	PWM: PWM1 out	put
82	C6			P2.09 / PWM1N	I/O	Τ _Τ	x	х		O2	х	х		Port 2.09	PWM: PWM1 cor output ⁽⁴⁾	nplementary
83	G7			P2.08 / PWM2	I/O	TT	х	х		02	х	Х		Port 2.08	PWM: PWM2 out	put ⁽⁴⁾
84	G6			P2.07 / PWM2N	I/O	Τ _Τ	х	х		02	х	х		Port 2.07	PWM: PWM2 cor output ⁽⁴⁾	nplementary
85	F7			P2.06 / PWM3	I/O	TT	х	х		02	х	х		Port 2.06	PWM: PWM3 out	put ⁽⁴⁾
86	F6			P2.05 / PWM3N	I/O	Τ _Τ	x	х		02	х	х		Port 2.05	PWM: PWM3 cor output ⁽⁴⁾	nplementary
87	A6	55	A5	P1.08 / PWM1N / ADC_IN11	I/O	Τ _Τ	x	х		04	х	х		Port 1.08	PWM: PWM1 complementary output ⁽⁸⁾	ADC: analog input 11
88	B5	56	B4	P1.07 / PWM2	I/O	TT	х	х	EIT8	04	х	Х		Port 1.07	PWM: PWM2 out	put ⁽⁴⁾
89	A5	57	A4	P1.06 / PWM2N / ADC_IN10	I/O	Τ _Τ	x	х		04	x	х		Port 1.06	PWM: PWM2 complementary output ⁽⁴⁾	ADC: analog input 10
90	B4	58	B3	P1.05 / PWM3	I/O	TT	х	х	EIT7	O4	х	Х		Port 1.05	PWM: PWM3 out	put ⁽⁴⁾

Table 6. STR750F pin description (continued)

6 Electrical parameters

6.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

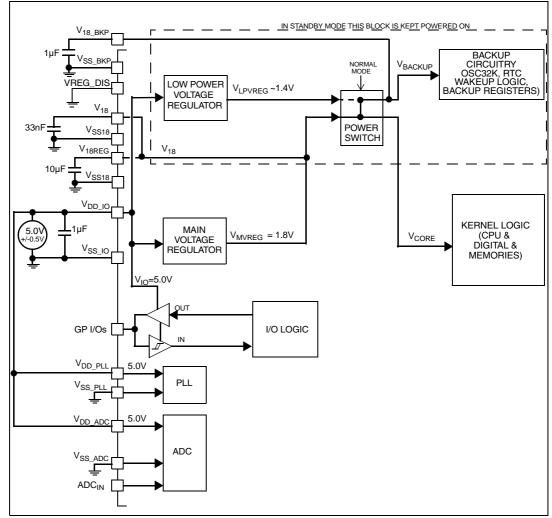
6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_Amax (given by the selected temperature range).

Data based on product characterisation, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25^{\circ}$ C, $V_{DD_{-}IO}=3.3$ V (for the 3.0 V \leq V_{DD_{-}IO} \leq 3.6 V voltage range) and V₁₈=1.8 V. They are given only as design guidelines and are not tested.


Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

Power supply scheme 3: Single external 5 V power source

Figure 10. Power supply scheme 3

						Max ⁽³⁾		
Symbol	Parameter	Conditions ⁽¹⁾		Тур ⁽²⁾	T _A 25°C	Т _А 85°С	Т _А 105°С	Unit
		LP_PARAM bits: ALL OFF ⁽⁴⁾ Single supply scheme see <i>Figure 12</i> .	3.3V range	12	16	117	250	μA
	Supply current in	LP_PARAM bits: ALL OFF Dual supply scheme see <i>Figure 13</i> .	I _{DD_V18} I _{DD_V33}	5 <1	8 3	60 20	110 26	μA
I _{DD}	STOP mode	LP_PARAM bits: ALL OFF ⁽⁴⁾ Single supply scheme see <i>Figure 10</i>	5V range	15	22	160	310	μA
.00		LP_PARAM bits: ALL OFF Dual supply scheme see <i>Figure 11</i>	I _{DD_V18} I _{DD_V50}	5 3	86	60 50	110 65	
	Supply current in	RTC OFF	3.3 V range	10	20	25	28	μA
	STANDBY mode		5V range	15	25	30	33	

Table 14. Maximum power consumption in STOP and STANDBY modes

1. The conditions for these consumption measurements are described at the beginning of Section 6.3.4.

2. Typical data are based on $T_A=25^\circ C,\,V_{DD_IO}=3.3V$ or 5.0V and $V_{18}=1.8V$ unless otherwise specified.

3. Data based on product characterisation, tested in production at $V_{DD_{-IO}}$ max and V_{18} max (1.95V in dual supply mode or regulator output value in single supply mode).

4. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4V, which significantly reduces the leakage currents.

Typical power consumption

The following measurement conditions apply to Table 15, Table 16 and Table 17.

In RUN mode:

- Program is executed from Flash (except if especially mentioned). The program consists
 of an infinite loop. When f_{HCLK} > 32 MHz, burst mode is activated.
- A standard 4 MHz crystal source is used.
- In all cases the PLL is used to multiply the frequency.
- All measurements are done in the single supply scheme with internal regulators used (see *Figure 12*)

In WFI Mode:

- In WFI Mode the measurement conditions are similar to RUN mode (OSC4M and PLL enabled). In addition, the Flash can be disabled depending on burst mode activation:
 - For AHB frequencies greater than 32 MHz, burst mode is activated and the Flash is kept enabled by setting the WFI_FLASH_EN bit (this bit cannot be reset when burst mode is activated).
 - For AHB frequencies less than or equal to 32 MHz, burst mode is deactivated, WFI_FLASH_EN is reset and the LP_PARAM14 bit is set (Flash is disabled in WFI mode).

In SLOW mode:

 The same program as in RUN mode is executed from Flash. The CPU is clocked by the FREEOSC, OSC4M, LPOSC or OSC32K. Only EXTIT peripheral is enabled in the MRCC_PCLKEN register.

In SLOW-WFI mode:

 In SLOW-WFI, the measurement conditions are similar to SLOW mode (CPU clocked by a low frequency clock). In addition, the LP_PARAM14 bit is set (FLASH is OFF). The WFI routine itself is executed from SRAM (it is not allowed to execute a WFI from the internal FLASH)

In STOP mode:

• Several measurements are given: in the single supply scheme with internal regulators used (see *Figure 12*): and in the dual supply scheme (see *Figure 13*).

In STANDBY mode:

- Three measurements are given:
 - The RTC is disabled, only the consumption of the LPVREG and RSM remain (almost no leakage currents)
 - The RTC is running, clocked by a standard 32.768 kHz crystal.
 - The RTC is running, clocked by the internal Low Power RC oscillator (LPOSC)
- STANDBY mode is only supported in the single supply scheme (see Figure 12)

Electro magnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbo I	Parameter	Conditions	Monitored	Max vs. [f _O	Unit		
	Farameter	Conditions	Frequency Band	4/32MHz	4/60MHz	onit	
		Flash devices:	0.1 MHz to 30 MHz	22	26		
		$V_{DD_{-}IO}$ =3.3 V or 5 V, T _A =+25° C, LQFP64 package	30 MHz to 130 MHz	31	26	$dB\mu V$	
S _{EMI}	Peak level		130 MHz to 1 GHz	19	23		
		conforming to SAE J 1752/3	SAE EMI Level	>4	>4	-	

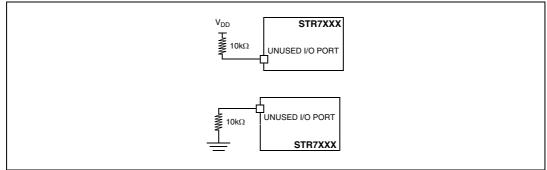
Table 29. EMI characteristics

Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electro-Static discharge (ESD)

Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard.


Table 30. Absolute maximum ra	ratings
-------------------------------	---------

Symbol	Ratings	Conditions	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)		2000	
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	T _A =+25° C	200	V
V _{ESD(CDM)}	Electro-static discharge voltage (Charge Device Model)		750	

1. Data based on product characterisation, not tested in production.

Figure 25. Connecting unused I/O pins

Output driving current

The GP I/Os have different drive capabilities:

- O2 outputs can sink or source up to +/-2 mA.
- O4 outputs can sink or source up to +/-4 mA.
- outputs can sink or source up to +/-8 mA or can sink +20 mA (with a relaxed V_{OL}).

In the application, the user must limit the number of I/O pins which can drive current to respect the absolute maximum rating specified in *Section 6.2.2*:

- The sum of the current sourced by all the I/Os on V_{DD_IO}, plus the maximum RUN consumption of the MCU sourced on V_{DD_IO}, can not exceed the absolute maximum rating IV_{DD_IO}.
- The sum of the current sunk by all the I/Os on V_{SS_IO} plus the maximum RUN consumption of the MCU sunk on V_{SS_IO} can not exceed the absolute maximum rating IV_{SS_IO}.

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$ and T_{A} unless otherwise specified.

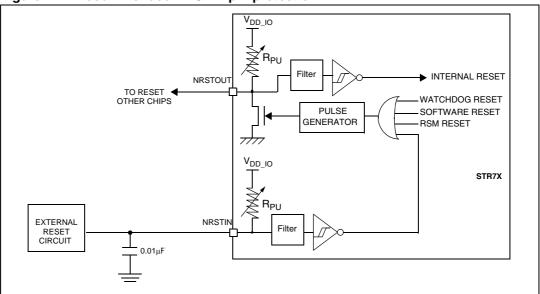


Figure 27. Recommended NRSTIN pin protection

1. The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in NRSTIN and NRSTOUT pins on page 58. Otherwise the reset will not be taken into account internally.

6.3.9 TB and TIM timer characteristics

Subject to general operating conditions for $V_{DD_IO},\,f_{CK_SYS},$ and T_A unless otherwise specified.

Refer to *Section 6.3.8: I/O port pin characteristics on page 54* for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
t _{w(ICAP)in}	Input capture pulse time	TIM0,1,2		2			t _{CK_TIM}
			f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}
÷	Timer resolution	ТВ	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns
t _{res(TIM)}	time ⁽¹⁾		f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}
		TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60MHz	16.6 ⁽¹⁾			ns
	Timer		f _{CK_TIM(MAX)} = f _{CK_SYS}	0		f _{CK_TIM} /4	MHz
f _{EXT}	f _{EXT} f _{EXT} frequency on TI1 or TI2	TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0		15	MHz
Res _{TIM}	Timer resolution					16	bit
	16-bit Counter clock period when			1		65536	t _{CK_TIM}
toourren		ТВ	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs
t _{COUNTER}	internal clock is selected			1		65536	t _{CK_TIM}
	(16-bit Prescaler)	TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs
						65536x65536	t _{CK_TIM}
	Maximum	ТВ	f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	S
t _{MAX_COUNT}	Count					65536x65536	t _{CK_TIM}
		TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	s

Table 36. TB and TIM timers

1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to I/O pin, described in : *Output speed on page 57*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{res(PWM)}	PWM resolution time	$f_{CK_TIM(MAX)} = f_{CK_SYS}$	1			$t_{\rm CK_TIM}$
		f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns
Res _{PWM}	PWM resolution				16	bit
V _{OS} ⁽¹⁾	PWM/DAC output step voltage	V _{DD_IO} =3.3 V, Res=16-bits		50 ⁽¹⁾		μV
		V _{DD_IO} =5.0 V, Res=16-bits		76 ⁽¹⁾		μV
^t COUNTER	Timer clock period when internal clock is selected		1		65536	t _{CK_TIM}
		f _{CK_TIM} =60 MHz	0.0166		1087	μs
^t MAX_COUNT	Maximum Possible Count				65536x 65536	^t ск_тім
		$f_{CK_{TIM}} = f_{CK_{SYS}} =$ 60 MHz			71.58	S

Table 37. PWM Timer (PWM)

1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to an I/O pin, as described in : *Output speed on page 57*.

6.3.10 Communication interface characteristics

SSP synchronous serial peripheral in master mode (SPI or TI mode)

General operating conditions: V_{33}, 3.0V to 3.3V, V18 ~=1.8V, $C_L\approx 45$ pF.

Symbol	Parameter	Condi	tions	Min	Мах	Unit
f _{SCK}	SPI clock frequency ⁽²⁾		SSP0		16	MHz
	SPI Clock frequency		SSP1		8	
t _{r(SCK)}	SPI clock rise time		SSP0		14	
			SSP1		33	
+	SPI clock fall time		SSP0		11	
t _{f(SCK)}			SSP1		30	
t _{w(SCKH)}	SCK high and low time		SSP0		19	
t _{w(SCKL)}	SOIT High and low time		SSP1		30	
t _{NSSLQV}	NSS low to Data Output MOSI valid time		SSP0		0.5t _{SCK} +15ns	
			SSP1		0.5t _{SCK} +30ns	
t _{SCKNSSH}	SCK last edge to NSS high	CPHA = 0	SSP0		0.5t _{SCK} +15ns	
			SSP1		0.5t _{SCK} +30ns	
		CPHA = 1	SSP0		t _{SCK} +15ns	ns
			SSP1		t _{SCK} +30ns	
taavav	SCK trigger edge to data		SSP0		15	
t _{sckqv}	output MOSI valid time		SSP1		30	
^t scкqx	SCK trigger edge to data		SSP0	0		
	output MOSI invalid time		SSP1	0		
_	Data input (MISO) setup		SSP0	25		
t _{su}	time w.r.t SCK sampling edge		SSP1	25		
t _h	Data input (MISO) hold time		SSP0	0		
	w.r.t SCK sampling edge		SSP1	0		

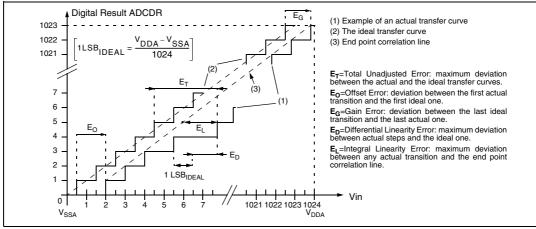
 Table 38.
 SSP master mode characteristics⁽¹⁾

1. Data based on characterisation results, not tested in production.

2. Max frequency for the 2 SSPs is $f_{PCLK}/2$; f_{PCLK} max = 32 MHz. This takes into account the frequency limitation due to I/O speed capability. SSP0 uses IO4 type while SSP1 uses IO2 type I/Os.

57

ADC accuracy with f_{CK_SYS} = 20 MHz, f_{ADC} =8 MHz, R_{AIN} < 10 k Ω This assumes that the ADC is calibrated ⁽¹⁾						
Symbol	Parameter	Conditions	Тур	Max	Unit	
IE _T I	Total unadjusted error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	1	1.2		
		V _{DDA_ADC} =5.0 V	1	1.2		
IE _O I	Offset error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.15	0.5		
		V _{DDA_ADC} =5.0 V	0.15	0.5		
E _G	Gain Error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	-0.8	-0.2	LSB	
		V _{DDA_ADC} =5.0 V	-0.8	-0.2	LOD	
IE _D I	Differential linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.7	0.9		
		V _{DDA_ADC} =5.0 V	0.7	0.9		
IELI	Integral linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.6	0.8		
		V _{DDA_ADC} =5.0 V	0.6	0.8		


Table 47. ADC accuracy

1. Calibration is needed once after each power-up.

2. Refer to ADC accuracy vs. negative injection current on page 73

3. ADC Accuracy vs. MCO (Main Clock Output): the ADC accuracy can be significantly degraded when activating the MCO on pin P0.01 while converting an analog channel (especially those which are close to the MCO pin). To avoid this, when an ADC conversion is launched, it is strongly recommended to disable the MCO.

75/84

8 Order codes

Table 49.	Order codes		

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR750FV0T6	64				-40 to +85°C
STR750FV1T6	128	LQFP100 14x14		Yes	
STR750FV2T6	256		Vee		
STR750FV0H6	64		Yes		
STR750FV1H6	128	LFBGA100 10x10			
STR750FV2H6	256				
STR751FR0T6	64				
STR751FR1T6	128	LQFP64 10x10		Yes	-40 to +85°C
STR751FR2T6	256				
STR751FR0H6	64		-		
STR751FR1H6	128	LFBGA64 8x8			
STR751FR2H6	256				
STR752FR0T6	64		Yes	-	-40 to +85°C
STR752FR1T6	128	LQFP64 10x10			
STR752FR2T6	256				
STR752FR0H6	64				
STR752FR1H6	128	LFBGA64 8x8			
STR752FR2H6	256				
STR752FR0T7	64				
STR752FR1T7	128	LQFP64 10x10		-	
STR752FR2T7	256		Vaa		-40 to +105°C
STR752FR0H7	64		Yes		
STR752FR1H7	128	LFBGA64 8x8			
STR752FR2H7	256				
STR755FR0T6	64			-	
STR755FR1T6	128	LQFP64 10x10			
STR755FR2T6	256				-40 to +85°C
STR755FR0H6	64				-40 10 +00 0
STR755FR1H6	128	LFBGA64 8x8			
STR755FR2H6	256				

