E·XFL

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	72
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str750fv2t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STR750 family of 32-bit microcontrollers combines the industry-standard ARM7TDMI® 32-bit RISC core, featuring high performance, very low power, and very dense code, with a comprehensive set of peripherals and ST's latest 0.18µ embedded Flash technology. The STR750 family comprises a range of devices integrating a common set of peripherals as well as USB, CAN and some key innovations like clock failure detection and an advanced motor control timer. It supports both 3.3V and 5V, and it is also available in an extended temperature range (-40 to +105°C). This makes it a genuine general purpose microcontroller family, suitable for a wide range of applications:

- Appliances, brushless motor drives
- USB peripherals, UPS, alarm systems
- Programmable logic controllers, circuit breakers, inverters
- Medical and portable equipment

2 Device overview

Features	STR755FR0 STR755FR1 STR755FR2	STR751FR0/ STR751FR1/ STR751FR2	STR752FR0/ STR752FR1/ STR752FR2	STR755FV0 STR755FV1/ STR755FV2	STR750FV0/ STR750FV1/ STR750FV2							
Flash - Bank 0 (bytes)			64K/128K/2	56K								
Flash - Bank 1 (bytes)	16K RWW											
RAM (bytes)		16K										
Operating Temperature.		Ambient temp.:-4 Junction te	0 to +85°C / -40 emp40 to + 125	•	,							
Common Peripherals	,	Ps, 1 I2C, 3 timer ake-up lines, 11 /	,	3 timer	Ts, 2 SSPs, 1 I ² C, s 1 PWM timer, 72 up lines, 16 A/D Channels							
USB/CAN peripherals	None	USB	CAN	None	USB+CAN							
Operating Voltage	3.3V or 5V	3.3V		3.3V or 5V								
Packages (x)	T=LQFI	P64 10x10, H =LF	T =LQFP64 10x10, H =LFBGA64 T =LQFP100 14x14, H =LFBGA100									

periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.

WDG (watchdog timer)

The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management.

Timebase timer (TB)

The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system.

Synchronizable standard timers (TIM2:0)

The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same

I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices, timer Alternate Function I/Os can be connected, or "remapped", to other I/O ports as summarized in *Table 3* and detailed in *Table 6*. This remapping is done by the application via a control register.

		Nu	Number of alternate function I/Os								
Star	ndard timer functions	100-pin	64-pin package								
		package	Default mapping	Remapped							
ТІМ О	Input Capture	2	1	2							
T IIVI O	Output Compare/PWM	2	1	2							
TIM 1	Input Capture	2	1	1							
	Output Compare/PWM	2	1	1							
TIM 2	Input Capture	2	2	2							
111112	Output Compare/PWM	2	1	2							

Table 3. Standard timer alternate function I/Os

Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is mapped to a DMA channel.

Motor control PWM timer (PWM)

The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6 channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or centre-aligned patterns and supports dead-time insertion. It has many features in common with the standard TIM timers which has the same architecture and it can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. The PWM timer is mapped to a DMA channel.

I²C bus

The I²C bus interface can operate in multi-master and slave mode. It can support standard and fast modes (up to 400KHz).

High speed universal asynch. receiver transmitter (UART)

The three UART interfaces are able to communicate at speeds of up to 2 Mbit/s. They provide hardware management of the CTS and RTS signals and have LIN Master capability.

To optimize the data transfer between the processor and the peripheral, two FIFOs (receive/transmit) of 16 bytes each have been implemented.

One UART can be served by the DMA controller (UART0).

Synchronous serial peripheral (SSP)

The two SSPs are able to communicate up to 8 Mbit/s (SSP1) or up to 16 Mbit/s (SSP0) in standard full duplex 4-pin interface mode as a master device or up to 2.66 Mbit/s as a slave device. To optimize the data transfer between the processor and the peripheral, two FIFOs (receive/transmit) of 8 x 16 bit words have been implemented. The SSPs support the Motorola SPI or TI SSI protocols.

One SSP can be served by the DMA controller (SSP0).

Controller area network (CAN)

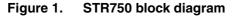
The CAN is compliant with the specification 2.0 part B (active) with a bit rate up to 1Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Up to 32 message objects are handled through an internal RAM buffer. In LQFP64 devices, CAN and USB cannot be connected simultaneously.

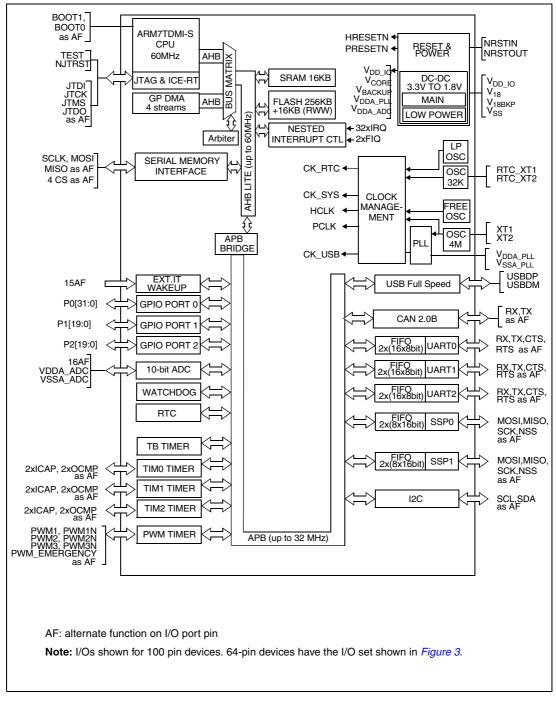
Universal serial bus (USB)

The STR750F embeds a USB device peripheral compatible with the USB Full speed 12Mbs. The USB interface implements a full speed (12 Mbit/s) function interface. It has software configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock source is generated from the internal main PLL. V_{DD} must be in the range 3.3V±10% for USB operation.

ADC (analog to digital converter)

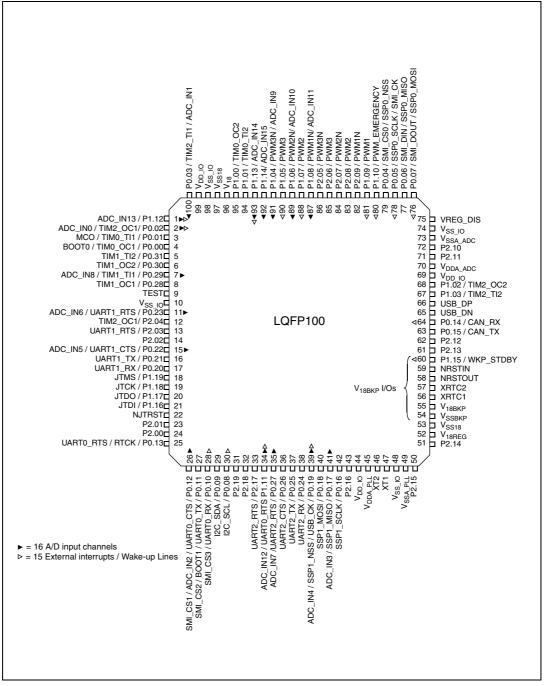
The 10-bit Analog to Digital Converter, converts up to 16 external channels (11 channels in 64-pin devices) in single-shot or scan modes. In scan mode, continuous conversion is performed on a selected group of analog inputs. The minimum conversion time is $3.75 \ \mu s$ (including the sampling time).


The ADC can be served by the DMA controller.


An analog watchdog feature allows you to very precisely monitor the converted voltage of up to four channels. An IRQ is generated when the converted voltage is outside the programmed thresholds.

The events generated by TIM0, TIM2 and PWM timers can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.

3.2 Block diagram



4 Pin description

ADC_IN13 / P1.12 ADC_IN13 / P1.12 ADC_IN14 P0.03 / TIM2_T11 / ADC_IN1 ADC_IN14 P0.03 / TIM2_T11 / ADC_IN14 ADC_IN16 P0.03 / TIM2_T11 / ADC_IN16 ADC_IN17 SSP0_IN28 ADC_IN17 SSP0_IN28 ADC_IN17 SSP0_IN28 ADC_IN16 P0.06 / SMI_DIN7 SSP0_IN28 ADC_IN16 P0.06 / SMI_DIN7 SSP0_IN28 ADC_IN17 / SSP0_IN28 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP0_IN18 ADDC_IN17 / SSP 49 47 → V_{REG_DIS} 47 → V_{SS_IO_2} 46 → V_{SSA_ADC} 45 → V_{DDA_ADC} 44 → V_{DD_IO_2} 43 → P1.03 / TIM2_TI2 43 → P1.03 / TIM2_TI2 BOOT0 / TIM0_OC1 / P0.00 4 ADC_IN8 / TIM1_TI1 / P0.29 5 TIM1_OC1 / P0.28 G P0.14 / CAN_RX or USB_DP
 P0.15 / CAN_TX or USB_DN TEST 7 ⊲42 V_{SS_IO_4} [8 UART1_TX / P0.21 [9 41 LQFP64 □ NRSTIN *(*40 UART1_IX / P0.20 [10 JTMS / P1.19 [11 JTCK / P1.18 [12 JTDO / P1.17 [13 JTDI / P1.16 [14 NRSTOUT 39 XRTC2 38 V_{18BKP} I/Os 37 □ XRTC1 36 □ V_{18BKP} 35 □ V_{SSBKP} 34 □ V_{SS18} 33 U V_{18REG} V_{DDD_IO_3} C V_{DDA_PLL} C XT2 C XT1 C V_{SS_I0_3} | SMI_CS1 / ADC_IN2 / UART0_CTS / UART2_RX /P0.12 SSA_PLL

Figure 3. LQFP64 pinout

							1			
	1	2	3	4	5	6	7	8	9	10
A	P0.03	P1.13	P1.14	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07	P1.02
в	P1.12	P0.02	P0.01	P1.05	P1.07	P1.09	P0.04	P2.13	P1.03	P2.10
с	P0.31	P0.00	V _{DD_IO}	V ₁₈	P1.10	P2.09	V _{SS_IO}	V _{SSA_ADC}	P2.11	USB_DP
D	P0.29	P0.30	V _{SS_IO}	V _{SS18}	P1.01	P1.15	V _{DD_IO}	V _{DDA_ADC}	P2.12	USB_DN
Е	P0.28	P0.23	P0.22	V _{SS_IO}	TEST	P1.00	NRSTOUT	VREG_DIS	NRSTIN	P0.14
F	P2.03	P0.21	P0.20	P2.02	P2.04	P2.05	P2.06	V _{SS18}	V _{SSBKP}	P0.15
G	NJTRST	P1.18	P1.19	P2.01	P2.00	P2.07	2.08	V _{18REG}	V _{18BKP}	XRTC2
н	P0.13	P1.16	P1.17	P2.19	P2.18	P2.17	P0.24	P2.14	P2.16	XRTC1
J	P0.11	P0.12	P1.11	P0.27	P0.19	P0.26	P0.25	P2.15	V _{DD_IO}	V _{SS_IO}
к	P0.10	P0.09	P0.08	P0.18	P0.17	P0.16	XT1	XT2	V _{DDA_PLL}	V _{SSA_PLL}

Table 4. LFBGA100 ball connections

 Table 5.
 LFBGA64 ball connections

	1	2	3	4	5	6	7	8
А	P0.03	V _{SS_IO}	P1.04	P1.06	P1.08	P0.05	P0.05 P0.06	
В	P1.12	V _{DD_IO}	P1.05	P1.07	P1.09	P0.04	P1.10	P1.03
С	P0.01	P0.02	P0.00	V ₁₈	V _{SS18}	V _{DD_IO}	V _{SS_IO}	P0.14
D	P0.29	P0.28	TEST	V _{SS_IO}	VREG_DIS	V _{DDA_ADC}	V _{SSA_ADC}	P0.15
E	P1.18	P1.19	P0.20	P0.21	NRSTOUT	NRSTIN	V _{18BKP}	XRTC2
F	P0.13	NJTRST	P1.16	P1.17	V _{18REG}	V _{SS18}	V _{SSBKP}	XRTC1
G	P0.11	P0.12	P1.11	P0.19	V _{DD_IO}	V _{SS_IO}	V _{DDA_PLL}	V _{SSA_PLL}
н	P0.10	P0.09	P0.08	P0.17	P0.18	P0.16	XT2	XT1

57

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate function	
7	D1	5	D1	P0.29 / TIM1_TI1 / ADC_IN8	I/O	Τ _Τ	x	х		02	х	х		Port 0.29	TIM1: Input Capture 1	ADC: Analog input 8
8	E1	6	D2	P0.28 / TIM1_OC1	I/O	Τ _Τ	х	х		02	х	х		Port 0.28	TIM1: Output Cor	npare 1
9	E5	7	D3	TEST	Ι									Reserved, mu	ist be tied to groun	d
10	E4	8	D4	VSS_IO	S									Ground Voltag	ge for digital I/Os	
11	E2			P0.23 / UART1_RTS / ADC_IN6	I/O	Τ _Τ	x	x		O2	x	x		Port 0.23	UART1: Ready To Send output ⁽⁴⁾	ADC analog input 6
12	F5			P2.04 / TIM2_OC1	I/O	Τ _Τ	x	х		02	х	х		Port 2.04	TIM2: Output Compare 1 ⁽⁴⁾	
13	F1			P2.03 / UART1_RTS	I/O	т _т	x	x		02	x	x		Port 2.03	UART1: Ready To Send output ⁽⁴⁾	
14	F4			P2.02	I/O	Τ _T	х	х		02	Х	Х		Port 2.02		
15	E3			P0.22 / UART1_CTS / ADC_IN5	I/O	Τ _Τ	x	x		O2	x	x		Port 0.22	UART1: Clear To Send input ADC: Analog input 5	
16	F2	9	E4	P0.21 / UART1_TX	I/O	Τ _Τ	x	х		02	х	х		Port 0.21	UART1: Transmit (remappable to P	data output 0.15) ⁽⁴⁾
17	F3	10	E3	P0.20 / UART1_RX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.20	UART1: Receive (remappable to P	data input 0.14) ⁽⁴⁾
18	G3	11	E2	P1.19 / JTMS	I/O	Τ _Τ	х	х		O2	х	х		JTAG mode selection input ⁽⁶⁾	Port 1.19	
19	G2	12	E1	P1.18 / JTCK	I/O	Τ _Τ	х	х		02	х	х		JTAG clock input ⁽⁶⁾	Port 1.18	
20	H3	13	F4	P1.17 / JTDO	I/O	Τ _Τ	х	х		O8	х	х		JTAG data output ⁽⁶⁾	Port 1.17	
21	H2	14	F3	P1.16 / JTDI	I/O	Τ _Τ	х	х		02	х	х		JTAG data input ⁽⁶⁾	Port 1.16	
22	G1	15	F2	NJTRST	Ι	TT								JTAG reset in	put ⁽⁵⁾	
23	G4			P2.01	I/O	T_T	х	х		02	х	Х		Port 2.01		
24	G5			P2.00	I/O	TT	X	х		O2	х	х		Port 2.00		
														ITAC	Port 0.13	
25	H1	16	F1	P0.13 / RTCK / UART0_RTS UART2_TX	I/O	Τ _Τ	х	x		O8	х	х		JTAG return clock output ⁽⁶⁾	UART0: Ready To Send output ⁽⁴⁾	UART2: Transmit Data output (when remapped) ⁽⁸⁾

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		C)utpu	ıt	y					
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate function			
91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	Τ _Τ	x	х		04	х	х		Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾ ADC: analog input 9			
92	A3			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		O8	х	х		Port 1.14	ADC: analog input 15			
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	O8	х	х		Port 1.13	ADC: analog input 14			
94	D5			P1.01 / TIM0_TI2	I/O	TT	x	х		02	x	x		Port 1.01	TIM0: Input Capture / trigger / external clock 2 (remappable to P0.05) ⁽⁸⁾			
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		O2	х	х		Port 1.00	TIM0: Output com (remappable to Po			
96	C4	60	C4	V18	S									Stabilization for main voltage regulator. Requires external capacitors 33nF between V18 and VSS18. See <i>Figure 4.2.</i> To be connected to the 1.8V external power supply when embedded regulators are not used.				
97	D4	61	C5	VSS18	S									Ground Volta	Ground Voltage for the main voltage regulator.			
98	D3	62	A2	VSS_IO	S									Ground Volta	Ground Voltage for digital I/Os			
99	C3	63	B2	VDD_IO	S									Supply Voltag	Supply Voltage for digital I/Os			
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	x		02	x	x		Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1		

Table 6. STR750F pin description (continued)

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

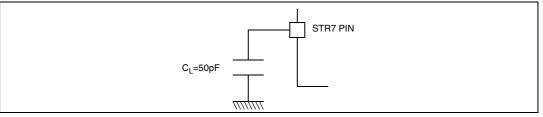
3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN.

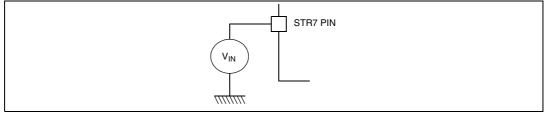
 After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case, debugging these I/Os via JTAG is not possible).

7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX.


8. For details on remapping these alternate functions, refer to the GPIO_REMAPOR register description.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 6*.


Figure 6. Pin loading conditions

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

Figure 7. Pin input voltage

6.1.6 Power supply schemes

When mentioned, some electrical parameters can refer to a dedicated power scheme among the four possibilities. The four different power schemes are described below.

Power supply scheme 1: Single external 3.3 V power source

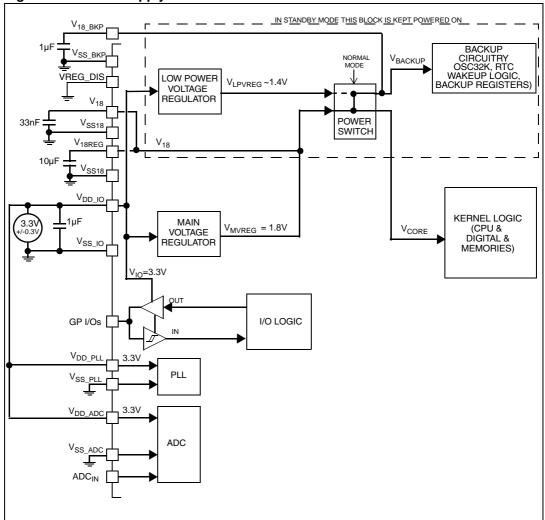


Figure 8. Power supply scheme 1

6.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit						
t _{VDD_IO}	V _{DD IO} rise time rate		20			μs/V						
	VDD_IO lise time late				20	ms/V						
t _{V18}	V ₁₈ rise time rate ⁽¹⁾	When 1.8 V power is supplied	20			μs/V						
		externally			20	ms/V						

Table 11. Operating conditions at power-up / power-down

1. Data guaranteed by characterization, not tested in production.

6.3.3 Embedded voltage regulators

Subject to general operating conditions for $V_{DD \ IO}$, and T_A

Table 12.	Embedded voltage regulators
-----------	-----------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{MVREG}	MVREG power supply ⁽¹⁾	load <150 mA	1.65	1.80	1.95	V
V _{LPVREG}	LPVREG power supply ⁽²⁾	load <10 mA	1.30	1.40	1.50	V
t	Voltage Regulators start-up time (to reach 90% of final V ₁₈	V _{DD_IO} rise slope = 20 μs/V		80		μs
t _{VREG_} PWRUP ⁽¹⁾	value) at $V_{DD_{IO}}$ power-up ⁽³⁾	V _{DD_IO} rise slope = 20 ms/V		35		ms

V_{MVREG} is observed on the V₁₈, V_{18REG} and V_{18BKP} pins except in the following case:

 In STOP mode with MVREG OFF (LP_PARAM13 bit). See note 2.
 In STANDBY mode. See note 2.

2. In STANDBY mode, V_{LPVREG} is observed on the V_{18BKP} pin In STOP mode, V_{LPVREG} is observed on the V_{18}, V_{18REG} and V_{18BKP} pins.

 Once V_{DD_IO} has reached 3.0 V, the RSM (Regulator Startup Monitor) generates an internal RESET during this start-up time.

300

250

200

150 100

50

0

-40

25

IStop (uA)

Figure 16. Power consumption in STOP mode Figure 17. Pow in Single supply scheme (3.3 V Sing range)

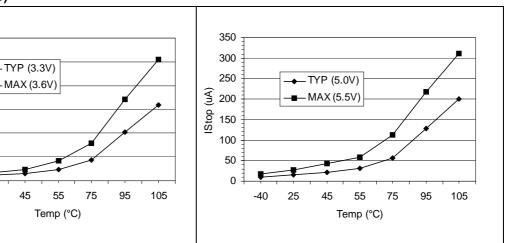
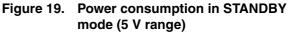
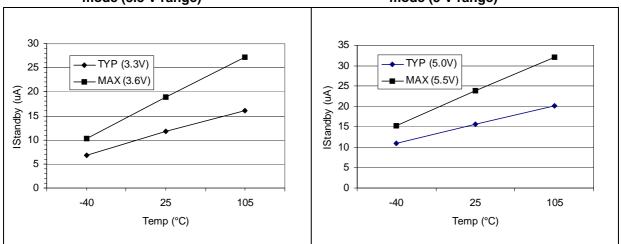




Figure 18. Power consumption in STANDBY mode (3.3 V range)

 Power consumption in STOP mode Single supply scheme (5 V range)

Symbol	Para meter	Conditions	3.3V typ ⁽¹⁾	5V typ ⁽²⁾	Unit				
	Supply current in								
	RUN mode ⁽⁴⁾	Clocked by OSC4M with PLL multiplication, only EXTIT peripheral enabled in the MRCC_PLCKEN register: f_{HCLK} =60 MHz, f_{PCLK} =30 MHz f_{HCLK} =56 MHz, f_{PCLK} =28 MHz f_{HCLK} =48 MHz, f_{PCLK} =24 MHz f_{HCLK} =32 MHz, f_{PCLK} =32 MHz f_{HCLK} =16 MHz, f_{PCLK} =16 MHz f_{HCLK} =8 MHz, f_{PCLK} =8 MHz	65 60 54 42 22 16	67 62 55 44 24 18	mA				
I _{DD} ⁽³⁾	Supply current in WFI mode ⁽⁴⁾	Clocked by OSC4M with PLL multiplication, only EXTIT peripheral enabled in the MRCC_PLCKEN register: $f_{HCLK}=60 \text{ MHz}, f_{PCLK}=30 \text{ MHz}^{(5)}$ $f_{HCLK}=56 \text{ MHz}, f_{PCLK}=28 \text{ MHz}^{(5)}$ $f_{HCLK}=48 \text{ MHz}, f_{PCLK}=24 \text{ MHz}^{(5)}$ $f_{HCLK}=32 \text{ MHz}, f_{PCLK}=32 \text{ MHz}^{(6)}$ $f_{HCLK}=16 \text{ MHz}, f_{PCLK}=16 \text{ MHz}^{(6)}$ $f_{HCLK}=8 \text{ MHz}, f_{PCLK}=8 \text{ MHz}^{(6)}$	62 59 53 22 13 10	63 60 54 23 15 11	mA				
	Supply current in SLOW mode ⁽⁴⁾	Clocked by FREEOSC: f _{HCLK} =f _{PCLK} =~5 MHz, Clocked by OSC4M: f _{HCLK} =f _{PCLK} =4 MHz Clocked by LPOSC: f _{HCLK} =f _{PCLK} =~300 kHz Clocked by OSC32K: f _{HCLK} =f _{PCLK} =32.768 kHz	9 8 3.65 3.5	10 9 3.9 4.2	mA				
	Supply current in SLOW-WFI mode ⁽⁴⁾⁽⁷⁾	Clocked by FREEOSC: f _{HCLK} =f _{PCLK} =~5 MHz Clocked by OSC4M: f _{HCLK} =f _{PCLK} =4 MHz Clocked by LPOSC: f _{HCLK} =f _{PCLK} =~300 kHz Clocked by OSC32K: f _{HCLK} =f _{PCLK} =32.768 kHz	3.5 3.1 1.15 0.98	4.0 3.75 1.65 1.5	mA				

Subject to general operating conditions for V _{DD} _{IO} , and T	Subject to genera	l operating	conditions for	$V_{DD,IO}$, and T
---	-------------------	-------------	----------------	---------------------

Table 15.	Single supply typical power consumption in Run, WFI, Slow and Slow-WFI modes
-----------	--

1. Typical data based on $T_A{=}25^\circ$ C and $V_{DD_IO}{=}3.3V.$

2. Typical data based on $T_A=25^{\circ}$ C and V_{DD} IO=5.0V.

3. The conditions for these consumption measurements are described at the beginning of Section 6.3.4 on page 36.

4. Single supply scheme see *Figure 14*.

5. Parameter setting BURST=1, WFI_FLASHEN=1

6. Parameter setting BURST=0, WFI_FLASHEN=0

7. Parameter setting WFI_FLASHEN=0, OSC4MOFF=1

On-Chip peripheral power consumption

Conditions:

- $V_{DD_{-}IO}=V_{DDA_{-}ADC}=V_{DDA_{-}PLL}=3.3$ V or 5 V ±10% unless otherwise specified.
- T_A= 25° C
- Clocked by OSC4M with PLL multiplication, f_{CK_SYS}=64 MHz, f_{HCLK}=32 MHz, f_{PCLK}=32 MHz

Symbol	Parameter	Typ (3.3V and 5.0V)	Unit
I _{DD(TIM)}	TIM Timer supply current ⁽¹⁾	0.7	
I _{DD(PWM)}	PWM Timer supply current ⁽²⁾	1	
I _{DD(SSP)}	SSP supply current ⁽³⁾	1.3	
I _{DD(UART)}	UART supply current ⁽⁴⁾	1.6	
I _{DD(I2C)}	I2C supply current ⁽⁵⁾	0.3	mA
I _{DD(ADC)}	ADC supply current when converting ⁽⁶⁾	1.2	
I _{DD(USB)}	USB supply current ⁽⁷⁾ Note: V _{DD_IO} must be 3.3 V ±10%	0.90	
I _{DD(CAN)}	CAN supply current ⁽⁸⁾	2.8	

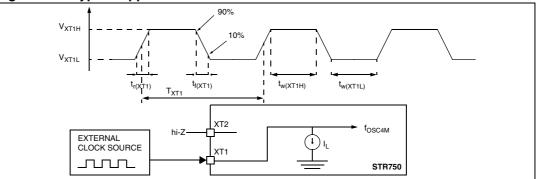
1. Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 32 MHz. No IC/OC programmed (no I/O pads toggling)

2. Data based on a differential I_{DD} measurement between reset configuration and PWM running at 32 MHz. This measurement does not include PWM pads toggling consumption.

- Data based on a differential I_{DD} measurement between reset configuration and permanent SPI master communication at maximum speed 16 MHz. The data sent is 55h. This measurement does not include the pad toggling consumption.
- 4. Data based on a differential I_{DD} measurement between reset configuration and a permanent UART data transmit sequence at 1Mbauds. This measurement does not include the pad toggling consumption.
- Data based on a differential I_{DD} measurement between reset configuration (I2C disabled) and a permanent I2C master communication at 100kHz (data sent equal to 55h). This measurement includes the pad toggling consumption but not the external 10kOhm external pull-up on clock and data lines.
- Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions at 8 MHz in scan mode on 16 inputs configured as AIN.
- 7. Data based on a differential ${\rm I}_{\rm DD}$ measurement between reset configuration and a running generic HID application.
- 8. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a permanent CAN data transmit sequence in loopback mode at 1MHz. This measurement does not include the pad toggling consumption.

XRTC1 external clock source

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$


Table 21. XRTC1 external clock source

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{XRTC1}	External clock source frequency			32.768	500	kHz
V _{XRTC1H}	XRTC1 input pin high level voltage		0.7xV _{DD_IO}		V _{DD_IO}	V
V _{XRTC1L}	XRTC1 input pin low level voltage	see Figure 20	V _{SS}		0.3xV _{DD_IO}	v
t _{w(XRTC1H)} t _{w(XRTC1L)}	XRTC1 high or low time ⁽²⁾		900			ns
t _{r(XRTC1)} t _{f(XRTC1)}	XRTC1 rise or fall time ⁽²⁾				50	115
ΙL	XRTCx Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD_I} o			±1	μA
C _{IN(RTC1)}	XRTC1 input capacitance ⁽²⁾			5		pF
DuCy _(RTC1)	Duty cycle		30		70	%

1. Data based on typical application software.

2. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 20. Typical application with an external clock source

6.3.9 TB and TIM timer characteristics

Subject to general operating conditions for $V_{DD_IO},\,f_{CK_SYS},$ and T_A unless otherwise specified.

Refer to *Section 6.3.8: I/O port pin characteristics on page 54* for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit
t _{w(ICAP)in}	Input capture pulse time	TIM0,1,2		2			t _{CK_TIM}
^t res(TIM)	Timer	ТВ	f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns
	resolution time ⁽¹⁾		f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}
		TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60MHz	16.6 ⁽¹⁾			ns
f _{EXT}	Timer external clock frequency on TI1 or TI2	TIM0,1,2	f _{CK_TIM(MAX)} = f _{CK_SYS}	0		f _{CK_TIM} /4	MHz
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0		15	MHz
Res _{TIM}	Timer resolution					16	bit
^t COUNTER	16-bit Counter clock period when internal clock is selected (16-bit Prescaler)	k		1		65536	t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs
				1		65536	t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs
	Maximum Possible Count	тв				65536x65536	t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	s
MAX_COUNT		TIM0,1,2				65536x65536	t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	s

Table 36. TB and TIM timers

1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to I/O pin, described in : *Output speed on page 57*.

57

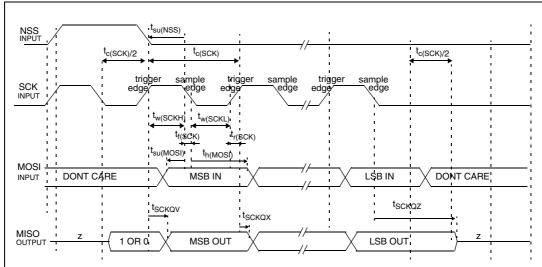
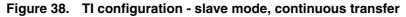
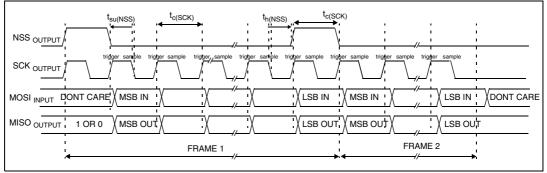




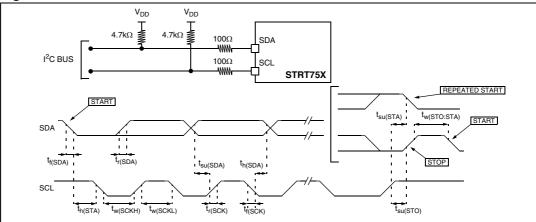
Figure 37. TI configuration - slave mode, single transfer

not possible to power off the STR7x while some another I²C master node remains powered on: otherwise, the STR7x will be powered by the protection diode.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter		rd mode C	Fast mode I ² C ⁽¹⁾		Unit
			Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μS
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μS
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs
Cb	Capacitive load for each bus line		400		400	pF

 Table 41.
 SDA and SCL characteristics


1. f_{PCLK} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time $t_{h(SDA)}$ is not applicable

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

7.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 10: General operating conditions on page 34*.

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum Ambient Temperature in °C,
- Θ_{JA} is the Package Junction-to-Ambient Thermal Resistance, in ° C/W,
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$,
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum Power Dissipation on Output Pins. Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}}^* \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}}^* \mathsf{V}_{\mathsf{OH}})^* \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 48.Thermal characteristics⁽¹⁾

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch	45	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 64 - 8 x 8 x 1.7mm	58	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 100 - 10 x 10 x 1.7mm	41	°C/W

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

