

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str751fr0h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STR750 family of 32-bit microcontrollers combines the industry-standard ARM7TDMI® 32-bit RISC core, featuring high performance, very low power, and very dense code, with a comprehensive set of peripherals and ST's latest 0.18µ embedded Flash technology. The STR750 family comprises a range of devices integrating a common set of peripherals as well as USB, CAN and some key innovations like clock failure detection and an advanced motor control timer. It supports both 3.3V and 5V, and it is also available in an extended temperature range (-40 to +105°C). This makes it a genuine general purpose microcontroller family, suitable for a wide range of applications:

- Appliances, brushless motor drives
- USB peripherals, UPS, alarm systems
- Programmable logic controllers, circuit breakers, inverters
- Medical and portable equipment

2 Device overview

Table 2. De	evice overview
-------------	----------------

Features	STR755FR0 STR755FR1 STR755FR2	STR751FR0/ STR751FR1/ STR751FR2	STR752FR0/ STR752FR1/ STR752FR2	STR755FV0 STR755FV1/ STR755FV2	STR750FV0/ STR750FV1/ STR750FV2						
Flash - Bank 0 (bytes)			64K/128K/2	56K							
Flash - Bank 1 (bytes)	16K RWW										
RAM (bytes)	16K										
Operating Temperature.	Ambient temp.:-40 to +85°C / -40 to +105°C (see <i>Table 49</i>) Junction temp40 to + 125 °C (see <i>Table 10</i>)										
Common Peripherals	3 UARTs, 2 SS 38 I/Os 13 W	Ps, 1 I2C, 3 timer ake-up lines, 11 /	3 UARTs, 2 SSPs, 1 I ² C, 3 timers 1 PWM timer, 72 I/Os 15 Wake-up lines, 16 A/D Channels								
USB/CAN peripherals	None	USB	CAN	None	USB+CAN						
Operating Voltage	3.3V or 5V	3.3V		3.3V or	5V						
Packages (x)	T=LQF	P64 10x10, H =LF	BGA64	T=LQFP10	0 14x14, H =LFBGA100						

3 Introduction

This Datasheet contains the description of the STR750F family features, pinout, Electrical Characteristics, Mechanical Data and Ordering information.

For complete information on the Microcontroller memory, registers and peripherals. Please refer to the STR750F Reference Manual.

For information on the ARM7TDMI-S core please refer to the ARM7TDMI-S Technical Reference Manual available from Arm Ltd.

For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual

For information on third-party development tools, please refer to the http://www.st.com/mcu website.

3.1 Functional description

The STR750F family includes devices in 2 package sizes: 64-pin and 100-pin. Both types have the following common features:

ARM7TDMI-S™ core with embedded Flash & RAM

STR750F family has an embedded ARM core and is therefore compatible with all ARM tools and software. It combines the high performance ARM7TDMI-S[™] CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage FLASH memory and high-speed RAM.

Figure 1 shows the general block diagram of the device family.

Embedded Flash memory

Up to 256 KBytes of embedded Flash is available in Bank 0 for storing programs and data. An additional Bank 1 provides 16 Kbytes of RWW (Read While Write) memory allowing it to be erased/programmed on-the-fly. This partitioning feature is ideal for storing application parameters.

- When configured in burst mode, access to Flash memory is performed at CPU clock speed with 0 wait states for sequential accesses and 1 wait state for random access (maximum 60 MHz).
- When not configured in burst mode, access to Flash memory is performed at CPU clock speed with 0 wait states (maximum 32 MHz)

Embedded SRAM

16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

Enhanced interrupt controller (EIC)

In addition to the standard ARM interrupt controller, the STR750F embeds a nested interrupt controller able to handle up to 32 vectors and 16 priority levels. This additional hardware block provides flexible interrupt management features with minimal interrupt latency.

49 47 → V_{REG_DIS} 47 → V_{SS_IO_2} 46 → V_{SSA_ADC} 45 → V_{DDA_ADC} 44 → V_{DD_IO_2} 43 → P1.03 / TIM2_TI2 43 → P1.03 / TIM2_TI2 BOOT0 / TIM0_OC1 / P0.00 4 ADC_IN8 / TIM1_TI1 / P0.29 5 TIM1_OC1 / P0.28 G P0.14 / CAN_RX or USB_DP
 P0.15 / CAN_TX or USB_DN TEST 7 ⊲42 V_{SS_IO_4} [8 UART1_TX / P0.21 [9 41 LQFP64 □ NRSTIN *(*40 UART1_IX / P0.20 [10 JTMS / P1.19 [11 JTCK / P1.18 [12 JTDO / P1.17 [13 JTDI / P1.16 [14 NRSTOUT 39 XRTC2 38 V_{18BKP} I/Os 37 □ XRTC1 36 □ V_{18BKP} 35 □ V_{SSBKP} 34 □ V_{SS18} 33 U V18REG V_{DDD_IO_3} C V_{DDA_PLL} C XT2 C XT1 C V_{SS_I0_3} | SMI_CS1 / ADC_IN2 / UART0_CTS / UART2_RX /P0.12 SSA_PLL

Figure 3. LQFP64 pinout

	1	2	3	4	5	6	7	8	9	10
A	P0.03	P1.13	P1.14	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07	P1.02
в	P1.12	P0.02	P0.01	P1.05	P1.07	P1.09	P0.04	P2.13	P1.03	P2.10
с	P0.31	P0.00	V _{DD_IO}	V ₁₈	P1.10	P2.09	V _{SS_IO}	V _{SSA_ADC}	/ _{SSA_ADC} P2.11	
D	P0.29	P0.30	V _{SS_IO}	V _{SS18}	P1.01	P1.15	V _{DD_IO}	V _{DDA_ADC}	P2.12	USB_DN
Е	P0.28	P0.23	P0.22	$V_{SS_{IO}}$	TEST	P1.00	NRSTOUT	VREG_DIS	NRSTIN	P0.14
F	P2.03	P0.21	P0.20	P2.02	P2.04	P2.05	P2.06	V _{SS18}	V _{SSBKP}	P0.15
G	NJTRST	P1.18	P1.19	P2.01	P2.00	P2.07	2.08	V _{18REG}	V _{18BKP}	XRTC2
н	P0.13	P1.16	P1.17	P2.19	P2.18	P2.17	P0.24	P2.14	P2.16	XRTC1
J	P0.11	P0.12	P1.11	P0.27	P0.19	P0.26	P0.25	P2.15	V _{DD_IO}	V _{SS_IO}
к	P0.10	P0.09	P0.08	P0.18	P0.17	P0.16	XT1	XT2	V _{DDA_PLL}	V _{SSA_PLL}

Table 4. LFBGA100 ball connections

 Table 5.
 LFBGA64 ball connections

	1	2	3	4	5	6	7	8
А	P0.03	V _{SS_IO}	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07
В	P1.12	V _{DD_IO}	P1.05	P1.07	P1.09	P0.04	P1.10	P1.03
С	P0.01	P0.02	P0.00	V ₁₈	V _{SS18}	V _{DD_IO}	V _{SS_IO}	P0.14
D	P0.29	P0.28	TEST	V _{SS_IO}	VREG_DIS	V _{DDA_ADC}	V _{SSA_ADC}	P0.15
E	P1.18	P1.19	P0.20	P0.21	NRSTOUT	NRSTIN	V _{18BKP}	XRTC2
F	P0.13	NJTRST	P1.16	P1.17	V _{18REG}	V _{SS18}	V _{SSBKP}	XRTC1
G	P0.11	P0.12	P1.11	P0.19	V _{DD_IO}	V _{SS_IO}	V _{DDA_PLL}	V _{SSA_PLL}
н	P0.10	P0.09	P0.08	P0.17	P0.18	P0.16	XT2	XT1

	Pin	n°					In	put		C	outpu	ıt	λ			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Stand	Main function (after reset)	Alternate	e function
7	D1	5	D1	P0.29 / TIM1_TI1 / ADC_IN8	I/O	Τ _Τ	х	х		O2	х	х		Port 0.29	TIM1: Input Capture 1	ADC: Analog input 8
8	E1	6	D2	P0.28 / TIM1_OC1	I/O	Τ _Τ	х	х		O2	х	х		Port 0.28	TIM1: Output Con	npare 1
9	E5	7	D3	TEST	Ι									Reserved, mu	ust be tied to groun	d
10	E4	8	D4	VSS_IO	S									Ground Volta	ge for digital I/Os	
11	E2			P0.23 / UART1_RTS / ADC_IN6	I/O	Τ _Τ	x	х		O2	x	x		Port 0.23	UART1: Ready To Send output ⁽⁴⁾	ADC analog input 6
12	F5			P2.04 / TIM2_OC1	I/O	TT	х	х		02	х	х		Port 2.04	TIM2: Output Compare 1 ⁽⁴⁾	
13	F1			P2.03 / UART1_RTS	I/O	т _т	x	х		02	x	x		Port 2.03	UART1: Ready To Send output ⁽⁴⁾	
14	F4			P2.02	I/O	Τ _Τ	х	х		02	х	Х		Port 2.02		
15	E3			P0.22 / UART1_CTS / ADC_IN5	I/O	Τ _Τ	x	х		O2	x	x		Port 0.22	UART1: Clear To Send input	ADC: Analog input 5
16	F2	9	E4	P0.21 / UART1_TX	I/O	Τ _Τ	x	х		02	х	х		Port 0.21	UART1: Transmit (remappable to P	data output 0.15) ⁽⁴⁾
17	F3	10	E3	P0.20 / UART1_RX	I/O	Τ _Τ	х	х		O2	х	х		Port 0.20	UART1: Receive of (remappable to Po	data input 0.14) ⁽⁴⁾
18	G3	11	E2	P1.19 / JTMS	I/O	Τ _Τ	х	х		02	х	х		JTAG mode selection input ⁽⁶⁾	Port 1.19	
19	G2	12	E1	P1.18 / JTCK	I/O	Τ _Τ	х	х		O2	х	х		JTAG clock input ⁽⁶⁾	Port 1.18	
20	H3	13	F4	P1.17 / JTDO	I/O	Τ _Τ	х	х		08	х	х		JTAG data output ⁽⁶⁾	Port 1.17	
21	H2	14	F3	P1.16 / JTDI	I/O	Τ _Τ	х	х		O2	х	х		JTAG data input ⁽⁶⁾	Port 1.16	
22	G1	15	F2	NJTRST	Ι	Τ _T								JTAG reset in	put ⁽⁵⁾	
23	G4			P2.01	I/O	Τ _T	х	х		02	х	х		Port 2.01		
24	G5			P2.00	I/O	Τ _T	х	х		02	х	х		Port 2.00		
															Port 0.13	
25	H1	16	F1	P0.13 / RTCK / UART0_RTS UART2_TX	I/O	Τ _Τ	х	х		O8	х	х		JTAG return clock output ⁽⁶⁾	UART0: Ready To Send output ⁽⁴⁾	UART2: Transmit Data output (when remapped) ⁽⁸⁾

Table 6. STR750F pin description (continued)

iab	ie 6.		31	RIDUR PIN de	SCL	iptic) п	con	unue	u)			1			
	Pin	n°					In	put		C	utpu	ıt	λq			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standl	Main function (after reset)	Alternate	e function
				P0.12 /											UART0: Clear To Send input	ADC: Analog input 2
26	J2	17	G2	UART2_RX / UART0_CTS / ADC_IN2 / SMI_CS1	I/O	Τ _Τ	x	х		O4	x	x		Port 0.12	Serial Memory Interface: chip select output 1	UART2: Receive Data input (when remapped) ⁽⁸⁾
27	J1	18	G1	P0.11 / UART0_TX / BOOT1 / SMI_CS2	I/O	Τ _Τ	x	x		O4	x	x		Port 0.11/Boot mode selection input 1	UART0: Transmit data output	Serial Memory Interface: chip select output 2
28	K1	19	H1	P0.10 / UART0_RX / SMI_CS3	I/O	Τ _Τ	x	х	EIT4	02	x	x		Port 0.10	UART0: Receive Data input	Serial Memory Interface: chip select output 3
29	K2	20	H2	P0.09 / I2C_SDA	I/O	Τ _T	х	х		04	Х	Х		Port 0.09	I2C: Serial Data	
30	K3	21	НЗ	P0.08 / I2C_SCL	I/O	Τ _Τ	х	х	EIT3	04	Х	Х		Port 0.08	I2C: Serial clock	
31	H4			P2.19	I/O	Τ _Τ	х	х		02	Х	Х		Port 2.19		
32	H5			P2.18	I/O	Τ _Τ	х	х		O2	Х	Х		Port 2.18		
33	H6			P2.17 / UART2_RTS	I/O	Τ _Τ	х	х		02	х	х		Port 2.17	UART2: Ready To	Send output ⁽⁴⁾
34	J3	22	G3	P1.11 /UART0_RTS ADC_IN12	I/O	Τ _Τ	x	х	EIT11	O8	x	x		Port 1.11	UART0: Ready To Send output ⁽⁴⁾	ADC: Analog input 12
35	J4			P0.27 / UART2_RTS / ADC_IN7	I/O	Τ _Τ	x	х		02	х	х		Port 0.27	UART2: Ready To Send output ⁽⁸⁾	ADC: Analog input 7
36	J6			P0.26 / UART2_CTS	I/O	Τ _Τ	x	х		O2	х	х		Port 0.26	UART2: Clear To	Send input
37	J7			P0.25 / UART2_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.25	UART2: Transmit (remappable to P	data output 0.13) ⁽⁸⁾
38	H7			P0.24 / UART2_RX	I/O	Τ _Τ	x	х		02	х	х		Port 0.24	UART2: Receive (remappable to P	data input 0.12) ⁽⁸⁾
39	J5	23	G4	P0.19/USB_CK/ SSP1_NSS/	I/O	TT	x	x	EIT6	O2	x	x		Port 0.19	SSP1: Slave select input (remappable to P0.11) ⁽⁸⁾	ADC: Analog input 4
				ADC_IN4											USB: 48 MHz Clock input	
40	K4	24	H5	P0.18 / SSP1_MOSI	I/O	Τ _Τ	x	х		O2	х	х		Port 0.18	SSP1: Master out (remappable to P	/slave in data 0.10) ⁽⁸⁾
41	K5	25	H4	P0.17 / SSP1_MISO / ADC_IN3	I/O	Τ _Τ	x	х		O2	x	x		Port 0.17	SSP1: Master in/slave out data (remappable to P0.09) ⁽⁸⁾	ADC: Analog input 3
42	K6	26	H6	P0.16 / SSP1_SCLK	I/O	Τ _Τ	x	х		02	х	х		Port 0.16	SSP1: serial clock P0.08) ⁽⁸⁾	(remappable to

Table 6.	STR750F pin description (continued)
----------	-------------------------------------

4.2 External components

Figure 4. Required external capacitors when regulators are used

6.1.6 Power supply schemes

When mentioned, some electrical parameters can refer to a dedicated power scheme among the four possibilities. The four different power schemes are described below.

Power supply scheme 1: Single external 3.3 V power source

Figure 8. Power supply scheme 1

Figure 9. Power supply scheme 2

Power supply scheme 2: Dual external 1.8V and 3.3V supply

Typical power consumption

The following measurement conditions apply to Table 15, Table 16 and Table 17.

In RUN mode:

- Program is executed from Flash (except if especially mentioned). The program consists
 of an infinite loop. When f_{HCLK} > 32 MHz, burst mode is activated.
- A standard 4 MHz crystal source is used.
- In all cases the PLL is used to multiply the frequency.
- All measurements are done in the single supply scheme with internal regulators used (see *Figure 12*)

In WFI Mode:

- In WFI Mode the measurement conditions are similar to RUN mode (OSC4M and PLL enabled). In addition, the Flash can be disabled depending on burst mode activation:
 - For AHB frequencies greater than 32 MHz, burst mode is activated and the Flash is kept enabled by setting the WFI_FLASH_EN bit (this bit cannot be reset when burst mode is activated).
 - For AHB frequencies less than or equal to 32 MHz, burst mode is deactivated, WFI_FLASH_EN is reset and the LP_PARAM14 bit is set (Flash is disabled in WFI mode).

In SLOW mode:

 The same program as in RUN mode is executed from Flash. The CPU is clocked by the FREEOSC, OSC4M, LPOSC or OSC32K. Only EXTIT peripheral is enabled in the MRCC_PCLKEN register.

In SLOW-WFI mode:

 In SLOW-WFI, the measurement conditions are similar to SLOW mode (CPU clocked by a low frequency clock). In addition, the LP_PARAM14 bit is set (FLASH is OFF). The WFI routine itself is executed from SRAM (it is not allowed to execute a WFI from the internal FLASH)

In STOP mode:

• Several measurements are given: in the single supply scheme with internal regulators used (see *Figure 12*): and in the dual supply scheme (see *Figure 13*).

In STANDBY mode:

- Three measurements are given:
 - The RTC is disabled, only the consumption of the LPVREG and RSM remain (almost no leakage currents)
 - The RTC is running, clocked by a standard 32.768 kHz crystal.
 - The RTC is running, clocked by the internal Low Power RC oscillator (LPOSC)
- STANDBY mode is only supported in the single supply scheme (see Figure 12)

Symbol	Para meter	Conditions	3.3V typ ⁽¹⁾	5V typ ⁽²⁾	Unit		
I _{DD} ⁽³⁾	Supply current in RUN mode ⁽⁴⁾	$\begin{array}{c} \mbox{Clocked by OSC4M with PLL multiplication, all peripherals} \\ \mbox{enabled in the MRCC_PLCKEN register:} \\ f_{HCLK}=60 \mbox{ MHz}, f_{PCLK}=30 \mbox{ MHz} \\ f_{HCLK}=56 \mbox{ MHz}, f_{PCLK}=28 \mbox{ MHz} \\ f_{HCLK}=48 \mbox{ MHz}, f_{PCLK}=24 \mbox{ MHz} \\ f_{HCLK}=32 \mbox{ MHz}, f_{PCLK}=32 \mbox{ MHz} \\ f_{HCLK}=16 \mbox{ MHz}, f_{PCLK}=16 \mbox{ MHz} \\ f_{HCLK}=8 \mbox{ MHz}, f_{PCLK}=8 \mbox{ MHz} \end{array}$					
		Clocked by OSC4M with PLL multiplication, only EXTIT peripheral enabled in the MRCC_PLCKEN register: $f_{HCLK}=60 \text{ MHz}$, $f_{PCLK}=30 \text{ MHz}$ $f_{HCLK}=56 \text{ MHz}$, $f_{PCLK}=28 \text{ MHz}$ $f_{HCLK}=48 \text{ MHz}$, $f_{PCLK}=24 \text{ MHz}$ $f_{HCLK}=32 \text{ MHz}$, $f_{PCLK}=32 \text{ MHz}$ $f_{HCLK}=16 \text{ MHz}$, $f_{PCLK}=16 \text{ MHz}$ $f_{HCLK}=8 \text{ MHz}$, $f_{PCLK}=8 \text{ MHz}$	65 60 54 42 22 16	67 62 55 44 24 18	mA		
	Supply current in WFI mode ⁽⁴⁾	Clocked by OSC4M with PLL multiplication, only EXTIT peripheral enabled in the MRCC_PLCKEN register: $f_{HCLK}=60 \text{ MHz}, f_{PCLK}=30 \text{ MHz}^{(5)}$ $f_{HCLK}=56 \text{ MHz}, f_{PCLK}=28 \text{ MHz}^{(5)}$ $f_{HCLK}=48 \text{ MHz}, f_{PCLK}=24 \text{ MHz}^{(5)}$ $f_{HCLK}=32 \text{ MHz}, f_{PCLK}=32 \text{ MHz}^{(6)}$ $f_{HCLK}=16 \text{ MHz}, f_{PCLK}=16 \text{ MHz}^{(6)}$ $f_{HCLK}=8 \text{ MHz}, f_{PCLK}=8 \text{ MHz}^{(6)}$	62 59 53 22 13 10	63 60 54 23 15 11	mA		
	Supply current in SLOW mode ⁽⁴⁾	Clocked by FREEOSC: $f_{HCLK}=f_{PCLK}=\sim 5$ MHz, Clocked by OSC4M: $f_{HCLK}=f_{PCLK}=4$ MHz Clocked by LPOSC: $f_{HCLK}=f_{PCLK}=\sim 300$ kHz Clocked by OSC32K: $f_{HCLK}=f_{PCLK}=32.768$ kHz	9 8 3.65 3.5	10 9 3.9 4.2	mA		
	Supply current in SLOW-WFI mode ⁽⁴⁾⁽⁷⁾	Clocked by FREEOSC: f _{HCLK} =f _{PCLK} =~5 MHz Clocked by OSC4M: f _{HCLK} =f _{PCLK} =4 MHz Clocked by LPOSC: f _{HCLK} =f _{PCLK} =~300 kHz Clocked by OSC32K: f _{HCLK} =f _{PCLK} =32.768 kHz	3.5 3.1 1.15 0.98	4.0 3.75 1.65 1.5	mA		

Subject to genera	I operating	conditions for	r V _{DD}	_{IO} , and	Τ _A
-------------------	-------------	----------------	-------------------	---------------------	----------------

Table 15.	Single supply typical	power consumption in Run,	, WFI, Slow and Slow-WFI modes
-----------	-----------------------	---------------------------	--------------------------------

1. Typical data based on $T_A{=}25^\circ$ C and $V_{DD_IO}{=}3.3V.$

2. Typical data based on $T_A=25^{\circ}$ C and V_{DD} IO=5.0V.

3. The conditions for these consumption measurements are described at the beginning of Section 6.3.4 on page 36.

4. Single supply scheme see *Figure 14*.

5. Parameter setting BURST=1, WFI_FLASHEN=1

6. Parameter setting BURST=0, WFI_FLASHEN=0

7. Parameter setting WFI_FLASHEN=0, OSC4MOFF=1

XRTC1 external clock source

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$

Table 21. XRTC1 external clock source

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
fxrtc1	External clock source frequency			32.768	500	kHz
V _{XRTC1H}	XRTC1 input pin high level voltage		0.7xV _{DD_IO}		V _{DD_IO}	V
V _{XRTC1L}	XRTC1 input pin low level voltage	see Figure 20	V _{SS}		0.3xV _{DD_IO}	v
t _{w(XRTC1H)} t _{w(XRTC1L)}	XRTC1 high or low time ⁽²⁾		900			nc
t _{r(XRTC1)} t _{f(XRTC1)}	XRTC1 rise or fall time ⁽²⁾				50	115
١L	XRTCx Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD_I} o			±1	μA
C _{IN(RTC1)}	XRTC1 input capacitance ⁽²⁾			5		pF
DuCy _(RTC1)	Duty cycle		30		70	%

1. Data based on typical application software.

2. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 20. Typical application with an external clock source

4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2)

The STR750 system clock or the input of the PLL can be supplied by a OSC4M which is a 4 MHz clock generated from a 4 MHz or 8 MHz crystal or ceramic resonator. If using an 8 MHz oscillator, software set the XTDIV bit to enable a divider by 2 and generate a 4 MHz OSC4M clock. All the information given in this paragraph are based on product characterisation with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC4M}	Oscillator frequency	4 MHz Crystal/Resonator Oscillator connected on XT1/XT2 XTDIV=0 or		4		MHz
		8 MHz Crystal/Resonator Oscillator connected on XT1/XT2 XTDIV=1				
R _F	Feedback resistor		200	240	270	kΩ
C _{L1} ⁽²⁾ C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator $(R_S)^{(3)}$	R _S =200Ω			60	pF
i ₂	XT2 driving current	V _{DD_IO} =3.3 V or 5.0 V		425		μA
t _{SU(OSC4M)} ⁽⁴⁾	Startup time at $V_{DD_{-}IO}$ power-up			1		ms

Table 22. 4/8	8 MHz crystal / ceramic resonator oscillator ()	XT1/XT2)	(1)
---------------	---	----------	-----

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.) designed for high-frequency applications and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the 2. same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included when sizing C_{L1} and C_{L2} (10 pF can be used as a rough estimate of the combined pin and board capacitance).

- 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- $t_{SU(OSC4M)}$ is the typical start-up time measured from the moment $V_{DD \ IO}$ is powered (with a quick $V_{DD \ IO}$ ramp-up from 0 to 3.3V (<50µs) to a stabilized 4MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal/ceramic resonator manufacturer.

Figure 21. Typical application with a 4 or 8 MHz crystal or ceramic resonator

NRSTIN and NRSTOUT pins

NRSTIN Pin Input Driver is TTL/LVTTL as for all GP I/Os. A permanent pull-up is present which is the same as R_{PU} (see : *General characteristics on page 54*)

NRSTOUT Pin Output Driver is equivalent to the O2 type driver except that it works only as an open-drain (the P-MOS is de-activated). A permanent pull-up is present which is the same as R_{PLI} (see : *General characteristics on page 54*)

Subject to general operating conditions for V_{DD IO} and T_A unless otherwise specified.

Symbol	Parameter	Co	nditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRSTIN)}	NRSTIN Input low level voltage ⁽¹⁾					0.8	V
V _{IH(NRSTIN)}	NRSTIN Input high level voltage ⁽¹⁾			2			v
V _{hys(NRSTIN)}	NRSTIN Schmitt trigger voltage hysteresis ⁽²⁾				400		mV
V _{OL(NRSTIN)}	NRSTOUT Output low level voltage ⁽³⁾	I _{IO} =+2 mA				0.4	V
Baurumanuu	NRSTIN Weak pull-up equivalent resistor ⁽⁴⁾	$V_{IN}=V_{SS} \frac{V_{DD_{-}IO}=3.3 \text{ V}}{V_{DD_{-}IO}=5 \text{ V}}$	$V_{DD_{IO}}$ =3.3 V	25	50	100	kΩ
י יPU(NRSTIN)			20	31	100	kΩ	
t _{w(RSTL)out}	Generated reset pulse duration (visible at NRSTOUT pin) ⁽⁵⁾	Internal reset source		15	20		μs
	External reset pulse hold time	At V _{DD_IO} power-up ⁽⁵⁾		20			μs
t _{h(RSTL)in}	at NRSTIN pin ⁽⁶⁾	When V _{DD_IO} is established ⁽⁵⁾		1			μS
t _g (RSTL)in	maximum negative spike duration filtered at NRSTIN pin ⁽⁷⁾	The time between two spikes must be higher than 1/2 of the spike duration.			150		ns

Table 35. NRSTIN and NRSTOUT pins

1. Data based on product characterisation, not tested in production.

2. Hysteresis voltage between Schmitt trigger switching levels.

- 3. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 6.2.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.
- 4. The R_{PU} pull-up equivalent resistor are based on a resistive transistor
- 5. To guarantee the reset of the device, a minimum pulse of 15 µs has to be applied to the internal reset. At V_{DD_IO} power-up, the built-in reset stretcher may not generate the 15 µs pulse duration while once V_{DD_IO} is established, an external reset pulse will be internally stretched up to 15 µs thanks to the reset pulse stretcher.
- 6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments.
- 7. In fact the filter is made to ignore all incoming pulses with short duration:

 all negative spikes with a duration less than 150 ns are filtered
 all trains of negative spikes with a ratio of 1/2 are filtered. This means that all spikes with a maximum duration of 150 ns with minimum interval between spikes of 75 ns are filtered.
 Data guaranteed by design, not tested in production.

SSP synchronous serial peripheral in slave mode (SPI or TI mode)

Subject to general operating conditions with $C_L\approx 45~\text{pF}$

Symbol	Parameter	Conditions		Min	Max	Unit
f	SPI clock froguency		SSP0		2.66 MHz	
ISCK	SFI Clock frequency		SSP1		(f _{PLCK} /12)	IVILIZ
+	NSS input setup time w.r.t		SSP0	0		
^ι su(NSS)	SCK first edge		SSP1	0		
	NSS input hold time w.r.t		SSP0	t _{PCLK} +15ns		
^L h(NSS)	SCK last edge		SSP1	t _{PCLK} +15ns		
t _{NSSLQV}	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +30 ns	
	MISO valid time	SSP1	2t _{PCLK}	3t _{PCLK} +30 ns		
t _{NSSLQZ}	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +15 ns	
	MISO invalid time		SSP1	2t _{PCLK}	3t _{PCLK} +15 ns	20
	SCK trigger edge to data output MISO valid time		SSP0		15	115
ISCKQV			SSP1		30	
+	SCK trigger edge to data		SSP0	2t _{PCLK}		
ISCKQX	output MISO invalid time	SSP1	2t _{PCLK}			
t _{su(MOSI)}	MOSI setup time w.r.t SCK sampling edge		SSP0	0		
			SSP1	0		
t _{h(MOSI)}	MOSI hold time w.r.t SCK		SSP0	3t _{PCLK} +15 ns		
	sampling edge		SSP1	3t _{PCLK} +15 ns		

 Table 39.
 SSP slave mode characteristics⁽¹⁾

1. Data based on characterisation results, not tested in production.

Figure 33. SPI configuration, slave mode with CPHA=0, single transfer

not possible to power off the STR7x while some another I²C master node remains powered on: otherwise, the STR7x will be powered by the protection diode.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit	
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾		
t _{w(SCLL)}	SCL clock low time	4.7		1.3			
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs	
t _{su(SDA)}	SDA setup time	250		100			
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300		
t _{h(STA)}	START condition hold time	4.0		0.6			
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μδ	
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs	
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μS	
Cb	Capacitive load for each bus line		400		400	pF	

 Table 41.
 SDA and SCL characteristics

1. f_{PCLK} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time $t_{h(SDA)}$ is not applicable

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

6.3.12 10-bit ADC characteristics

Subject to general operating conditions for $V_{DDA_ADC},\,f_{PCLK},$ and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
f _{ADC}	ADC clock frequency		0.4		8	MHz
V _{AIN}	Conversion voltage range ⁽²⁾		V_{SSA_ADC}		V_{DDA_ADC}	V
R _{AIN}	External input impedance ⁽³⁾⁽⁴⁾				10	kΩ
C _{AIN}	External capacitor on analog input ⁽³⁾⁽⁴⁾				6.8	pF
l _{lkg}	Induced input leakage current	+400 µA injected on any pin			1	μA
		-400 μA injected on any pin except specific adjacent pins in <i>Table 46</i>			1	μΑ
		-400μA injected on specific adjacent pins in <i>Table 46</i>		40		μΑ
C _{ADC}	Internal sample and hold capacitor			3.5		pF
tau	Calibration Time	f _{CK_ADC} =8 MHz	725.25			μs
^I CAL				5802		
t _{CONV}	Total Conversion time (including sampling time)	f _{CK_ADC} =8 MHz	3.75			μs
			30 (11 for Successiv	samplir /e Appro	ng + 19 for eximation)	1/f _{ADC}
I _{ADC}		Sunk on V _{DDA_ADC}		3.7		mA

Table 45.10-bit ADC characteristics

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$. They are given only as design guidelines and are not tested.

2. Calibration is needed once after each power-up.

 C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

4. Depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies ≤ 8 MHz.

7.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 10: General operating conditions on page 34*.

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum Ambient Temperature in °C,
- Θ_{JA} is the Package Junction-to-Ambient Thermal Resistance, in ° C/W,
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$,
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum Power Dissipation on Output Pins. Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) * \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 48.Thermal characteristics⁽¹⁾

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch	45	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 64 - 8 x 8 x 1.7mm	58	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 100 - 10 x 10 x 1.7mm	41	°C/W

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

8 Order codes

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR750FV0T6	64				
STR750FV1T6	128	LQFP100 14x14			
STR750FV2T6	256		Vaa	Vaa	40 to 195°C
STR750FV0H6	64		ies	ies	-40 10 +65 C
STR750FV1H6	128	LFBGA100 10x10			
STR750FV2H6	256				
STR751FR0T6	64				
STR751FR1T6	128	LQFP64 10x10			
STR751FR2T6	256			Voc	-40 to 185°C
STR751FR0H6	64		-	163	-40 10 +65 0
STR751FR1H6	128	LFBGA64 8x8			
STR751FR2H6	256				
STR752FR0T6	64				
STR752FR1T6	128	LQFP64 10x10			
STR752FR2T6	256		Voc	-	-40 to 185°C
STR752FR0H6	64		163		-40 10 +03 0
STR752FR1H6	128	LFBGA64 8x8			
STR752FR2H6	256				
STR752FR0T7	64				
STR752FR1T7	128	LQFP64 10x10			
STR752FR2T7	256		Voc	_	-40 to 1105°C
STR752FR0H7	64		163	_	-40 10 + 103 0
STR752FR1H7	128	LFBGA64 8x8			
STR752FR2H7	256				
STR755FR0T6	64				
STR755FR1T6	128	LQFP64 10x10			
STR755FR2T6	256		_	_	-40 to ±85°C
STR755FR0H6	64		_	_	
STR755FR1H6	128	LFBGA64 8x8			
STR755FR2H6	256				
