

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str751fr0t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.

WDG (watchdog timer)

The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management.

Timebase timer (TB)

The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system.

Synchronizable standard timers (TIM2:0)

The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same

I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices, timer Alternate Function I/Os can be connected, or "remapped", to other I/O ports as summarized in *Table 3* and detailed in *Table 6*. This remapping is done by the application via a control register.

		Nu	Number of alternate function I/Os						
Star	Standard timer functions		64-pin package						
		package	Default mapping	Remapped					
ТІМ О	Input Capture	2	1	2					
	Output Compare/PWM	2	1	2					
TIM 1	Input Capture	2	1	1					
	Output Compare/PWM	2	1	1					
TIM 2	Input Capture		2	2					
111112	Output Compare/PWM	2	1	2					

Table 3. Standard timer alternate function I/Os

Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is mapped to a DMA channel.

Motor control PWM timer (PWM)

The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6 channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or centre-aligned patterns and supports dead-time insertion. It has many features in common with the standard TIM timers which has the same architecture and it can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. The PWM timer is mapped to a DMA channel.

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
7	D1	5	D1	P0.29 / TIM1_TI1 / ADC_IN8	I/O	Τ _Τ	x	х		02	х	х		Port 0.29	TIM1: Input Capture 1	ADC: Analog input 8
8	E1	6	D2	P0.28 / TIM1_OC1	I/O	Τ _Τ	x	х		02	х	х		Port 0.28	TIM1: Output Cor	npare 1
9	E5	7	D3	TEST	Ι									Reserved, mu	ist be tied to groun	d
10	E4	8	D4	VSS_IO	S									Ground Voltag	ge for digital I/Os	
11	E2			P0.23 / UART1_RTS / ADC_IN6	I/O	Τ _Τ	x	x		O2	x	x		Port 0.23	UART1: Ready To Send output ⁽⁴⁾	ADC analog input 6
12	F5			P2.04 / TIM2_OC1	I/O	Τ _Τ	х	х		02	х	х		Port 2.04	TIM2: Output Compare 1 ⁽⁴⁾	
13	F1			P2.03 / UART1_RTS	I/O	т _т	x	x		02	x	x		Port 2.03	UART1: Ready To Send output ⁽⁴⁾	
14	F4			P2.02	I/O	Τ _T	х	х		02	Х	Х		Port 2.02		
15	E3			P0.22 / UART1_CTS / ADC_IN5	I/O	Τ _Τ	x	x		O2	x	x		Port 0.22	UART1: Clear To Send input	ADC: Analog input 5
16	F2	9	E4	P0.21 / UART1_TX	I/O	Τ _Τ	x	х		02	х	х		Port 0.21	UART1: Transmit (remappable to P	data output 0.15) ⁽⁴⁾
17	F3	10	E3	P0.20 / UART1_RX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.20	UART1: Receive (remappable to P	data input 0.14) ⁽⁴⁾
18	G3	11	E2	P1.19 / JTMS	I/O	Τ _Τ	х	х		O2	х	х		JTAG mode selection input ⁽⁶⁾	Port 1.19	
19	G2	12	E1	P1.18 / JTCK	I/O	Τ _Τ	х	х		02	х	х		JTAG clock input ⁽⁶⁾	Port 1.18	
20	H3	13	F4	P1.17 / JTDO	I/O	Τ _Τ	х	х		O8	х	х		JTAG data output ⁽⁶⁾	Port 1.17	
21	H2	14	F3	P1.16 / JTDI	I/O	Τ _Τ	х	х		02	х	х		JTAG data input ⁽⁶⁾	Port 1.16	
22	G1	15	F2	NJTRST	Ι	TT								JTAG reset in	G reset input ⁽⁵⁾	
23	G4			P2.01	I/O	T_T	х	х		02	х	Х		Port 2.01		
24	G5			P2.00	I/O	TT	X	х		O2	х	х		Port 2.00		
														ITAC	Port 0.13	
25	H1	16	F1	P0.13 / RTCK / UART0_RTS UART2_TX	I/O	Τ _Τ	х	x		O8	х	х		JTAG return clock output ⁽⁶⁾	UART0: Ready To Send output ⁽⁴⁾	UART2: Transmit Data output (when remapped) ⁽⁸⁾

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		С	utpu	ıt	۲ ک			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate function	
43	H9			P2.16	I/O	Τ _T	х	Х		02	Х	Х		Port 2.16		
44	J9	27	G5	VDD_IO	S									Supply voltag	e for digital I/Os	
45	K9	28	G7	VDDA_PLL	S									Supply voltag	e for PLL	
46	K8	29	H7	XT2										4 MHz main c	oscillator	
47	K7	30	H8	XT1												
48	J10	31	G6	VSS_IO	S									Ground voltag	ge for digital I/Os	
49	K10	32	G8	VSSA_PLL	S									Ground voltag	ge for PLL	
50	J8			P2.15	I/O	T_T	х	х		O2	Х	Х		Port 2.15		
51	H8			P2.14	I/O	Τ _T	х	х		O2	Х	Х		Port 2.14		
52	G8	33	F5	V18REG	S									Stabilization for main voltage regulator. Requires external capacitors of at least 10µF between V18REG and VSS18. See <i>Figure 4.2</i> . To be connected to the 1.8V external power supp when embedded regulators are not used,		
53	F8	34	F6	VSS18	S									Ground Voltage for the main voltage regulator		
54	F9	35	F7	VSSBKP	S									Stabilization f	or low power voltage regulator.	
55	G9	36	E7	V18BKP	S									Requires extended between V18 To be connect	ge for the low power voltage regulator. ernal capacitors of at least 1µF BKP and VSSBKP. See <i>Figure 4.2.</i> ted to the 1.8V external power supply ded regulators are not used,	
56	H10	37	F8	XRTC1									х			
57	G10	38	E8	XRTC2									х	32 KHZ OSCIII	ator for Realtime Clock	
58	E7	39	E5	NRSTOUT	0								х	Reset output		
59	E9	40	E6	NRSTIN	I	Τ _Τ							х	Reset input		
60	D6			P1.15 / WKP_STDBY	I	Τ _Τ	х		EIT15				х	Port 1.15	Wake-up from STANDBY input pin	
61	B8			P2.13	I/O	Τ _T	х	х		O2	Х	Х		Port 2.13		
62	D9			P2.12	I/O	TT	x	х		02	Х	Х		Port 2.12		
63	F10	41 (7)	D8 (7)	P0.15 / CAN_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.15	CAN: Transmit data output	
64	E10	42 (7)	C8 (7)	P0.14 / CAN_RX	I/O	Τ _Τ	x	х	EIT5	O2	х	х		Port 0.14 CAN: Receive data input		
65	D10	41 (7)	D8 (7)	USB_DN	I/O									USB: bidirectional data (data -)		
66	C10	42 (7)	C8 (7)	USB_DP	I/O									USB: bidirectional data (data +)		
67	B9	43	B8	P1.03 / TIM2_TI2	I/O	Τ _Τ	x	х		02	x	x		Port 1.03	TIM2: Input Capture / trigger / external clock 2 (remappable to P0.07) ⁽⁸⁾	

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	Τ _Τ	x	х		04	х	х		Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾	ADC: analog input 9
92	A3			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		O8	х	х		Port 1.14	ADC: analog inpu	t 15
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	O8	х	х		Port 1.13	ADC: analog input 14	
94	D5			P1.01 / TIM0_TI2	I/O	TT	x	х		02	x	x		Port 1.01	TIM0: Input Capture / trigger / external clock 2 (remappable to P0.05) ⁽⁸⁾	
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		O2	х	х		Port 1.00	TIM0: Output com (remappable to Po	
96	C4	60	C4	V18	S									external capa See <i>Figure 4.</i> To be connec	tabilization for main voltage regulator. Requires tternal capacitors 33nF between V18 and VSS18. ee <i>Figure 4.2.</i> b be connected to the 1.8V external power supply hen embedded regulators are not used.	
97	D4	61	C5	VSS18	S									Ground Voltage for the main voltage regulator.		age regulator.
98	D3	62	A2	VSS_IO	S									Ground Voltage for digital I/Os		
99	C3	63	B2	VDD_IO	S									Supply Voltag	Supply Voltage for digital I/Os	
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	x		02	x	x		Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1

Table 6. STR750F pin description (continued)

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN.

 After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case, debugging these I/Os via JTAG is not possible).

7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX.

8. For details on remapping these alternate functions, refer to the GPIO_REMAPOR register description.

6 Electrical parameters

6.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_Amax (given by the selected temperature range).

Data based on product characterisation, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25^{\circ}$ C, $V_{DD_{-}IO}=3.3$ V (for the 3.0 V \leq V_{DD_{-}IO} \leq 3.6 V voltage range) and V₁₈=1.8 V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.6 Power supply schemes

When mentioned, some electrical parameters can refer to a dedicated power scheme among the four possibilities. The four different power schemes are described below.

Power supply scheme 1: Single external 3.3 V power source

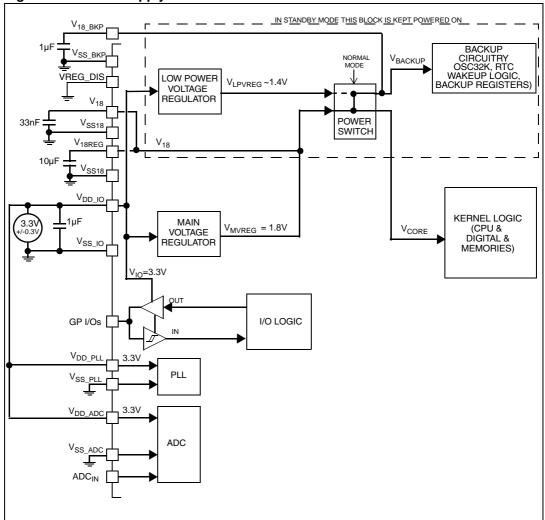
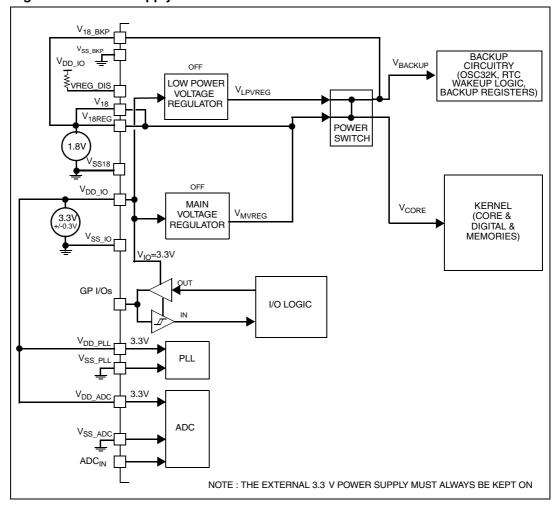



Figure 8. Power supply scheme 1

Figure 9. Power supply scheme 2

Power supply scheme 2: Dual external 1.8V and 3.3V supply

6.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for T_A.

	oporating contained	no at ponor ap / ponor ao				
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
turn in	V _{DD IO} rise time rate		20			μs/V
t _{VDD_IO}	VDD_IO lise time late				20	ms/V
t	V ₁₈ rise time rate ⁽¹⁾	When 1.8 V power is supplied	20			μs/V
t _{V18}		externally			20	ms/V

Table 11. Operating conditions at power-up / power-down

1. Data guaranteed by characterization, not tested in production.

6.3.3 Embedded voltage regulators

Subject to general operating conditions for $V_{DD \ IO}$, and T_A

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{MVREG}	MVREG power supply ⁽¹⁾	load <150 mA	1.65	1.80	1.95	V
V _{LPVREG}	LPVREG power supply ⁽²⁾	load <10 mA	1.30	1.40	1.50	V
t	Voltage Regulators start-up time (to reach 90% of final V ₁₈	V _{DD_IO} rise slope = 20 μs/V		80		μs
t _{vreg_pwrup} (1)	value) at $V_{DD_{IO}}$ power-up ⁽³⁾	V _{DD_IO} rise slope = 20 ms/V		35		ms

V_{MVREG} is observed on the V₁₈, V_{18REG} and V_{18BKP} pins except in the following case:

 In STOP mode with MVREG OFF (LP_PARAM13 bit). See note 2.
 In STANDBY mode. See note 2.

2. In STANDBY mode, V_{LPVREG} is observed on the V_{18BKP} pin In STOP mode, V_{LPVREG} is observed on the V_{18}, V_{18REG} and V_{18BKP} pins.

 Once V_{DD_IO} has reached 3.0 V, the RSM (Regulator Startup Monitor) generates an internal RESET during this start-up time.

300

250

200

150 100

50

0

-40

25

IStop (uA)

Figure 16. Power consumption in STOP mode Figure 17. Pow in Single supply scheme (3.3 V Sing range)

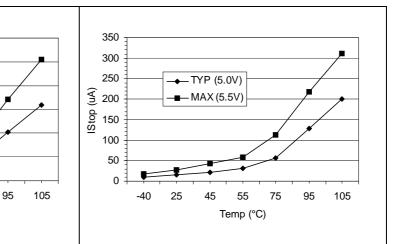
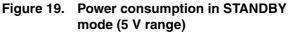
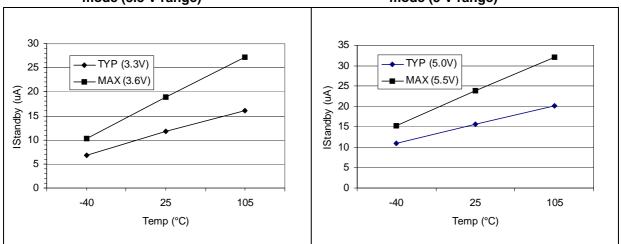


Figure 18. Power consumption in STANDBY mode (3.3 V range)

-TYP (3.3V)


MAX (3.6V)


45

55

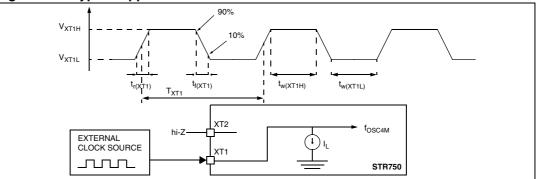
Temp (°C)

75

7. Power consumption in STOP mode Single supply scheme (5 V range)

XRTC1 external clock source

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$


Table 21. XRTC1 external clock source

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{XRTC1}	External clock source frequency			32.768	500	kHz
V _{XRTC1H}	XRTC1 input pin high level voltage		0.7xV _{DD_IO}		V _{DD_IO}	V
V _{XRTC1L}	XRTC1 input pin low level voltage	see Figure 20	V _{SS}		0.3xV _{DD_IO}	v
t _{w(XRTC1H)} t _{w(XRTC1L)}	XRTC1 high or low time ⁽²⁾		900			ns
t _{r(XRTC1)} t _{f(XRTC1)}	XRTC1 rise or fall time ⁽²⁾				50	115
ΙL	XRTCx Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD_I} o			±1	μA
C _{IN(RTC1)}	XRTC1 input capacitance ⁽²⁾			5		pF
DuCy _(RTC1)	Duty cycle		30		70	%

1. Data based on typical application software.

2. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 20. Typical application with an external clock source

4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2)

The STR750 system clock or the input of the PLL can be supplied by a OSC4M which is a 4 MHz clock generated from a 4 MHz or 8 MHz crystal or ceramic resonator. If using an 8 MHz oscillator, software set the XTDIV bit to enable a divider by 2 and generate a 4 MHz OSC4M clock. All the information given in this paragraph are based on product characterisation with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC4M}	Oscillator frequency	4 MHz Crystal/Resonator Oscillator connected on XT1/XT2 XTDIV=0 or 8 MHz Crystal/Resonator Oscillator connected on XT1/XT2 XTDIV=1		4		MHz
R _F	Feedback resistor		200	240	270	kΩ
C _{L1} ⁽²⁾ C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator $(R_S)^{(3)}$	R _S =200Ω			60	pF
i ₂	XT2 driving current	V _{DD_IO} =3.3 V or 5.0 V		425		μA
t _{SU(OSC4M)} ⁽⁴⁾	Startup time at V _{DD_IO} power-up			1		ms

Table 22.	4/8 MHz crystal	/ ceramic resonator oscillato	or (XT1/XT2) ⁽¹⁾
-----------	-----------------	-------------------------------	-----------------------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.) designed for high-frequency applications and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the 2. same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included when sizing C_{L1} and C_{L2} (10 pF can be used as a rough estimate of the combined pin and board capacitance).

- 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- $t_{SU(OSC4M)}$ is the typical start-up time measured from the moment $V_{DD \ IO}$ is powered (with a quick $V_{DD \ IO}$ ramp-up from 0 to 3.3V (<50µs) to a stabilized 4MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal/ceramic resonator manufacturer.

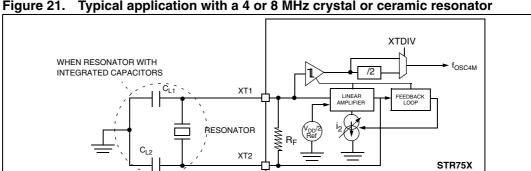


Figure 21. Typical application with a 4 or 8 MHz crystal or ceramic resonator

PLL characteristics

Subject to general operating conditions for $V_{DD \ IO}$, and T_A .

Table 24. PLL characteristics	Table 24.	PLL	characteristics
-------------------------------	-----------	-----	-----------------

Symbol	Parameter	Test Conditions	Value			Unit
Symbol	Falameter	Test Conditions	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock			4.0		MHz
f _{PLL_IN}	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock	f _{PLL_IN} x 24			165	MHz
f _{VCO}	VCO frequency range	When PLL operates (locked)	336		960	MHz
t _{LOCK}	PLL lock time				300	μs
∆t _{JITTER1} ⁽²⁾⁽³⁾	Single period jitter (+/-3 Σ peak to peak)	$f_{PLL_IN} = 4 \text{ MHz}^{(4)}$ V _{DD_IO} is stable			+/-250	ps
∆t _{JITTER2} ⁽²⁾⁽³⁾	Long term jitter (+/- 3Σ peak to peak)	$f_{PLL_IN} = 4 \text{ MHz}^{(4)}$ V _{DD_IO} is stable			+/-2.5	ns
∆t _{JITTER3} ⁽²⁾⁽³⁾	Cycle to cycle jitter (+/- 3Σ peak to peak)	$f_{PLL_IN} = 4 \text{ MHz}^{(4)}$ V _{DD_IO} is stable			+/-500	ps

1. Data based on product characterisation, not tested in production.

2. Refer to jitter terminology in : PLL characteristics on page 47 for details on how jitter is specified.

 The jitter specification holds true only up to 50mV (peak-to-peak) noise on V_{DDA_PLL} and V₁₈ supplies. Jitter will increase if the noise is more than 50mV. In addition, it assumes that the input clock has no jitter.

4. The PLL parameters (MX1, MX0, PRESC1, PRESC2) must respect the constraints described in: PLL characteristics on page 47.

Internal RC oscillators (FREEOSC & LPOSC)

Subject to general operating conditions for V_{DD} IO, and T_A .

Table 25. Internal RC oscillators (FREEOSC & LPOSC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{CK_FREEOSC}	FREEOSC Oscillator Frequency		3	5	8	MHz
f _{CK_LPOSC}	LPOSC Oscillator Frequency		150	300	500	kHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{res(PWM)}	PWM resolution time	$f_{CK_TIM(MAX)} = f_{CK_SYS}$	1			$t_{\rm CK_TIM}$
		f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns
Res _{PWM}	PWM resolution				16	bit
V _{OS} ⁽¹⁾	PWM/DAC output step voltage	V _{DD_IO} =3.3 V, Res=16-bits		50 ⁽¹⁾		μV
		V _{DD_IO} =5.0 V, Res=16-bits		76 ⁽¹⁾		μV
	Timer clock period		1		65536	t _{CK_TIM}
t _{COUNTER} when internal clock is selected	f _{CK_TIM} =60 MHz	0.0166		1087	μs	
^t MAX_COUNT	Maximum Possible				65536x 65536	^t ск_тім
	Count	$f_{CK_{TIM}} = f_{CK_{SYS}} =$ 60 MHz			71.58	S

Table 37. PWM Timer (PWM)

1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to an I/O pin, as described in : *Output speed on page 57*.

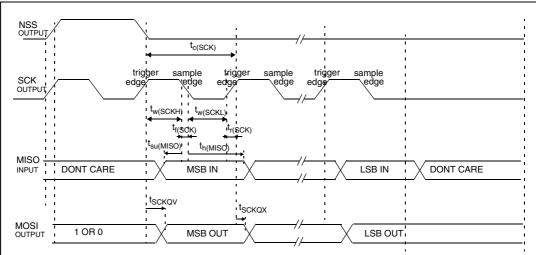
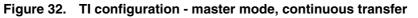



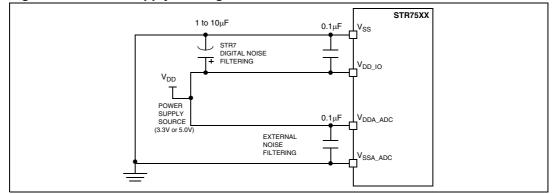
Figure 31. TI configuration - master mode, single transfer

t _{c(S0}	СК)	t _{c(SCK)}		
NSS OUTPUT	//			1 1
SCK OUTPUT	e trigger, sample trigger sample	trigger sample trigger sample	trigger sample trigger sample	
	XXX			OUT
MISO INPUT DONT CARE MSB IN	X/X		N X // LSB	
	FRAME 1	.	FRAME 2	→

Symbol	Parameter	Conditions	Min	Max	Unit
t _{rfm}	Rise/ Fall Time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal Crossover Voltage		1.3	2.0	V

Table 44. USB: Full speed electrical characteristics

 Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).


General PCB design guidelines

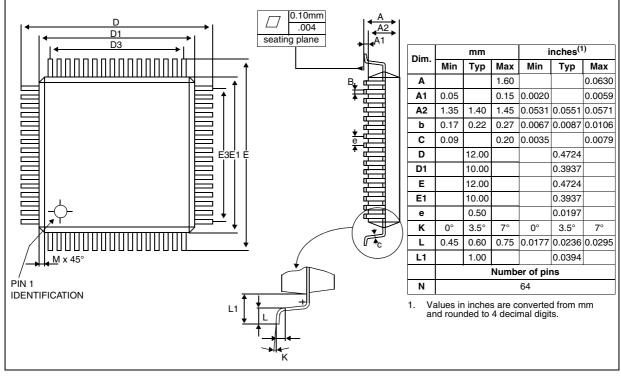
To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 43*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA_ADC} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 43. Power supply filtering



7 Package characteristics

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 Package mechanical data

7.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 10: General operating conditions on page 34*.

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum Ambient Temperature in °C,
- Θ_{JA} is the Package Junction-to-Ambient Thermal Resistance, in ° C/W,
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$,
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum Power Dissipation on Output Pins. Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}}^* \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}}^* \mathsf{V}_{\mathsf{OH}})^* \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 48.Thermal characteristics⁽¹⁾

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch	45	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 64 - 8 x 8 x 1.7mm	58	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 100 - 10 x 10 x 1.7mm	41	°C/W

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code *Table 49: Order codes on page 81*.

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax}= 82 °C (measured according to JESD51-2), I_{DDmax}=8 mA, V_{DD} = 5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

 $P_{INTmax} = 8 \text{ mA x 5 V} = 400 \text{ mW}$

$$P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{V} = 64 \text{ mW}$$

This gives: P_{INTmax}= 400 mW and P_{IOmax} 64 mW:

 $P_{Dmax} = 400 \text{ mW} + 64 \text{ mW}$

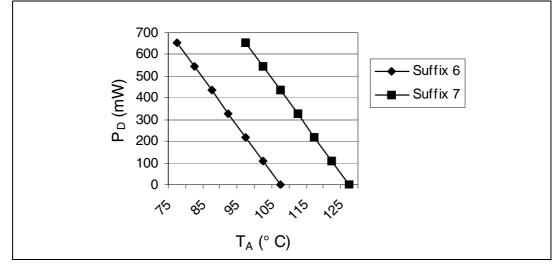
Thus: $P_{Dmax} = 464 \text{ mW}$

Using the values obtained in Table 48 T_{Jmax} is calculated as follows:

For LQFP100, 46°C/W

 $T_{\text{lmax}} = 82^{\circ} \text{ C} + (46^{\circ} \text{ C/W x } 464 \text{ mW}) = 82^{\circ} \text{C} + 21^{\circ} \text{C} = 103^{\circ} \text{ C}$

This is within the range of the suffix 6 version parts ($-40 < T_J < 105^\circ$ C). In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 49: Order codes on page 81*).


- For BGA64, 58°C/W

 $T_{Jmax} = 82^{\circ} \text{ C} + (58^{\circ} \text{ C/W x } 464 \text{ mW}) = 82^{\circ} \text{C} + 27^{\circ} \text{C} = 109^{\circ} \text{ C}$

This is within the range of the suffix 7 version parts (-40 < T_J < 125° C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 49: Order codes on page 81*).

Figure 50. LQFP100 P_{Dmax} vs T_A

8 Order codes

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR750FV0T6	64				
STR750FV1T6	128	LQFP100 14x14			
STR750FV2T6	256			Vaa	40 to . 95°C
STR750FV0H6	64		Yes	Yes	-40 to +85°C
STR750FV1H6	128	LFBGA100 10x10			
STR750FV2H6	256				
STR751FR0T6	64				
STR751FR1T6	128	LQFP64 10x10		Yes	
STR751FR2T6	256				-40 to +85°C
STR751FR0H6	64		-		-40 10 +85 C
STR751FR1H6	128	LFBGA64 8x8			
STR751FR2H6	256				
STR752FR0T6	64			-	
STR752FR1T6	128	LQFP64 10x10	No		
STR752FR2T6	256				
STR752FR0H6	64		Yes		
STR752FR1H6	128	LFBGA64 8x8			
STR752FR2H6	256				
STR752FR0T7	64				
STR752FR1T7	128	LQFP64 10x10		-	
STR752FR2T7	256		Yes		-40 to +105°C
STR752FR0H7	64		165		-40 10 + 105 C
STR752FR1H7	128	LFBGA64 8x8			
STR752FR2H7	256				
STR755FR0T6	64				
STR755FR1T6	128	LQFP64 10x10			
STR755FR2T6	256				-40 to +85°C
STR755FR0H6	64	-			-40 IO +00 O
STR755FR1H6	128	LFBGA64 8x8			
STR755FR2H6	256				

