

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str751fr1h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Description

The STR750 family of 32-bit microcontrollers combines the industry-standard ARM7TDMI® 32-bit RISC core, featuring high performance, very low power, and very dense code, with a comprehensive set of peripherals and ST's latest 0.18µ embedded Flash technology. The STR750 family comprises a range of devices integrating a common set of peripherals as well as USB, CAN and some key innovations like clock failure detection and an advanced motor control timer. It supports both 3.3V and 5V, and it is also available in an extended temperature range (-40 to +105°C). This makes it a genuine general purpose microcontroller family, suitable for a wide range of applications:

- Appliances, brushless motor drives
- USB peripherals, UPS, alarm systems
- Programmable logic controllers, circuit breakers, inverters
- Medical and portable equipment

2 Device overview

Table 2. De	evice overview
-------------	----------------

Features	STR755FR0 STR751FR0/ STR752FR0/ STR755FV0 STR750FV0 STR755FR1 STR751FR1/ STR752FR1/ STR755FV1/ STR750FV1/ STR755FR2 STR751FR2 STR752FR2 STR755FV2 STR750FV2							
Flash - Bank 0 (bytes)		64K/128K/256K						
Flash - Bank 1 (bytes)			16K RWV	V				
RAM (bytes)		16K						
Operating Temperature.		Ambient temp.:-40 to +85°C / -40 to +105°C (see <i>Table 49</i>) Junction temp40 to + 125 °C (see <i>Table 10</i>)						
Common Peripherals	3 UARTs, 2 SSPs, 1 I2C, 3 timers 1 PWM timer, 38 I/Os 13 Wake-up lines, 11 A/D Channels3 UARTs, 2 SSPs, 1 I2C, 3 timers 1 PWM timer, 72 I/Os 15 Wake-up lines, 16 A/D Channel							
USB/CAN peripherals	None USB CAN None USB+CAN							
Operating Voltage	3.3V or 5V 3.3V 3.3V 0r 5V							
Packages (x)	T=LQFP64 10x10, H=LFBGA64 T=LQFP100 14x14, H=LFBGA100							

periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.

WDG (watchdog timer)

The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management.

Timebase timer (TB)

The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system.

Synchronizable standard timers (TIM2:0)

The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same

I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices, timer Alternate Function I/Os can be connected, or "remapped", to other I/O ports as summarized in *Table 3* and detailed in *Table 6*. This remapping is done by the application via a control register.

		Number of alternate function I/Os					
Stand	lard timer functions	100-pin	64-pin package				
		package	Default mapping	Remapped			
ΤΙΜΟ	Input Capture	2	1	2			
T IIVI U	Output Compare/PWM	2	1	2			
	Input Capture	2	1	1			
	Output Compare/PWM	2	1	1			
	Input Capture	2	2	2			
1 11/1 2	Output Compare/PWM	2	1	2			

Table 3. Standard timer alternate function I/Os

Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is mapped to a DMA channel.

Motor control PWM timer (PWM)

The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6 channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or centre-aligned patterns and supports dead-time insertion. It has many features in common with the standard TIM timers which has the same architecture and it can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. The PWM timer is mapped to a DMA channel.

4 Pin description

	Pin	n°					In	put		c	Outpu	ıt	Σ				
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	РР	Usable in Standt	Main function (after reset)	Alternate	e function	
68	A10			P1.02 / TIM2_OC2	I/O	Τ _Τ	х	х		02	х	х		Port 1.02	TIM2: Output com (remappable to P	npare 2 0.06) ⁽⁸⁾	
69	D7	44	C6	VDD_IO	S									Supply Voltag	e for digital I/Os		
70	D8	45	D6	VDDA_ADC	S									Supply Voltag	e for A/D converte	r	
71	C9			P2.11	I/O	T_T	х	х		02	х	х		Port 2.11			
72	B10			P2.10	I/O	Τ _Τ	х	х		02	Х	х		Port 2.10			
73	C8	46	D7	VSSA_ADC	S									Ground Volta	ge for A/D converte	er	
74	C7	47	C7	VSS_IO	S									Ground Volta	ge for digital I/Os		
75	E8	48	D5	VREG_DIS	Ι	Τ _Τ								Voltage Regu	lator Disable input		
76	A9	49	A8	P0.07 / SMI_DOUT / SSP0_MOSI	I/O	Τ _Τ	x	x	EIT2	04	x	x		Port 0.07	Serial Memory Interface: data output	SSP0: Master out Slave in data	
77	A8	50	A7	P0.06 / SMI_DIN / SSP0_MISO	I/O	Τ _Τ	x	x		O4	x	x		Port 0.06	Serial Memory Interface: data input	SSP0: Master in Slave out data	
78	A7	51	A6	P0.05 / SSP0_SCLK / SMI_CK	I/O	Τ _Τ	x	x	EIT1	O4	x	x		Port 0.05	SSP0: Serial clock	Serial Memory Interface: Serial clock output	
79	B7	52	B6	P0.04 / SMI_CS0 / SSP0_NSS	I/O	Τ _Τ	x	x		O4	x	x		Port 0.04	Serial Memory Interface: chip select output 0	SSP0: Slave select input	
80	C5	53	B7	P1.10 PWM_EMERGE NCY	I/O	Τ _Τ	x	x	EIT10	O2	x	х		Port 1.10	PWM: Emergency	y input	
81	B6	54	B5	P1.09 / PWM1	I/O	Τ _Τ	х	х	EIT9	04	х	х		Port 1.09	PWM: PWM1 out	put	
82	C6			P2.09 / PWM1N	I/O	Τ _Τ	х	х		O2	х	х		Port 2.09	PWM: PWM1 con output ⁽⁴⁾	nplementary	
83	G7			P2.08 / PWM2	I/O	T_T	х	х		02	х	х		Port 2.08	PWM: PWM2 out	put ⁽⁴⁾	
84	G6			P2.07 / PWM2N	I/O	Τ _Τ	x	х		02	х	х		Port 2.07	PWM: PWM2 con output ⁽⁴⁾	PWM: PWM2 complementary output ⁽⁴⁾	
85	F7			P2.06 / PWM3	I/O	Τ _Τ	х	х		02	Х	Х		Port 2.06	PWM: PWM3 output ⁽⁴⁾		
86	F6			P2.05 / PWM3N	I/O	Τ _Τ	х	х		02	х	х		Port 2.05	PWM: PWM3 complementary output ⁽⁴⁾		
87	A6	55	A5	P1.08 / PWM1N / ADC_IN11	I/O	Τ _Τ	x	x		O4	x	x		Port 1.08	PWM: PWM1 complementary output ⁽⁸⁾	ADC: analog input 11	
88	B5	56	B4	P1.07 / PWM2	I/O	Τ _Τ	х	х	EIT8	04	Х	х		Port 1.07	PWM: PWM2 out	put ⁽⁴⁾	
89	A5	57	A4	P1.06 / PWM2N / ADC_IN10	I/O	Τ _Τ	x	x		O4	x	x		Port 1.06	PWM: PWM2 complementary output ⁽⁴⁾	ADC: analog input 10	
90	B4	58	В3	P1.05 / PWM3	I/O	Τ _Τ	х	Х	EIT7	04	х	х		Port 1.05	PWM: PWM3 out	put ⁽⁴⁾	

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		C)utpu	ıt	δ				
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Stand	Main function (after reset)	Alternate	e function	
91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	Τ _Τ	x	х		04	х	х		Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾	ADC: analog input 9	
92	A3			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		08	х	х		Port 1.14	ADC: analog input 15		
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	08	х	х		Port 1.13	ADC: analog input 14		
94	D5			P1.01 / TIM0_TI2	I/O	TT	x	х		O2	x	x		Port 1.01	TIM0: Input Captu external clock 2 (r P0.05) ⁽⁸⁾	TIM0: Input Capture / trigger / external clock 2 (remappable to P0.05) ⁽⁸⁾	
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		02	х	х		Port 1.00	TIM0: Output com (remappable to P0	pare 2 0.04) ⁽⁸⁾	
96	C4	60	C4	V18	S									Stabilization f external capa See <i>Figure 4</i> . To be connec when embedo	ation for main voltage regulator. Requires al capacitors 33nF between V18 and VSS18. <i>gure 4.2.</i> onnected to the 1.8V external power supply mbedded regulators are not used.		
97	D4	61	C5	VSS18	S									Ground Volta	Ground Voltage for the main voltage regulator.		
98	D3	62	A2	VSS_IO	S									Ground Volta	ge for digital I/Os		
99	C3	63	B2	VDD_IO	S									Supply Voltag	Supply Voltage for digital I/Os		
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	х		02	х	х		Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1	

Table 6. STR750F pin description (continued)

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN.

 After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case, debugging these I/Os via JTAG is not possible).

7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX.

8. For details on remapping these alternate functions, refer to the GPIO_REMAPOR register description.

4.2 External components

Figure 4. Required external capacitors when regulators are used

Figure 9. Power supply scheme 2

Power supply scheme 2: Dual external 1.8V and 3.3V supply

Figure 15. Power consumption measurements in power scheme 4 (regulators disabled)

6.3.4 Supply current characteristics

The current consumption is measured as described in *Figure 12 on page 30* and *Figure 13 on page 30*.

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$, and T_{A}

Maximum power consumption

For the measurements in *Table 13* and *Table 14*, the MCU is placed under the following conditions:

- All I/O pins are configured in output push-pull 0
- All peripherals are disabled except if explicitly mentioned.
- Embedded Regulators are used to provide 1.8 V (except if explicitly mentioned).

Table 13. Maximum power consumption in RUN and WFI n	nodes
--	-------

Symbol	Parameter	Conditions ⁽¹⁾		Тур ⁽²⁾	Max ⁽³⁾	Unit
I _{DD}	Supply current in RUN mode	External Clock with PLL multiplication, code running from RAM, all peripherals enabled in the MRCC_PLCKEN register: f _{HCLK} =60 MHz, f _{PCLK} =30 MHz Single supply scheme see <i>Figure 12</i> / <i>Figure 14</i>	3.3V and 5V range	80	90	mA
	Supply current in WFI mode	External Clock, code running from RAM: f _{HCLK} =60 MHz, f _{PCLK} =30 MHz Single supply scheme see <i>Figure 12./ Figure 14</i> Parameter setting BURST=1, WFI_FLASHEN=1	3.3V and 5V range	62	67	mA

1. The conditions for these consumption measurements are described at the beginning of Section 6.3.4.

2. Typical data are based on $T_A=25^\circ C,\,V_{DD_IO}=3.3V$ or 5.0V and $V_{18}=1.8V$ unless otherwise specified.

3. Data based on product characterisation, tested in production at $V_{DD_{-}IO}$ max and V_{18} max (1.95V in dual supply mode or regulator output value in single supply mode) and T_A max.

Figure 16. Power consumption in STOP mode Figure 17. Pow in Single supply scheme (3.3 V Sing range)

Figure 18. Power consumption in STANDBY mode (3.3 V range)

17. Power consumption in STOP mode Single supply scheme (5 V range)

6.3.6 Memory characteristics

Flash memory

Subject to general operating conditions for V_{DD_IO} and $V_{18},\,T_A$ = -40 to 105 $^\circ C$ unless otherwise specified.

Cumhal	Deveneter	Test Canditions	Va	Unit		
Symbol	Parameter	Test Conditions	Тур	Max ⁽¹⁾	Unit	
t _{PW}	Word Program		35		μs	
t _{PDW}	Double Word Program		60		μs	
t _{PB0}	Bank 0 Program (256K)	Single Word programming of a checker-board pattern	2	4.9 ⁽²⁾	s	
t _{PB1}	Bank 1 Program (16K)	Single Word programming of a checker-board pattern	125	224 ⁽²⁾	ms	
t _{ES}	Sector Erase (64K)	Not preprogrammed (all 1) Preprogrammed (all 0)	1.54 1.176	2.94 ⁽²⁾ 2.38 ⁽²⁾	s	
t _{ES}	Sector Erase (8K)	Not preprogrammed (all 1) Preprogrammed (all 0)	392 343	560 ⁽²⁾ 532 ⁽²⁾	ms	
t _{ES}	Bank 0 Erase (256K)	Not preprogrammed (all 1) Preprogrammed (all 0)	8.0 6.6	13.7 11.2	S	
t _{ES}	Bank 1 Erase (16K)	Not preprogrammed (all 1) Preprogrammed (all 0)	0.9 0.8	1.5 1.3	S	
t _{RPD}	Recovery when disabled			20	μs	
t _{PSL}	Program Suspend Latency			10	μs	
t _{ESL}	Erase Suspend Latency			300	μs	

 Table 26.
 Flash memory characteristics

1. Data based on characterisation not tested in production

2. 10K program/erase cycles.

 Table 27.
 Flash memory endurance and data retention

Symbol	Paramotor	Conditions		Unit			
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	0.int	
N _{END_B0}	Endurance (Bank 0 sectors)		10			kcycles	
N_{END_B1}	Endurance (Bank 1 sectors)		100			kcycles	
Y _{RET}	Data Retention	T _A =85° C	20			Years	
t _{ESR}	Erase Suspend Rate	Min time from Erase Resume to next Erase Suspend	20			ms	

1. Data based on characterisation not tested in production.

6.3.8 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD_IO} and T_{A} unless otherwise specified.

Table 32.General characteristics

	I/O static characteristics							
Symbol	Parameter	Con	ditions	Min	Тур	Max	Unit	
V _{IL}	Input low level voltage				0.8	v		
V _{IH}	Input high level voltage	TTL ports		2			v	
V _{hys}	Schmitt trigger voltage hysteresis ⁽¹⁾			400		mV		
I _{INJ(PIN)}	Injected Current on any I/O pin					± 4		
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins)					± 25	mA	
I _{lkg}	Input leakage current on robust pins	See Section 6.3.12 on page 2		72				
, , , , , , , , , , , , , , , , , , ,	Input leakage current ⁽³⁾	$V_{SS} \leq V_{IN} \leq V_{DI}$			±1			
۱ _S	Static current consumption ⁽⁴⁾	Floating inpu	t mode		200		μА	
Bau	Weak pull-up equivalent	VV.ee	V _{DD_IO} =3.3 V	50	95	200	kΩ	
110	resistor ⁽⁵⁾	VIN-VSS	V _{DD_IO} =5 V	20	58	150	kΩ	
B	Weak pull-down equivalent	VV	V _{DD_IO} =3.3 V	25	80	180	kΩ	
PD	resistor ⁽⁵⁾	VIN-VDD_IO	V _{DD_IO} =5 V	20	50	120	kΩ	
C _{IO}	I/O pin capacitance				5		pF	
t _{w(IT)in}	External interrupt/wake-up lines pulse time ⁽⁶⁾			2			Т _{АР} в	

1. Hysteresis voltage between Schmitt trigger switching levels.

When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise
refer to I_{INJ(PIN)} specification. A positive injection is induced by V_{IN}>V_{DD_IO} while a negative injection is
induced by V_{IN}<V_{SS}. Refer to Section 6.2 on page 32 for more details.

3. Leakage could be higher than max. if negative current is injected on adjacent pins.

4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see *Figure 25*). Data based on design simulation and/or technology characteristics, not tested in production.

5. The R_{PU} pull-up and R_{PD} pull-down equivalent resistor are based on a resistive transistor.

6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

Figure 25. Connecting unused I/O pins

Output driving current

The GP I/Os have different drive capabilities:

- O2 outputs can sink or source up to +/-2 mA.
- O4 outputs can sink or source up to +/-4 mA.
- outputs can sink or source up to +/-8 mA or can sink +20 mA (with a relaxed V_{OL}).

In the application, the user must limit the number of I/O pins which can drive current to respect the absolute maximum rating specified in *Section 6.2.2*:

- The sum of the current sourced by all the I/Os on V_{DD_IO}, plus the maximum RUN consumption of the MCU sourced on V_{DD_IO}, can not exceed the absolute maximum rating IV_{DD_IO}.
- The sum of the current sunk by all the I/Os on V_{SS_IO} plus the maximum RUN consumption of the MCU sunk on V_{SS_IO} can not exceed the absolute maximum rating IV_{SS_IO}.

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$ and T_{A} unless otherwise specified.

Output speed

Subject to general operating conditions for V_{DD_IO} and T_{A} unless otherwise specified.

Table 34.	Output speed
-----------	--------------

	I/O dynamic characteristics for $V_{DD_{-}IO} = 3.0$ to 3.6V and EN33 bit =1 or $V_{DD_{-}IO} = 4.5$ to 5.5V and EN33 bit =0								
l/O Type	I/O Type Symbol Parameter Condition				Тур	Max	Unit		
	f _{max(IO)out}	Maximum Frequency ⁽¹⁾	C _L =50 pF			10	MHz		
O2	t _{f(IO)out}	Output high to low level fall time ⁽²⁾	С _L =50 рF			30			
	t _{r(IO)out}	Output low to high level rise time ⁽²⁾	low to high level rise Between 10% and 90%			33	115		
	f _{max(IO)out}	max(IO)out Maximum Frequency ⁽¹⁾ C _L =50 pF	C _L =50 pF			25	MHz		
04	t _{f(IO)out}	Output high to low level fall time ⁽²⁾	С _L =50 рF			12	nc		
	t _{r(IO)out}	Output low to high level rise time ⁽²⁾	Between 10% and 90%			14	113		
	f _{max(IO)out}	Maximum Frequency ⁽¹⁾	C _L =50pF			40	MHz		
O8	t _{f(IO)out}	Output high to low level fall time ⁽²⁾	С _L =50 рF			6	ne		
	t _{r(IO)out}	Output low to high level rise time ⁽²⁾	Between 10% and 90%			6	611		

1. The maximum frequency is defined as described in *Figure 26*.

2. Data based on product characterisation, not tested in production.

Figure 26. I/O output speed definition

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{rfm}	Rise/ Fall Time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal Crossover Voltage		1.3	2.0	V

Table 44. USB: Full speed electrical characteristics

 Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

6.3.12 10-bit ADC characteristics

Subject to general operating conditions for $V_{DDA_ADC},\,f_{PCLK},$ and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
f _{ADC}	ADC clock frequency		0.4		8	MHz
V _{AIN}	Conversion voltage range ⁽²⁾		V_{SSA_ADC}		V_{DDA_ADC}	V
R _{AIN}	External input impedance ⁽³⁾⁽⁴⁾				10	kΩ
C _{AIN}	External capacitor on analog input ⁽³⁾⁽⁴⁾				6.8	pF
		+400 µA injected on any pin			1	μA
l _{ikg}	Induced input leakage current	-400 μA injected on any pin except specific adjacent pins in <i>Table 46</i>			1	μΑ
		-400μA injected on specific adjacent pins in <i>Table 46</i>		40		μΑ
C _{ADC}	Internal sample and hold capacitor			3.5		pF
tau	Calibration Time	f _{CK_ADC} =8 MHz	725.25		μs	
^L CAL			5802		1/f _{ADC}	
t _{CONV}	Total Conversion time	f _{CK_ADC} =8 MHz	3.75		μs	
	(including sampling time)		30 (11 for sampling + 19 for Successive Approximation)		1/f _{ADC}	
I _{ADC}		Sunk on V _{DDA_ADC}		3.7		mA

Table 45.10-bit ADC characteristics

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$. They are given only as design guidelines and are not tested.

2. Calibration is needed once after each power-up.

 C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

4. Depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies ≤ 8 MHz.

PLANE SEALING	Dim	mm			inches ⁽¹⁾		
	Dim.	Min	Тур	Max	Min	Тур	Max
	Α			1.700			0.0669
খৰ হাৰ	A1	0.270			0.0106		
	A2		1.085			0.0427	
	A3		0.30			0.0118	
	A4			0.80			0.0315
	b	0.45	0.50	0.55	0.0177	0.0197	0.0217
	D	9.85	10.00	10.15	0.3878	0.3937	0.3996
	D1		7.20			0.2835	
	E	9.85	10.00	10.15	0.3878	0.3937	0.3996
	E1		7.20			0.2835	
	е		0.80			0.0315	
1 2 3 4 5 6 7 8 9 10	F		1.40			0.055	
	ddd			0.12			0.005
<u></u>	eee			0.15			0.006
	fff			0.08			0.003
⊳ ⊕ воттом иги		Number of Balls					
	Ν	100					

Figure 48. 100-ball low profile fine pitch ball grid array package

7.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code *Table 49: Order codes on page 81*.

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax}= 82 °C (measured according to JESD51-2), I_{DDmax}=8 mA, V_{DD} = 5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

 $P_{INTmax} = 8 \text{ mA x 5 V} = 400 \text{ mW}$

$$P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{V} = 64 \text{ mW}$$

This gives: P_{INTmax}= 400 mW and P_{IOmax} 64 mW:

 $P_{Dmax} = 400 \text{ mW} + 64 \text{ mW}$

Thus: $P_{Dmax} = 464 \text{ mW}$

Using the values obtained in Table 48 T_{Jmax} is calculated as follows:

For LQFP100, 46°C/W

 $T_{\text{lmax}} = 82^{\circ} \text{ C} + (46^{\circ} \text{ C/W x } 464 \text{ mW}) = 82^{\circ} \text{C} + 21^{\circ} \text{C} = 103^{\circ} \text{ C}$

This is within the range of the suffix 6 version parts ($-40 < T_J < 105^\circ$ C). In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 49: Order codes on page 81*).

- For BGA64, 58°C/W

 $T_{Jmax} = 82^{\circ} \text{ C} + (58^{\circ} \text{ C/W x } 464 \text{ mW}) = 82^{\circ} \text{C} + 27^{\circ} \text{C} = 109^{\circ} \text{ C}$

This is within the range of the suffix 7 version parts (-40 < T_J < 125° C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 49: Order codes on page 81*).

Figure 50. LQFP100 P_{Dmax} vs T_A

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR755FV0T6	64				
STR755FV1T6	128	LQFP100 14x14			
STR755FV2T6	256				40 to 195°C
STR755FV0H6	64		-	-	-40 10 +65 0
STR755FV1H6	128	LFBGA100 10x10			
STR755FV2H6	256				

 Table 49.
 Order codes (continued)

9 Revision history

Table 50.	Document	revision	history
-----------	----------	----------	---------

Date Revision		Description of Changes
25-Sep-2006	1	Initial release
30-Oct-2006	2	Added power consumption data for 5V operation in Section 6
		Changed datasheet title from STR750F to STR750FXX STR751Fxx STR752Fxx STR755xx. Added Table 1: Device summary on page 1
		Added note 1 to Table 6
		Added STOP mode IDD max, values in <i>Table 14</i>
		Updated XT2 driving current in Table 23.
04 101 0007	0	Updated RPD in <i>Table 32</i>
04-Jul-2007	3	Updated Table 21: XRTC1 external clock source on page 45
		Updated Table 34: Output speed on page 57
		Added characteristics for <i>SSP synchronous serial peripheral in master</i> mode (<i>SPI or TI mode</i>) on page 62 and <i>SSP synchronous serial</i> peripheral in slave mode (<i>SPI or TI mode</i>) on page 65
		Added characteristics for SMI - serial memory interface on page 68
		Added Table 42: USB startup time on page 70
		Updated Section 6.2.3: Thermal characteristics on page 33
		Updated P_{D} , T_{J} and T_{A} in Section 6.3: Operating conditions on page 34
		Updated Table 20: XT1 external clock source on page 44
23-Oct-2007	4	Updated Table 21: XRTC1 external clock source on page 45
		Updated <i>Section 7: Package characteristics on page 76</i> (inches rounded to 4 decimal digits instead of 3)
		Updated Ordering information Section 8: Order codes on page 81
		Modified note 3 below Table 8: Current characteristics on page 33
17-Feb-2009	5	Added AHB clock frequency for write access to Flash registers in <i>Table 10: General operating conditions on page 34</i>
		Modified note 3 below Table 41: SDA and SCL characteristics on page 69

