

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str751fr2h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.

WDG (watchdog timer)

The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management.

Timebase timer (TB)

The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system.

Synchronizable standard timers (TIM2:0)

The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same

I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices,

4.1 Pin description table

Legend / abbreviations for Table 6:

Туре:	I = input, O = output, S = supply,
Input levels:	All Inputs are LVTTL at $V_{DD_IO} = 3.3V+/-0.3V$ or TTL at $V_{DD_IO} = 5V\pm 0.5V$. In both cases, T_T means $V_{ILmax} = 0.8V V_{IHmin} = 2.0V$
Inputs:	All inputs can be configured as floating or with internal weak pull-up or pull down (pu/pd)
Outputs:	 All Outputs can be configured as Open Drain (OD) or Push-Pull (PP) (see also note 6 below <i>Table 6</i>). There are 3 different types of Output with different drives and speed characteristics: - O8: f_{max} = 40 MHz on C_L=50pF and 8 mA static drive capability for V_{OL}=0.4V and up to 20 mA for
	 V_{OL}=1.3V (see<i>Output driving current on page 55</i>) O4: f_{max} = 20 MHz on C_L=50pF and 4 mA static drive capability for V_{OL}=0.4V (see<i>Output driving</i>)
	<i>current on page 55</i>) - O2: $f_{max} = 10 \text{ MHz on } C_L=50 \text{pF}$ and 2 mA static
	drive capability of for V _{OL} =0.4V (see <i>Output driving current on page 55</i>)
External interrupts/wake-up lines:	EITx

91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	т _т	x	х		O4	x	х	Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾	ADC: analog input 9	
92	AЗ			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		O8	х	х	Port 1.14	ADC: analog inpu	ıt 15	
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	O8	х	х	Port 1.13	ADC: analog inpu	ıt 14	
94	D5			P1.01 / TIM0_TI2	I/O	Τ _Τ	x	x		02	х	x	Port 1.01	TIM0: Input Captu external clock 2 (r P0.05) ⁽⁸⁾	00	
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		02	х	х	Port 1.00	TIM0: Output con (remappable to P		
96	C4	60	C4	V18	S								external capa See <i>Figure 4</i> To be connec	abilization for main voltage regulator. Requires ternal capacitors 33nF between V18 and VSS18. se <i>Figure 4.2.</i> be connected to the 1.8V external power supply hen embedded regulators are not used.		
97	D4	61	C5	VSS18	S								Ground Volta	Ground Voltage for the main voltage regulator.		
98	D3	62	A2	VSS_IO	S								Ground Volta	round Voltage for digital I/Os		
99	C3	63	B2	VDD_IO	S								Supply Voltag	upply Voltage for digital I/Os		
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	х		02	х	x	Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1	

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O З. pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN. 5.

NRSTOUT pin (if available) or NRSTIN.
After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case debugging these I/Os via JTAG is not possible).

6.2.2 Current characteristics

Table 8.Current characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	150	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) ⁽²⁾	150	
	Output current sunk by any I/O and control pin	25	
IIO	Output current source by any I/Os and control pin	- 25	mA
	Injected current on NRSTIN pin	± 5	ША
I _{INJ(PIN)} ^{(3) & (4)}	Injected current on XT1 and XT2 pins	± 5	
	Injected current on any other pin ⁽⁵⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

1. The user can use GPIOs to source or sink high current (up to 20 mA for O8 type High Sink I/Os). In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption) and must follow the rules described in *Section 6.3.8: I/O port pin characteristics on page 54*.

- 2. All 3.3 V or 5.0 V power (V_{DD_IO} , V_{DDA_ADC} , V_{DDA_PLL}) and ground (V_{SS_IO} , V_{SSA_ADC} , V_{DDA_ADC}) pins must always be connected to the external 3.3V or 5.0V supply.
- 3. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. Data based on T_A=25°C.
- 4. Negative injection disturbs the analog performance of the device. See note in *Section 6.3.12: 10-bit ADC characteristics on page 72.*
- 5. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

6.2.3 Thermal characteristics

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

Symbol	Parameter	Conditions ⁽¹⁾		Тур ⁽²⁾	T _A T _A T _A 25°C 85°C 105°C		Т _А 105°С	Unit	
		LP_PARAM bits: ALL OFF ⁽⁴⁾ Single supply scheme see <i>Figure 12</i> .	3.3V range	12	16	117	250	μA	
Supply	LP_PARAM bits: ALL OFF Dual supply scheme see <i>Figure 13</i> .	I _{DD_V18} I _{DD_V33}	5 <1	8 3	60 20	110 26	μA		
I _{DD}	current in STOP mode	LP_PARAM bits: ALL OFF ⁽⁴⁾ Single supply scheme see <i>Figure 10</i>	5V range	15	22	160	310	μA	
.00		LP_PARAM bits: ALL OFF Dual supply scheme see <i>Figure 11</i>	I _{DD_V18} I _{DD_V50}	5 3	86	60 50	110 65		
Supply current in	current in	RTC OFF	3.3 V range	10	20	25	28	μA	
	STANDBY mode		5V range	15	25	30	117 250 60 110 20 26 160 310 60 110 50 65 25 28		

Table 14. Maximum power consumption in STOP and STANDBY modes

1. The conditions for these consumption measurements are described at the beginning of Section 6.3.4.

2. Typical data are based on $T_A=25^\circ C,\,V_{DD_IO}=3.3V$ or 5.0V and $V_{18}=1.8V$ unless otherwise specified.

3. Data based on product characterisation, tested in production at $V_{DD_{-IO}}$ max and V_{18} max (1.95V in dual supply mode or regulator output value in single supply mode).

4. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4V, which significantly reduces the leakage currents.

8 Order codes

Table 49.	Order codes		

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR750FV0T6	64				
STR750FV1T6	128	LQFP100 14x14			
STR750FV2T6	256		Vee	Vee	10 to . 05%
STR750FV0H6	64		Yes	Yes	-40 to +85°C
STR750FV1H6	128	LFBGA100 10x10			
STR750FV2H6	256				
STR751FR0T6	64				
STR751FR1T6	128	LQFP64 10x10		Yes	
STR751FR2T6	256				-40 to +85°C
STR751FR0H6	64		-		-40 10 +65 C
STR751FR1H6	128	LFBGA64 8x8			
STR751FR2H6	256				
STR752FR0T6	64				
STR752FR1T6	128	LQFP64 10x10			
STR752FR2T6	256		Yes	-	-40 to +85°C
STR752FR0H6	64				-40 10 +65 C
STR752FR1H6	128	LFBGA64 8x8			
STR752FR2H6	256				
STR752FR0T7	64				
STR752FR1T7	128	LQFP64 10x10			
STR752FR2T7	256		Yes		-40 to +105°C
STR752FR0H7	64		165	-	-40 10 + 103 C
STR752FR1H7	128	LFBGA64 8x8			
STR752FR2H7	256				
STR755FR0T6	64				
STR755FR1T6	128	LQFP64 10x10			
STR755FR2T6	256				-40 to +85°C
STR755FR0H6	64			-	-40 10 +00 0
STR755FR1H6	128	LFBGA64 8x8			
STR755FR2H6	256				

9 Revision history

Table 50.	Document revision history
-----------	----------------------------------

Date	Revision	Description of Changes
25-Sep-2006	1	Initial release
30-Oct-2006	2	Added power consumption data for 5V operation in Section 6
04-Jul-2007	3	Changed datasheet title from STR750F to STR750FXX STR751Fxx STR752Fxx STR755xx. Added <i>Table 1: Device summary on page 1</i> Added note 1 to <i>Table 6</i> Added STOP mode IDD max. values in <i>Table 14</i> Updated XT2 driving current in <i>Table 23</i> . Updated RPD in <i>Table 32</i> Updated <i>Table 21: XRTC1 external clock source on page 45</i> Updated <i>Table 34: Output speed on page 57</i> Added characteristics for <i>SSP synchronous serial peripheral in master</i> <i>mode (SPI or TI mode) on page 62</i> and <i>SSP synchronous serial</i> <i>peripheral in slave mode (SPI or TI mode) on page 65</i> Added characteristics for <i>SMI - serial memory interface on page 68</i> Added <i>Table 42: USB startup time on page 70</i>
23-Oct-2007	4	Updated Section 6.2.3: Thermal characteristics on page 33 Updated P _D , T _J and T _A in Section 6.3: Operating conditions on page 34 Updated Table 20: XT1 external clock source on page 44 Updated Table 21: XRTC1 external clock source on page 45 Updated Section 7: Package characteristics on page 76 (inches rounded to 4 decimal digits instead of 3) Updated Ordering information Section 8: Order codes on page 81
17-Feb-2009	5	Modified note 3 below <i>Table 8: Current characteristics on page 33</i> Added AHB clock frequency for write access to Flash registers in <i>Table 10: General operating conditions on page 34</i> Modified note 3 below <i>Table 41: SDA and SCL characteristics on</i> <i>page 69</i>

Supply and clock manager power consumption

Table 18.	Supply and clock manager power consumption
-----------	--

Symbol	Parameter	Conditions ⁽¹⁾	3.3V Typ	5V Typ	Unit
I _{DD(OSC4M)}	Supply current of resonator oscillator in STOP or WFI mode (LP_PARAM bit: OSC4M ON)	External components specified in: 4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2) on page 46	1815	1795	
I _{DD(FLASH)}	FLASH static current consumption in STOP or WFI mode (LP_PARAM bit FLASH ON)		515	515	
I _{DD(MVREG)}	Main Voltage Regulator static current consumption in STOP mode (LP_PARAM bit: MVREG ON)		130	135	μA
	Low Power Voltage Regulator + RSM	STOP mode includes leakage where $\rm V_{18}$ is internally set to 1.4 V	12	15	
I _{DD(LPVREG)}	current static current consumption	r oscillator _PARAM External components specified in: 4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2) on page 46 umption in ARAM bit 515 515 atic current le DN) STOP mode includes leakage where V ₁₈ is internally set to 1.4 V 12 15			

1. Measurements performed in 3.3V single supply mode see *Figure 12*

PLL characteristics

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$

Table 24. PLL characteristics

Symbol	Parameter	Test Conditions		Unit		
Symbol		lest conditions	Min	Тур	Max ⁽¹⁾	Unit
£	PLL input clock			4.0		MHz
f _{PLL_IN}	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock	f _{PLL_IN} x 24			165	MHz
f _{VCO}	VCO frequency range	When PLL operates (locked)	336		960	MHz
t _{LOCK}	PLL lock time				300	μS

 $\Delta t_{\text{JITTER1}}^{(2)(3)}$

1. Data based on product characterisation, not tested in production.

2. Refer to jitter terminology in : PLL characteristics on page 47 for details on how jitter is specified.

3. The jitter specification

Internal RC oscillators (FREEOSC & LPOSC)

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$

6.3.7 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electro magnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

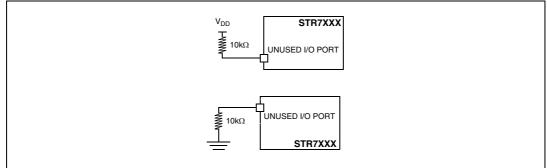
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:


Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

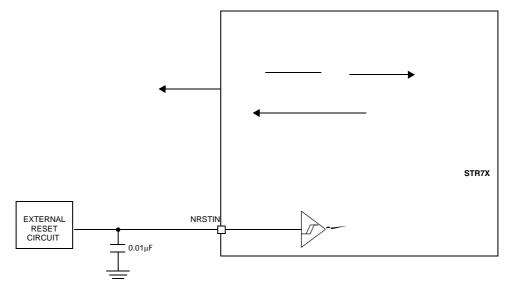
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behaviour is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/ Class	l
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD_IO}{=}3.3$ V or 5 V, $T_{A}{=}{+}25^{\circ}$ C, $f_{CK_SYS}{=}32$ MHz conforms to IEC 1000-4-2	Class A	
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD_{-}IO}$ =3.3 V or 5 V, T _A =+25° C, f _{CK_SYS} =32 MHz conforms to IEC 1000-4-4	Class A]

Figure 25. Connecting unused I/O pins

Output driving current

The GP I/Os have different drive capabilities:


- O2 outputs can sink or source up to +/-2 mA.
- O4 outputs can sink or source up to +/-4 mA.
- outputs can sink or source up to +/-8 mA or can sink +20 mA (with a relaxed V_{OL}).

In the application, the user must limit the number of I/O pins which can drive current to respect the absolute maximum rating specified in *Section 6.2.2*:

- The sum of the current sourced by all the I/Os on V_{DD_IO}, plus the maximum RUN consumption of the MCU sourced on V_{DD_IO}, can not exceed the absolute maximum rating IV_{DD_IO}.
- The sum of the current sunk by all the I/Os on V_{SS_IO} plus the maximum RUN consumption of the MCU sunk on V_{SS_IO} can not exceed the absolute maximum rating IV_{SS_IO}.

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$ and T_{A} unless otherwise specified.

Figure 27. Recommended NRSTIN pin protection

1. The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in *NRSTIN and NRSTOUT pins on page 58.* Otherwise the reset will not be taken into account internally.

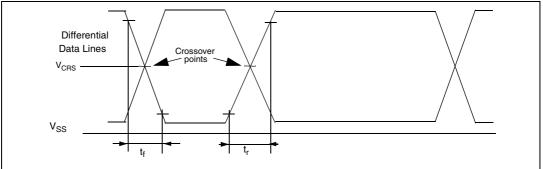
6.3.11 USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table 42. USB startup time

Symbol	Parameter	Conditions	Max	Unit
t _{STARTUP}	USB transceiver startup time		1	μs

Table 43.USB characteristics


USB DC Electrical Characteristics									
Symbol	Parameter	Min. ⁽¹⁾⁽²⁾	Max. ⁽¹⁾⁽²⁾	Unit					
	Input Levels								
V _{DI}	Differential Input Sensitivity	I(DP, DM)	0.2						
V _{CM}	Differential Common Mode Range	Includes V _{DI} range	0.8	2.5	V				
V _{SE}	Single Ended Receiver Threshold		1.3	2.0					
Output Levels									
V _{OL}	Static Output Level Low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6V ⁽³⁾		0.3	v				
V _{OH}	Static Output Level High	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(3)}$	2.8	3.6	v				

1. All the voltages are measured from the local ground potential.

 It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased. This will not damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be affected.

3. R_L is the load connected on the USB drivers

Figure 41. USB: data signal rise and fall time

Table 44.	USB: Full	speed electrical	characteristics
-----------	-----------	------------------	-----------------

Symbol	Parameter	Conditions	Min	Max	Unit				
	Driver characteristics:								
t _r	Rise time ⁽¹⁾	C _L =50 pF	4	20	ns				
t _f	Fall Time ¹⁾	C _L =50 pF	4	20	ns				

57

6.3.12 10-bit ADC characteristics

Subject to general operating conditions for $V_{DDA_ADC},\,f_{PCLK},$ and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
f _{ADC}	ADC clock frequency		0.4		8	MHz
V _{AIN}	Conversion voltage range ⁽²⁾		V_{SSA_ADC}		V_{DDA_ADC}	V
R _{AIN}	External input impedance ⁽³⁾⁽⁴⁾				10	kΩ
C _{AIN}	External capacitor on analog input ⁽³⁾⁽⁴⁾				6.8	pF
		+400 µA injected on any pin			1	μA
l _{ikg}	Induced input leakage current	-400 μA injected on any pin except specific adjacent pins in <i>Table 46</i>			1	μΑ
		-400µA injected on specific adjacent pins in <i>Table 46</i>		40		μA
C _{ADC}	Internal sample and hold capacitor			3.5		pF
+	Calibration Time	f _{CK_ADC} =8 MHz		725.25	•	μs
t _{CAL}			5802			1/f _{ADC}
t _{CONV}	Total Conversion time (including sampling time)	f _{CK_ADC} =8 MHz	3.75			μs
			30 (11 for sampling + 19 for Successive Approximation)			1/f _{ADC}
I _{ADC}		Sunk on V _{DDA_ADC}		3.7		mA

Table 45.10-bit ADC characteristics

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$. They are given only as design guidelines and are not tested.

2. Calibration is needed once after each power-up.

 C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

4. Depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies ≤ 8 MHz.

ADC accuracy vs. negative injection current

Injecting negative current on specific pins listed in *Table 46* (generally adjacent to the analog input pin being converted) should be avoided as this significantly reduces the accuracy of the conversion being performed. It is recommended to add a Schottky diode (pin to ground) to pins which may potentially inject negative current.

Table 46.List of adjacent pins

Analog input		Related adjacent pins
а	None	
AIN1/P0.03	None	
AIN2/P0.12	P0.11	
AIN3/P0.17	P0.18 and P0.16	
AIN4/P0.19	P0.24	
AIN5/P0.22	None	
AIN6/P0.23	P2.04	
AIN7/P0.27	P1.11 and P0.26	
AIN8/P0.29	P0.30 and P0.28	

Figure 42. Typical application with ADC

Analog power supply and reference pins

The V_{DDA_ADC} and V_{SSA_ADC} pins are the analog power supply of the A/D converter cell.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see : *General PCB design guidelines on page 74*).

General PCB design guidelines


To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

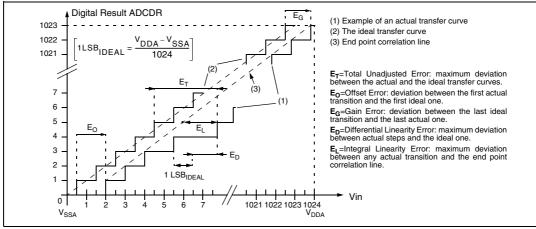
- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 43*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA_ADC} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 43. Power supply filtering

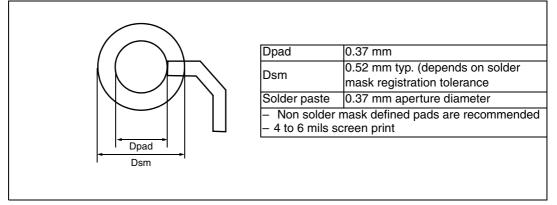
ADC accuracy with f_{CK_SYS} = 20 MHz, f_{ADC} =8 MHz, R_{AIN} < 10 k Ω This assumes that the ADC is calibrated ⁽¹⁾						
Symbol	Parameter	Conditions	Тур	Max	Unit	
E _T Total unadjusted error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	1	1.2			
ι⊏Ţi	Total unadjusted error (7,67	V _{DDA_ADC} =5.0 V	1	1.2		
IE al	Offset error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.15	0.5		
IE _O I		V _{DDA_ADC} =5.0 V	0.15	0.5		
E	Gain Error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	-0.8	-0.2	LSB	
E _G		V _{DDA_ADC} =5.0 V	-0.8	-0.2	LOD	
	Differential linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.7	0.9		
IE _D I		V _{DDA_ADC} =5.0 V	0.7	0.9		
IELI	Integral linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.6	0.8		
	Integral linearity erfor (=) (=)	V _{DDA_ADC} =5.0 V	0.6	0.8		


Table 47.ADC accuracy

1. Calibration is needed once after each power-up.

2. Refer to ADC accuracy vs. negative injection current on page 73

3. ADC Accuracy vs. MCO (Main Clock Output): the ADC accuracy can be significantly degraded when activating the MCO on pin P0.01 while converting an analog channel (especially those which are close to the MCO pin). To avoid this, when an ADC conversion is launched, it is strongly recommended to disable the MCO.



75/84

SEATING PLANE 3	Dim.		mm			inches ⁽¹⁾)
SETTING PLANE C T T + + - - - - - - - - - - - - - - - -	Dini.	Min	Тур	Max	Min	Тур	Max
	Α			1.700			0.0669
외 회 되 ㅋ	A1	0.270			0.0106		
	A2		1.085			0.0427	
	A3		0.30			0.0118	
	A4			0.80			0.0315
ĸ 60 000000 0 	b	0.45	0.50	0.55	0.0177	0.0197	0.0217
	D	9.85	10.00	10.15	0.3878	0.3937	0.3996
	D1		7.20			0.2835	
	E	9.85	10.00	10.15	0.3878	0.3937	0.3996
	E1		7.20			0.2835	
	е		0.80			0.0315	
1 2 3 4 5 6 7 8 9 10	F		1.40			0.055	
	ddd			0.12			0.005
▲ A1 CORNER INDEX AREA ● (100 BALLS) (SEE MOTE.5) ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	eee			0.15			0.006
○ @ m e [♥]	fff			0.08			0.003
🕞 🕀 — ВОТТОМ ИРИ		Number of Balls					
	Ν			1(00		
	1. Values digits.	s in inches a	are converte	ed from mr	and round	ed to 4 dec	imal

Figure 48. 100-ball low profile fine pitch ball grid array package

8 Order codes

Table 49.	Order codes		

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR750FV0T6	64	LQFP100 14x14	Yes	Yes	-40 to +85°C
STR750FV1T6	128				
STR750FV2T6	256				
STR750FV0H6	64	LFBGA100 10x10			
STR750FV1H6	128				
STR750FV2H6	256				
STR751FR0T6	64	LQFP64 10x10		Yes	-40 to +85°C
STR751FR1T6	128				
STR751FR2T6	256				
STR751FR0H6	64	LFBGA64 8x8			
STR751FR1H6	128				
STR751FR2H6	256				
STR752FR0T6	64	LQFP64 10x10	Yes	-	-40 to +85°C
STR752FR1T6	128				
STR752FR2T6	256				
STR752FR0H6	64	LFBGA64 8x8			
STR752FR1H6	128				
STR752FR2H6	256				
STR752FR0T7	64	LQFP64 10x10	Yes	-	-40 to +105°C
STR752FR1T7	128				
STR752FR2T7	256				
STR752FR0H7	64	LFBGA64 8x8			
STR752FR1H7	128				
STR752FR2H7	256				
STR755FR0T6	64	LQFP64 10x10	-	-	-40 to +85°C
STR755FR1T6	128				
STR755FR2T6	256				
STR755FR0H6	64	LFBGA64 8x8			
STR755FR1H6	128				
STR755FR2H6	256				

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR755FV0T6	64	LQFP100 14x14	-	-	-40 to +85°C
STR755FV1T6	128				
STR755FV2T6	256				
STR755FV0H6	64	LFBGA100 10x10			
STR755FV1H6	128				
STR755FV2H6	256				

Table 49. Order codes (continued)

