

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART, USB
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str751fr2t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I²C bus

The I²C bus interface can operate in multi-master and slave mode. It can support standard and fast modes (up to 400KHz).

High speed universal asynch. receiver transmitter (UART)

The three UART interfaces are able to communicate at speeds of up to 2 Mbit/s. They provide hardware management of the CTS and RTS signals and have LIN Master capability.

To optimize the data transfer between the processor and the peripheral, two FIFOs (receive/transmit) of 16 bytes each have been implemented.

One UART can be served by the DMA controller (UART0).

Synchronous serial peripheral (SSP)

The two SSPs are able to communicate up to 8 Mbit/s (SSP1) or up to 16 Mbit/s (SSP0) in standard full duplex 4-pin interface mode as a master device or up to 2.66 Mbit/s as a slave device. To optimize the data transfer between the processor and the peripheral, two FIFOs (receive/transmit) of 8 x 16 bit words have been implemented. The SSPs support the Motorola SPI or TI SSI protocols.

One SSP can be served by the DMA controller (SSP0).

Controller area network (CAN)

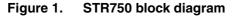
The CAN is compliant with the specification 2.0 part B (active) with a bit rate up to 1Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Up to 32 message objects are handled through an internal RAM buffer. In LQFP64 devices, CAN and USB cannot be connected simultaneously.

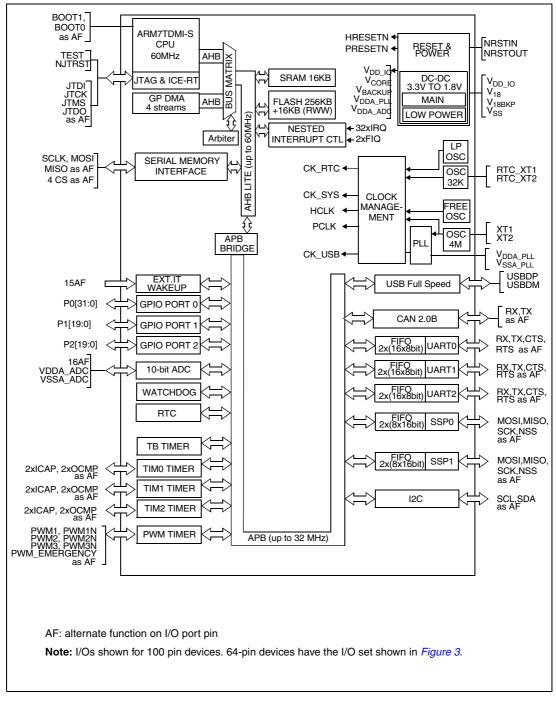
Universal serial bus (USB)

The STR750F embeds a USB device peripheral compatible with the USB Full speed 12Mbs. The USB interface implements a full speed (12 Mbit/s) function interface. It has software configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock source is generated from the internal main PLL. V_{DD} must be in the range 3.3V±10% for USB operation.

ADC (analog to digital converter)

The 10-bit Analog to Digital Converter, converts up to 16 external channels (11 channels in 64-pin devices) in single-shot or scan modes. In scan mode, continuous conversion is performed on a selected group of analog inputs. The minimum conversion time is $3.75 \ \mu s$ (including the sampling time).


The ADC can be served by the DMA controller.


An analog watchdog feature allows you to very precisely monitor the converted voltage of up to four channels. An IRQ is generated when the converted voltage is outside the programmed thresholds.

The events generated by TIM0, TIM2 and PWM timers can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.

3.2 Block diagram

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
7	D1	5	D1	P0.29 / TIM1_TI1 / ADC_IN8	I/O	Τ _Τ	x	х		02	х	х		Port 0.29	TIM1: Input Capture 1	ADC: Analog input 8
8	E1	6	D2	P0.28 / TIM1_OC1	I/O	Τ _Τ	х	х		02	х	х		Port 0.28	TIM1: Output Cor	npare 1
9	E5	7	D3	TEST	Ι									Reserved, mu	ist be tied to groun	d
10	E4	8	D4	VSS_IO	S									Ground Voltag	ge for digital I/Os	
11	E2			P0.23 / UART1_RTS / ADC_IN6	I/O	Τ _Τ	x	x		O2	x	x		Port 0.23	UART1: Ready To Send output ⁽⁴⁾	ADC analog input 6
12	F5			P2.04 / TIM2_OC1	I/O	Τ _Τ	x	х		02	х	х		Port 2.04	TIM2: Output Compare 1 ⁽⁴⁾	
13	F1			P2.03 / UART1_RTS	I/O	т _т	x	x		02	x	x		Port 2.03	UART1: Ready To Send output ⁽⁴⁾	
14	F4			P2.02	I/O	Τ _T	х	х		02	Х	Х		Port 2.02		
15	E3			P0.22 / UART1_CTS / ADC_IN5	I/O	Τ _Τ	x	x		O2	x	x		Port 0.22	UART1: Clear To Send input	ADC: Analog input 5
16	F2	9	E4	P0.21 / UART1_TX	I/O	Τ _Τ	x	х		02	х	х		Port 0.21	UART1: Transmit (remappable to P	data output 0.15) ⁽⁴⁾
17	F3	10	E3	P0.20 / UART1_RX	I/O	Τ _Τ	x	х		02	х	х		Port 0.20	UART1: Receive (remappable to P	data input 0.14) ⁽⁴⁾
18	G3	11	E2	P1.19 / JTMS	I/O	Τ _Τ	х	х		O2	х	х		JTAG mode selection input ⁽⁶⁾	Port 1.19	
19	G2	12	E1	P1.18 / JTCK	I/O	Τ _Τ	х	х		02	х	х		JTAG clock input ⁽⁶⁾	Port 1.18	
20	H3	13	F4	P1.17 / JTDO	I/O	Τ _Τ	х	х		O8	х	х		JTAG data output ⁽⁶⁾	Port 1.17	
21	H2	14	F3	P1.16 / JTDI	I/O	Τ _Τ	х	х		02	х	х		JTAG data input ⁽⁶⁾	Port 1.16	
22	G1	15	F2	NJTRST	Ι	TT								JTAG reset in	put ⁽⁵⁾	
23	G4			P2.01	I/O	T_T	х	х		02	х	Х		Port 2.01		
24	G5			P2.00	I/O	TT	X	х		O2	х	х		Port 2.00		
														ITAC	Port 0.13	
25	H1	16	F1	P0.13 / RTCK / UART0_RTS UART2_TX	I/O	Τ _Τ	х	x		O8	х	х		JTAG return clock output ⁽⁶⁾	UART0: Ready To Send output ⁽⁴⁾	UART2: Transmit Data output (when remapped) ⁽⁸⁾

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		С	utpu	ıt	۲ ک		
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate function
43	H9			P2.16	I/O	Τ _T	х	Х		02	Х	Х		Port 2.16	
44	J9	27	G5	VDD_IO	S									Supply voltag	e for digital I/Os
45	K9	28	G7	VDDA_PLL	S									Supply voltag	e for PLL
46	K8	29	H7	XT2										4 MHz main c	oscillator
47	K7	30	H8	XT1											
48	J10	31	G6	VSS_IO	S									Ground voltag	ge for digital I/Os
49	K10	32	G8	VSSA_PLL	S									Ground voltag	ge for PLL
50	J8			P2.15	I/O	T_T	х	х		O2	Х	Х		Port 2.15	
51	H8			P2.14	I/O	Τ _T	х	х		O2	Х	Х		Port 2.14	
52	G8	33	F5	V18REG	S									external capa V18REG and To be connec	or main voltage regulator. Requires icitors of at least 10µF between VSS18. See <i>Figure 4.2.</i> ted to the 1.8V external power supply ded regulators are not used,
53	F8	34	F6	VSS18	S									Ground Volta	ge for the main voltage regulator
54	F9	35	F7	VSSBKP	S									Stabilization f	or low power voltage regulator.
55	G9	36	E7	V18BKP	S									Requires extended between V18 To be connect	ge for the low power voltage regulator. ernal capacitors of at least 1µF BKP and VSSBKP. See <i>Figure 4.2.</i> ted to the 1.8V external power supply ded regulators are not used,
56	H10	37	F8	XRTC1									х		
57	G10	38	E8	XRTC2									х	32 KHZ OSCIII	ator for Realtime Clock
58	E7	39	E5	NRSTOUT	0								х	Reset output	
59	E9	40	E6	NRSTIN	I	Τ _Τ							х	Reset input	
60	D6			P1.15 / WKP_STDBY	I	Τ _Τ	х		EIT15				х	Port 1.15	Wake-up from STANDBY input pin
61	B8			P2.13	I/O	Τ _T	х	х		O2	Х	Х		Port 2.13	
62	D9			P2.12	I/O	TT	x	х		02	Х	Х		Port 2.12	
63	F10	41 (7)	D8 (7)	P0.15 / CAN_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.15	CAN: Transmit data output
64	E10	42 (7)	C8 (7)	P0.14 / CAN_RX	I/O	Τ _Τ	x	х	EIT5	O2	х	х		Port 0.14	CAN: Receive data input
65	D10	41 (7)	D8 (7)	USB_DN	I/O									USB: bidirect	ional data (data -)
66	C10	42 (7)	C8 (7)	USB_DP	I/O									USB: bidirect	ional data (data +)
67	B9	43	B8	P1.03 / TIM2_TI2	I/O	Τ _Τ	x	х		02	x	x		Port 1.03	TIM2: Input Capture / trigger / external clock 2 (remappable to P0.07) ⁽⁸⁾

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		C)utpu	ıt	Š			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
68	A10			P1.02 / TIM2_OC2	I/O	Τ _Τ	х	х		02	х	х		Port 1.02	TIM2: Output con (remappable to P	npare 2 0.06) ⁽⁸⁾
69	D7	44	C6	VDD_IO	S									Supply Voltag	e for digital I/Os	
70	D8	45	D6	VDDA_ADC	S									Supply Voltag	e for A/D converte	r
71	C9			P2.11	I/O	TT	х	х		02	Х	Х		Port 2.11		
72	B10			P2.10	I/O	TT	х	х		02	Х	Х		Port 2.10		
73	C8	46	D7	VSSA_ADC	S									Ground Volta	ge for A/D converte	er
74	C7	47	C7	VSS_IO	S									Ground Volta	ge for digital I/Os	
75	E8	48	D5	VREG_DIS	I	TT								Voltage Regu	lator Disable input	
76	A9	49	A8	P0.07 / SMI_DOUT / SSP0_MOSI	I/O	TT	x	х	EIT2	O4	x	x		Port 0.07	Serial Memory Interface: data output	SSP0: Master out Slave in data
77	A8	50	A7	P0.06 / SMI_DIN / SSP0_MISO	I/O	Τ _Τ	x	х		O4	х	х		Port 0.06	Serial Memory Interface: data input	SSP0: Master in Slave out data
78	A7	51	A6	P0.05 / SSP0_SCLK / SMI_CK	I/O	Τ _Τ	x	х	EIT1	04	x	x		Port 0.05	SSP0: Serial clock	Serial Memory Interface: Serial clock output
79	B7	52	B6	P0.04 / SMI_CS0 / SSP0_NSS	I/O	Τ _Τ	x	х		O4	x	x		Port 0.04	Serial Memory Interface: chip select output 0	SSP0: Slave select input
80	C5	53	B7	P1.10 PWM_EMERGE NCY	I/O	Τ _Τ	x	х	EIT10	O2	x	x		Port 1.10	PWM: Emergency	y input
81	B6	54	B5	P1.09 / PWM1	I/O	TT	х	х	EIT9	04	Х	Х		Port 1.09	PWM: PWM1 out	put
82	C6			P2.09 / PWM1N	I/O	Τ _Τ	x	х		O2	х	х		Port 2.09	PWM: PWM1 cor output ⁽⁴⁾	nplementary
83	G7			P2.08 / PWM2	I/O	T_T	х	х		02	Х	Х		Port 2.08	PWM: PWM2 out	put ⁽⁴⁾
84	G6			P2.07 / PWM2N	I/O	Τ _Τ	x	х		02	х	х		Port 2.07	PWM: PWM2 cor output ⁽⁴⁾	nplementary
85	F7			P2.06 / PWM3	I/O	TT	х	х		02	х	х		Port 2.06	PWM: PWM3 out	put ⁽⁴⁾
86	F6			P2.05 / PWM3N	I/O	Τ _Τ	x	х		02	х	х		Port 2.05	PWM: PWM3 cor output ⁽⁴⁾	nplementary
87	A6	55	A5	P1.08 / PWM1N / ADC_IN11	I/O	Τ _Τ	x	х		04	х	х		Port 1.08	PWM: PWM1 complementary output ⁽⁸⁾	ADC: analog input 11
88	B5	56	B4	P1.07 / PWM2	I/O	TT	х	х	EIT8	04	х	Х		Port 1.07	PWM: PWM2 out	put ⁽⁴⁾
89	A5	57	A4	P1.06 / PWM2N / ADC_IN10	I/O	Τ _Τ	x	х		04	x	х		Port 1.06	PWM: PWM2 complementary output ⁽⁴⁾	ADC: analog input 10
90	B4	58	B3	P1.05 / PWM3	I/O	TT	х	х	EIT7	O4	х	Х		Port 1.05	PWM: PWM3 out	put ⁽⁴⁾

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		C)utpu	ıt	y			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	Τ _Τ	x	х		04	х	х		Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾	ADC: analog input 9
92	A3			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		O8	х	х		Port 1.14	ADC: analog inpu	t 15
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	O8	х	х		Port 1.13	ADC: analog input 14	
94	D5			P1.01 / TIM0_TI2	I/O	TT	x	х		02	x	x		Port 1.01	TIM0: Input Capture / trigger / external clock 2 (remappable to P0.05) ⁽⁸⁾	
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		O2	х	х		Port 1.00	TIM0: Output com (remappable to Po	
96	C4	60	C4	V18	S									external capa See <i>Figure 4.</i> To be connec	for main voltage reg citors 33nF betwee .2. ted to the 1.8V exte ded regulators are i	n V18 and VSS18. ernal power supply
97	D4	61	C5	VSS18	S									Ground Volta	ge for the main volt	age regulator.
98	D3	62	A2	VSS_IO	S									Ground Volta	ge for digital I/Os	
99	C3	63	B2	VDD_IO	S									Supply Voltag	e for digital I/Os	
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	x		02	x	x		Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1

Table 6. STR750F pin description (continued)

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN.

 After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case, debugging these I/Os via JTAG is not possible).

7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX.

8. For details on remapping these alternate functions, refer to the GPIO_REMAPOR register description.

6.1.6 Power supply schemes

When mentioned, some electrical parameters can refer to a dedicated power scheme among the four possibilities. The four different power schemes are described below.

Power supply scheme 1: Single external 3.3 V power source

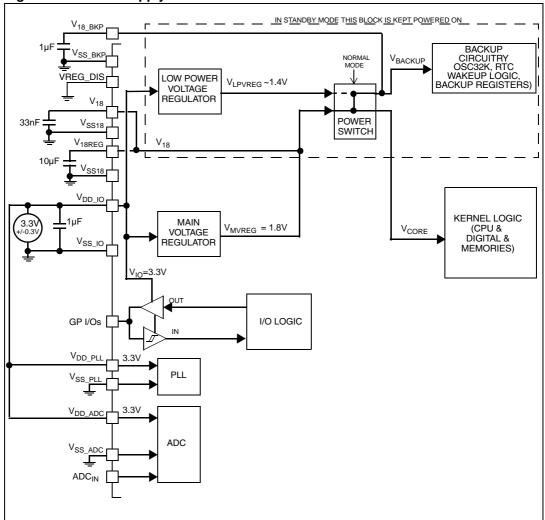
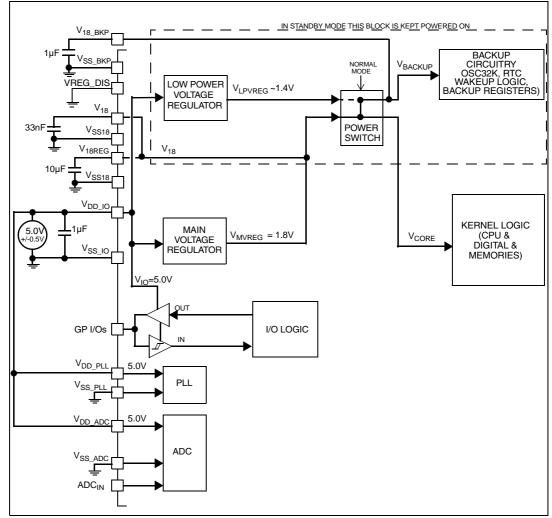
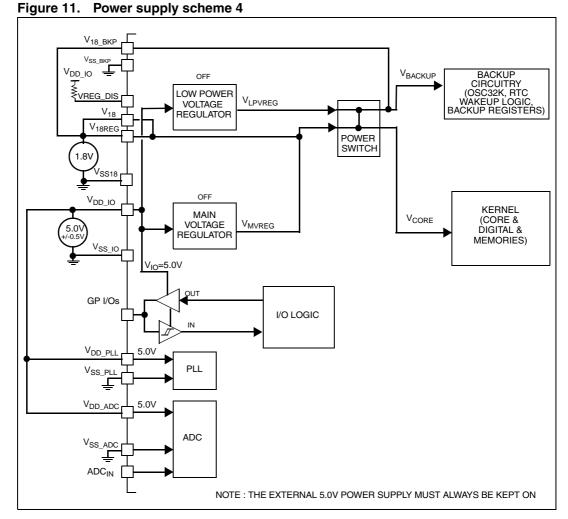



Figure 8. Power supply scheme 1



Power supply scheme 3: Single external 5 V power source

Figure 10. Power supply scheme 3

Power supply scheme 4: Dual external 1.8 V and 5.0 V supply

6.1.7 I/O characteristics versus the various power schemes (3.3V or 5.0V)

Unless otherwise mentioned, all the I/O characteristics are valid for both

- V_{DD IO}=3.0 V to 3.6 V with bit EN33=1
- V_{DD IO}=4.5 V to 5.5 V with bit EN33=0

When $V_{DD \ IO}$ =3.0 V to 3.6 V, I/Os are not 5V tolerant.

6.1.8 Current consumption measurements

All the current consumption measurements mentioned below refer to Power scheme 1 and 2 as described in *Figure 12* and *Figure 13*

6.2.2 Current characteristics

Table 8.Current characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	150	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) ⁽²⁾	150	
	Output current sunk by any I/O and control pin	25	
IIO	Output current source by any I/Os and control pin	- 25	mA
	Injected current on NRSTIN pin	± 5	ША
I _{INJ(PIN)} ^{(3) & (4)}	Injected current on XT1 and XT2 pins	± 5	
	Injected current on any other pin ⁽⁵⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

1. The user can use GPIOs to source or sink high current (up to 20 mA for O8 type High Sink I/Os). In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption) and must follow the rules described in *Section 6.3.8: I/O port pin characteristics on page 54*.

- 2. All 3.3 V or 5.0 V power (V_{DD_IO} , V_{DDA_ADC} , V_{DDA_PLL}) and ground (V_{SS_IO} , V_{SSA_ADC} , V_{DDA_ADC}) pins must always be connected to the external 3.3V or 5.0V supply.
- 3. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. Data based on T_A=25°C.
- 4. Negative injection disturbs the analog performance of the device. See note in *Section 6.3.12: 10-bit ADC characteristics on page 72.*
- 5. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

6.2.3 Thermal characteristics

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 16.Dual supply supply typical power consumption in Run, WFI, Slow and
Slow-WFI modes

To calculate the power consumption in Dual supply mode, refer to the values given in *Table 15*. and consider that this consumption is split as follows: $I_{DD}(single supply) \sim I_{DD}(dual supply) = I_{DD} \vee 18 + I_{DD}(VDD_{IO})$

For 3.3V range: $I_{DD(VDD_IO)} \sim 1$ to 2 mA For 5V range: $I_{DD(VDD_IO)} \sim 2$ to 3 mA Therefore most of the consumption is sunk on the V₁₈ power supply This formula does not apply in STOP and STANDBY modes, refer to *Table 17*.

Subject to general operating conditions for $V_{\text{DD_IO}}\text{,}$ and T_{A}

Table 17. Typical power consumption in STOP and STANDBY modes

Symbol	Parameter	Conditions		3.3V Typ ⁽¹⁾	5V Typ ⁽²⁾	Unit
		LP_PARAM bits: ALL OFF ⁽⁵⁾		12	15	
	Supply current	LP_PARAM bits : MVREG ON, OSC4M OFF, F OFF ⁽⁶⁾	LASH	130	135	
	in STOP mode ⁽⁴⁾	LP_PARAM bits: MVREG ON, OSC4M ON , FI	_ASH	1950	1930	μA
		LP_PARAM bits: MVREG ON, OSC4M OFF, FL	_ASH ON ⁽⁶⁾	630	635	
		LP_PARAM bits: MVREG ON, OSC4M ON, FL	ASH ON ⁽⁶⁾	2435	2425	
I _{DD} ⁽³⁾		LPPARAM bits: ALL OFF, with V ₁₈ =1.8 V	I _{DD_V18} I _{DD_V33}	5 <1	5 <1	
	Supply current	LP_PARAM bits: OSC4M ON, FLASH OFF	I _{DD_V18} I _{DD_V33}	410 1475	410 1435	μA
	mode ⁽⁷⁾	LP_PARAM bits: OSC4M OFF, FLASH ON	I _{DD_V18} I _{DD_V33}	550 <1	550 1	μΛ
		LP_PARAM bits: OSC4M ON, FLASH ON	I _{DD_V18} I _{DD_V33}	910 1475	910 1445	
	Supply current	RTC OFF		11	14	
	in STANDBY mode ⁽⁴⁾	RTC ON clocked by OSC32K		14	18	μA

1. Typical data are based on $T_A=25^{\circ}$ C, $V_{DD IO}=3.3$ V and $V_{18}=1.8$ V unless otherwise indicated in the table.

2. Typical data are based on $T_A=25^{\circ}C$, $V_{DD_IO}=5.0$ V and $V_{18}=1.8$ V unless otherwise indicated in the table.

3. The conditions for these consumption measurements are described at the beginning of Section 6.3.4 on page 36.

4. Single supply scheme see Figure 12.

5. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4 V, which significantly reduces the leakage currents.

6. In this mode, the whole digital circuitry is powered internally by the MVREG at 1.8 V.

7. Dual supply scheme see Figure 13.

PLL characteristics

Subject to general operating conditions for $V_{DD \ IO}$, and T_A .

Table 24. PLL characteristics	Table 24.	PLL	characteristics
-------------------------------	-----------	-----	-----------------

Symbol	Parameter	Test Conditions		Value)	Unit
Symbol	Falameter	Test Conditions	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock			4.0		MHz
f _{PLL_IN}	PLL input clock duty cycle		40		60	%
f _{PLL_OUT}	PLL multiplier output clock	f _{PLL_IN} x 24			165	MHz
f _{VCO}	VCO frequency range	When PLL operates (locked)	336		960	MHz
t _{LOCK}	PLL lock time				300	μs
∆t _{JITTER1} ⁽²⁾⁽³⁾	Single period jitter (+/-3 Σ peak to peak)	$f_{PLL_IN} = 4 \text{ MHz}^{(4)}$ V _{DD_IO} is stable			+/-250	ps
∆t _{JITTER2} ⁽²⁾⁽³⁾	Long term jitter (+/- 3Σ peak to peak)	$f_{PLL_IN} = 4 \text{ MHz}^{(4)}$ V _{DD_IO} is stable			+/-2.5	ns
∆t _{JITTER3} ⁽²⁾⁽³⁾	Cycle to cycle jitter (+/- 3Σ peak to peak)	$f_{PLL_IN} = 4 \text{ MHz}^{(4)}$ V _{DD_IO} is stable			+/-500	ps

1. Data based on product characterisation, not tested in production.

2. Refer to jitter terminology in : PLL characteristics on page 47 for details on how jitter is specified.

 The jitter specification holds true only up to 50mV (peak-to-peak) noise on V_{DDA_PLL} and V₁₈ supplies. Jitter will increase if the noise is more than 50mV. In addition, it assumes that the input clock has no jitter.

4. The PLL parameters (MX1, MX0, PRESC1, PRESC2) must respect the constraints described in: PLL characteristics on page 47.

Internal RC oscillators (FREEOSC & LPOSC)

Subject to general operating conditions for V_{DD} IO, and T_A .

Table 25. Internal RC oscillators (FREEOSC & LPOSC)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{CK_FREEOSC}	FREEOSC Oscillator Frequency		3	5	8	MHz
f _{CK_LPOSC}	LPOSC Oscillator Frequency		150	300	500	kHz

6.3.6 Memory characteristics

Flash memory

Subject to general operating conditions for V_{DD_IO} and $V_{18},\,T_A$ = -40 to 105 $^\circ C$ unless otherwise specified.

Sumbel	Parameter	Test Condition-	Va	lue	Unit
Symbol	Parameter	Test Conditions	Тур	Max ⁽¹⁾	Unit
t _{PW}	Word Program		35		μs
t _{PDW}	Double Word Program		60		μS
t _{PB0}	Bank 0 Program (256K)	Single Word programming of a checker-board pattern	2	4.9 ⁽²⁾	S
t _{PB1}	Bank 1 Program (16K)	Single Word programming of a checker-board pattern	125	224 ⁽²⁾	ms
t _{ES}	Sector Erase (64K)	Not preprogrammed (all 1) Preprogrammed (all 0)	1.54 1.176	2.94 ⁽²⁾ 2.38 ⁽²⁾	S
t _{ES}	Sector Erase (8K)	Not preprogrammed (all 1) Preprogrammed (all 0)	392 343	560 ⁽²⁾ 532 ⁽²⁾	ms
t _{ES}	Bank 0 Erase (256K)	Not preprogrammed (all 1) Preprogrammed (all 0)	8.0 6.6	13.7 11.2	s
t _{ES}	Bank 1 Erase (16K)	Not preprogrammed (all 1) Preprogrammed (all 0)	0.9 0.8	1.5 1.3	S
t _{RPD}	Recovery when disabled			20	μs
t _{PSL}	Program Suspend Latency			10	μS
t _{ESL}	Erase Suspend Latency			300	μs

 Table 26.
 Flash memory characteristics

1. Data based on characterisation not tested in production

2. 10K program/erase cycles.

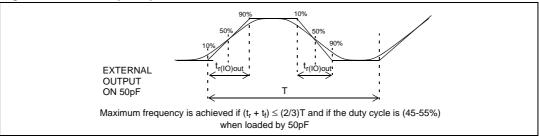
 Table 27.
 Flash memory endurance and data retention

Symbol	Parameter	Conditions	Value			Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
N _{END_B0}	Endurance (Bank 0 sectors)		10			kcycles
N _{END_B1}	Endurance (Bank 1 sectors)		100			kcycles
Y _{RET}	Data Retention	T _A =85° C	20			Years
t _{ESR}	Erase Suspend Rate	Min time from Erase Resume to next Erase Suspend	20			ms

1. Data based on characterisation not tested in production.

Output speed

Subject to general operating conditions for V_{DD_IO} and T_{A} unless otherwise specified.


	Table	34.	Output s	peed
--	-------	-----	----------	------

	I/O dynamic characteristics for $V_{DD_{-}IO} = 3.0$ to 3.6V and EN33 bit =1 or $V_{DD_{-}IO} = 4.5$ to 5.5V and EN33 bit =0								
I/O TypeSymbolParameterConditionsMinTypMin					Max	Unit			
	f _{max(IO)out}	Maximum Frequency ⁽¹⁾	C _L =50 pF			10	MHz		
O2	t _{f(IO)out}	Output high to low level fall time ⁽²⁾	С _L =50 рF			30			
	t _{r(IO)out}	Output low to high level rise time ⁽²⁾	Between 10% and 90%			33	ns		
04	f _{max(IO)out}	Maximum Frequency ⁽¹⁾	C _L =50 pF			25	MHz		
	t _{f(IO)out}	Output high to low level fall time ⁽²⁾	С _L =50 рF			12	ns		
	t _{r(IO)out}	Output low to high level rise time ⁽²⁾	Between 10% and 90%			14	113		
O8	f _{max(IO)out}	Maximum Frequency ⁽¹⁾	C _L =50pF			40	MHz		
	t _{f(IO)out}	Output high to low level fall time ⁽²⁾	С _L =50 рF			6	ns		
	t _{r(IO)out}	Output low to high level rise time ⁽²⁾	Between 10% and 90%			6	ns		

1. The maximum frequency is defined as described in *Figure 26*.

2. Data based on product characterisation, not tested in production.

Figure 26. I/O output speed definition

6.3.10 Communication interface characteristics

SSP synchronous serial peripheral in master mode (SPI or TI mode)

General operating conditions: V_{33}, 3.0V to 3.3V, V18 ~=1.8V, $C_L\approx 45$ pF.

Symbol	Parameter	Condi	tions	Min	Мах	Unit
f	SPI clock frequency ⁽²⁾		SSP0		16	MHz
ISCK	f _{SCK} SPI clock frequency ⁽²⁾		SSP1		8	
t (agu)	SPI clock rise time		SSP0		14	
t _{r(SCK)}			SSP1		33	
tuoou	SPI clock fall time		SSP0		11	
t _{f(SCK)}			SSP1		30	
t _{w(SCKH)}	SCK high and low time		SSP0		19	
t _{w(SCKL)}	SOIT High and low time		SSP1		30	
tuccució	NSS low to Data Output		SSP0		0.5t _{SCK} +15ns	
t _{NSSLQV}	MOSI valid time		SSP1		0.5t _{SCK} +30ns	
t _{SCKNSSH}	SCK last edge to NSS high	CPHA = 0 CPHA = 1	SSP0		0.5t _{SCK} +15ns	
			SSP1		0.5t _{SCK} +30ns	
			SSP0		t _{SCK} +15ns	ns
			SSP1		t _{SCK} +30ns	
taavav	SCK trigger edge to data		SSP0		15	
t _{sckav}	output MOSI valid time		SSP1		30	
t	SCK trigger edge to data		SSP0	0		
t _{SCKQX}	output MOSI invalid time		SSP1	0		
	Data input (MISO) setup		SSP0	25		
t _{su}	time w.r.t SCK sampling edge		SSP1	25		
t.	Data input (MISO) hold time w.r.t SCK sampling edge		SSP0	0		
t _h			SSP1	0		

 Table 38.
 SSP master mode characteristics⁽¹⁾

1. Data based on characterisation results, not tested in production.

2. Max frequency for the 2 SSPs is $f_{PCLK}/2$; f_{PCLK} max = 32 MHz. This takes into account the frequency limitation due to I/O speed capability. SSP0 uses IO4 type while SSP1 uses IO2 type I/Os.

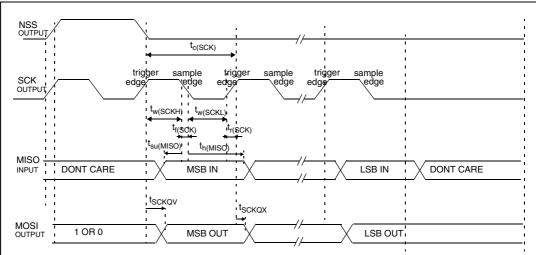
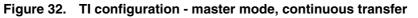
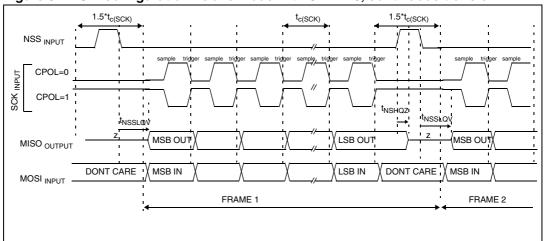
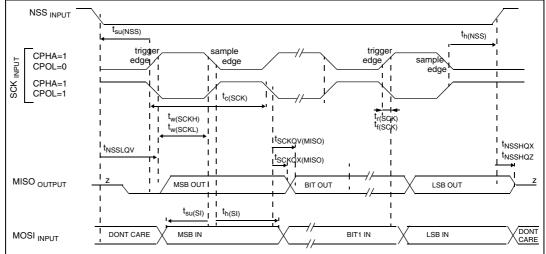
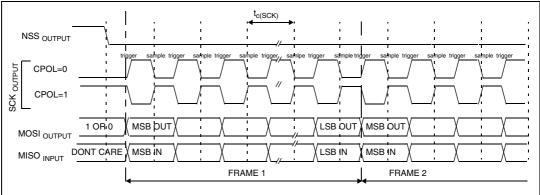




Figure 31. TI configuration - master mode, single transfer




t _{c(S0}	CK)	t _{c(SCK)}		
NSS OUTPUT	//			1 1
SCK OUTPUT	e trigger, sample trigger sample	trigger sample trigger sample	trigger sample trigger sample	
	XXX			OUT
MISO INPUT DONT CARE MSB IN	X/X		N X // LSB	
	FRAME 1	.	FRAME 2	→

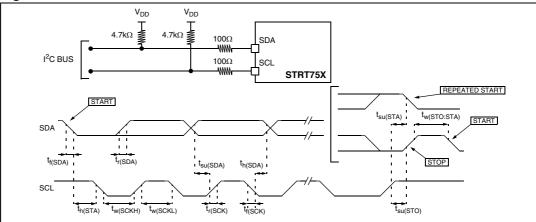


not possible to power off the STR7x while some another I²C master node remains powered on: otherwise, the STR7x will be powered by the protection diode.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit
			Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μS
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μS
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs
Cb	Capacitive load for each bus line		400		400	pF

 Table 41.
 SDA and SCL characteristics


1. f_{PCLK} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

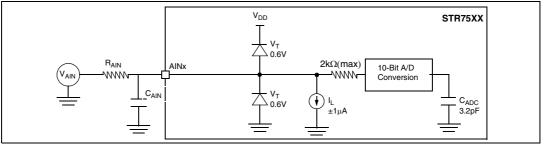
2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time $t_{h(SDA)}$ is not applicable

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.


ADC accuracy vs. negative injection current

Injecting negative current on specific pins listed in *Table 46* (generally adjacent to the analog input pin being converted) should be avoided as this significantly reduces the accuracy of the conversion being performed. It is recommended to add a Schottky diode (pin to ground) to pins which may potentially inject negative current.

Table 46. List of adjacent pi

Analog input	Related adjacent pins
a	None
AIN1/P0.03	None
AIN2/P0.12	P0.11
AIN3/P0.17	P0.18 and P0.16
AIN4/P0.19	P0.24
AIN5/P0.22	None
AIN6/P0.23	P2.04
AIN7/P0.27	P1.11 and P0.26
AIN8/P0.29	P0.30 and P0.28
AIN9/P1.04	None
AIN10/P1.06	P1.05
AIN11/P1.08	P1.04 and P1.13
AIN12/P1.11	P2.17 and P0.27
AIN13/P1.12	None
AIN14/P1.13	P1.14 and P1.01
AIN15/P1.14	None

Figure 42. Typical application with ADC

Analog power supply and reference pins

The V_{DDA_ADC} and V_{SSA_ADC} pins are the analog power supply of the A/D converter cell.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see : *General PCB design guidelines on page 74*).

7.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code *Table 49: Order codes on page 81*.

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

Maximum ambient temperature T_{Amax}= 82 °C (measured according to JESD51-2), I_{DDmax}=8 mA, V_{DD} = 5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

 $P_{INTmax} = 8 \text{ mA x 5 V} = 400 \text{ mW}$

$$P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{V} = 64 \text{ mW}$$

This gives: P_{INTmax}= 400 mW and P_{IOmax} 64 mW:

 $P_{Dmax} = 400 \text{ mW} + 64 \text{ mW}$

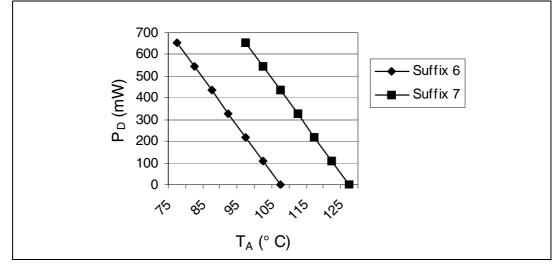
Thus: $P_{Dmax} = 464 \text{ mW}$

Using the values obtained in Table 48 T_{Jmax} is calculated as follows:

For LQFP100, 46°C/W

 $T_{\text{lmax}} = 82^{\circ} \text{ C} + (46^{\circ} \text{ C/W x } 464 \text{ mW}) = 82^{\circ} \text{C} + 21^{\circ} \text{C} = 103^{\circ} \text{ C}$

This is within the range of the suffix 6 version parts ($-40 < T_J < 105^\circ$ C). In this case, parts must be ordered at least with the temperature range suffix 6 (see *Table 49: Order codes on page 81*).


- For BGA64, 58°C/W

 $T_{Jmax} = 82^{\circ} \text{ C} + (58^{\circ} \text{ C/W x } 464 \text{ mW}) = 82^{\circ} \text{C} + 27^{\circ} \text{C} = 109^{\circ} \text{ C}$

This is within the range of the suffix 7 version parts (-40 < T_J < 125° C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Table 49: Order codes on page 81*).

Figure 50. LQFP100 P_{Dmax} vs T_A

