

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, I ² C, SPI, SSI, SSP, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str752fr2t7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1	2	3	4	5	6	7	8	9	10
A	P0.03	P1.13	P1.14	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07	P1.02
в	P1.12	P0.02	P0.01	P1.05	P1.07	P1.09	P0.04	P2.13	P1.03	P2.10
с	P0.31	P0.00	V _{DD_IO}	V ₁₈	P1.10	P2.09	V _{SS_IO}	V _{SSA_ADC}	P2.11	USB_DP
D	P0.29	P0.30	V _{SS_IO}	V _{SS18}	P1.01	P1.15	V _{DD_IO}	V _{DDA_ADC}	P2.12	USB_DN
Е	P0.28	P0.23	P0.22	$V_{SS_{IO}}$	TEST	P1.00	NRSTOUT	VREG_DIS	NRSTIN	P0.14
F	P2.03	P0.21	P0.20	P2.02	P2.04	P2.05	P2.06	V _{SS18}	V _{SSBKP}	P0.15
G	NJTRST	P1.18	P1.19	P2.01	P2.00	P2.07	2.08	V _{18REG}	V _{18BKP}	XRTC2
н	P0.13	P1.16	P1.17	P2.19	P2.18	P2.17	P0.24	P2.14	P2.16	XRTC1
J	P0.11	P0.12	P1.11	P0.27	P0.19	P0.26	P0.25	P2.15	V _{DD_IO}	V _{SS_IO}
к	P0.10	P0.09	P0.08	P0.18	P0.17	P0.16	XT1	XT2	V _{DDA_PLL}	V _{SSA_PLL}

Table 4. LFBGA100 ball connections

 Table 5.
 LFBGA64 ball connections

	1	2	3	4	5	6	7	8
А	P0.03	V _{SS_IO}	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07
В	P1.12	V _{DD_IO}	P1.05	P1.07	P1.09	P0.04	P1.10	P1.03
С	P0.01	P0.02	P0.00	V ₁₈	V _{SS18}	V _{DD_IO}	V _{SS_IO}	P0.14
D	P0.29	P0.28	TEST	V _{SS_IO}	VREG_DIS	V _{DDA_ADC}	V _{SSA_ADC}	P0.15
Е	P1.18	P1.19	P0.20	P0.21	NRSTOUT	NRSTIN	V _{18BKP}	XRTC2
F	P0.13	NJTRST	P1.16	P1.17	V _{18REG}	V _{SS18}	V _{SSBKP}	XRTC1
G	P0.11	P0.12	P1.11	P0.19	V _{DD_IO}	V _{SS_IO}	V _{DDA_PLL}	V _{SSA_PLL}
н	P0.10	P0.09	P0.08	P0.17	P0.18	P0.16	XT2	XT1

57

iab	ie 6.		31	RIDUR PIN de	SCL	iptic) п	con	unue	u)			1			
	Pin	n°					In	put		C	utpu	ıt	λq			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standl	Main function (after reset)	Alternate	e function
				P0.12 /											UART0: Clear To Send input	ADC: Analog input 2
26	J2	17	G2	UART2_RX / UART0_CTS / ADC_IN2 / SMI_CS1	I/O	Τ _Τ	x	х		O4	x	x		Port 0.12	Serial Memory Interface: chip select output 1	UART2: Receive Data input (when remapped) ⁽⁸⁾
27	J1	18	G1	P0.11 / UART0_TX / BOOT1 / SMI_CS2	I/O	Τ _Τ	x	x		O4	x	x		Port 0.11/Boot mode selection input 1	UART0: Transmit data output	Serial Memory Interface: chip select output 2
28	K1	19	H1	P0.10 / UART0_RX / SMI_CS3	I/O	Τ _Τ	x	х	EIT4	02	x	x		Port 0.10	UART0: Receive Data input	Serial Memory Interface: chip select output 3
29	K2	20	H2	P0.09 / I2C_SDA	I/O	Τ _T	х	х		04	Х	Х		Port 0.09	I2C: Serial Data	
30	K3	21	НЗ	P0.08 / I2C_SCL	I/O	Τ _Τ	х	х	EIT3	04	Х	Х		Port 0.08	I2C: Serial clock	
31	H4			P2.19	I/O	Τ _Τ	х	х		02	Х	Х		Port 2.19		
32	H5			P2.18	I/O	Τ _Τ	х	х		O2	Х	Х		Port 2.18		
33	H6			P2.17 / UART2_RTS	I/O	Τ _Τ	х	х		02	х	х		Port 2.17	UART2: Ready To	Send output ⁽⁴⁾
34	J3	22	G3	P1.11 /UART0_RTS ADC_IN12	I/O	Τ _Τ	x	х	EIT11	O8	x	x		Port 1.11	UART0: Ready To Send output ⁽⁴⁾	ADC: Analog input 12
35	J4			P0.27 / UART2_RTS / ADC_IN7	I/O	Τ _Τ	x	х		02	х	х		Port 0.27	UART2: Ready To Send output ⁽⁸⁾	ADC: Analog input 7
36	J6			P0.26 / UART2_CTS	I/O	Τ _Τ	x	х		O2	х	х		Port 0.26	UART2: Clear To	Send input
37	J7			P0.25 / UART2_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.25	UART2: Transmit (remappable to P	data output 0.13) ⁽⁸⁾
38	H7			P0.24 / UART2_RX	I/O	Τ _Τ	x	х		02	х	х		Port 0.24	UART2: Receive (remappable to P	data input 0.12) ⁽⁸⁾
39	J5	23	G4	P0.19/USB_CK/ SSP1_NSS/	I/O	TT	x	x	EIT6	O2	x	x		Port 0.19	SSP1: Slave select input (remappable to P0.11) ⁽⁸⁾	ADC: Analog input 4
				ADC_IN4											USB: 48 MHz Clock input	
40	K4	24	H5	P0.18 / SSP1_MOSI	I/O	Τ _Τ	x	х		O2	х	х		Port 0.18	SSP1: Master out (remappable to P	/slave in data 0.10) ⁽⁸⁾
41	K5	25	H4	P0.17 / SSP1_MISO / ADC_IN3	I/O	Τ _Τ	x	х		O2	x	x		Port 0.17	SSP1: Master in/slave out data (remappable to P0.09) ⁽⁸⁾	ADC: Analog input 3
42	K6	26	H6	P0.16 / SSP1_SCLK	I/O	Τ _Τ	x	х		02	х	х		Port 0.16	SSP1: serial clock P0.08) ⁽⁸⁾	(remappable to

Table 6.	STR750F pin description (continued)
----------	-------------------------------------

	Pin	n°					In	put		C)utpu	It	Š				
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Stand	Main function (after reset)	Alternate function		
43	H9			P2.16	I/O	TT	X	Х		02	Х	Х		Port 2.16			
44	J9	27	G5	VDD_IO	S									Supply voltag	e for digital I/Os		
45	K9	28	G7	VDDA_PLL	S									Supply voltag	e for PLL		
46	K8	29	H7	XT2										4 MHz main c	scillator		
47	K7	30	H8	XT1													
48	J10	31	G6	VSS_IO	S									Ground voltag	ge for digital I/Os		
49	K10	32	G8	VSSA_PLL	S									Ground voltag	ge for PLL		
50	J8			P2.15	I/O	T_T	x	х		O2	х	Х		Port 2.15			
51	H8			P2.14	I/O	T_{T}	x	х		02	х	Х		Port 2.14			
52	G8	33	F5	V18REG	S									Stabilization for main voltage regulator. Requires external capacitors of at least 10μ F between V18REG and VSS18. See <i>Figure 4.2</i> . To be connected to the 1.8V external power sup when embedded regulators are not used.			
53	F8	34	F6	VSS18	S									Ground Voltage for the main voltage regulator			
54	F9	35	F7	VSSBKP	S									Stabilization f	or low power voltage regulator.		
55	G9	36	E7	V18BKP	S									Ground Voltage for the low power voltage regulator. Ground Voltage for the low power voltage regulator Requires external capacitors of at least 1μ F between V18BKP and VSSBKP. See <i>Figure 4.2</i> . To be connected to the 1.8V external power supply when embedded regulators are not used.			
56	H10	37	F8	XRTC1									х	32 kHz osoilla	ator for Bealtime Clock		
57	G10	38	E8	XRTC2									х				
58	E7	39	E5	NRSTOUT	0								х	Reset output			
59	E9	40	E6	NRSTIN	Ι	T_{T}							х	Reset input			
60	D6			P1.15 / WKP_STDBY	I	Τ _Τ	x		EIT15				х	Port 1.15	Wake-up from STANDBY input pin		
61	B8			P2.13	I/O	TT	х	х		02	Х	Х		Port 2.13			
62	D9			P2.12	I/O	T_T	x	х		O2	х	Х		Port 2.12			
63	F10	41 (7)	D8 (7)	P0.15 / CAN_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.15	CAN: Transmit data output		
64	E10	42 (7)	C8 (7)	P0.14 / CAN_RX	I/O	Τ _Τ	x	х	EIT5	O2	х	х		Port 0.14 CAN: Receive data input			
65	D10	41 (7)	D8 (7)	USB_DN	I/O									USB: bidirecti	onal data (data -)		
66	C10	42 (7)	C8 (7)	USB_DP	I/O									USB: bidirecti	onal data (data +)		
67	B9	43	B8	P1.03 / TIM2_TI2	I/O	Τ _Τ	x	х		02	x	х		Port 1.03	TIM2: Input Capture / trigger / external clock 2 (remappable to P0.07) ⁽⁸⁾		

Table 6. STR750F pin description (continued)

	Pin	n°					In	put		C)utpu	ıt	δ					
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Stand	Main function (after reset)	Alternate function			
91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	Τ _Τ	x	х		04	х	х		Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾	ADC: analog input 9		
92	A3			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		08	х	х		Port 1.14	ADC: analog input 15			
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	08	х	х		Port 1.13	ADC: analog inpu	ADC: analog input 14		
94	D5			P1.01 / TIM0_TI2	I/O	TT	x	х		O2	x	x		Port 1.01	TIM0: Input Captu external clock 2 (r P0.05) ⁽⁸⁾	ire / trigger / emappable to		
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		02	х	х		Port 1.00	TIM0: Output com (remappable to P0	pare 2 0.04) ⁽⁸⁾		
96	C4	60	C4	V18	S									Stabilization for main voltage regulator. Requires external capacitors 33nF between V18 and VSS18. See <i>Figure 4.2.</i> To be connected to the 1.8V external power supply when embedded regulators are not used.				
97	D4	61	C5	VSS18	S									Ground Volta	ge for the main volta	age regulator.		
98	D3	62	A2	VSS_IO	S									Ground Volta	Ground Voltage for digital I/Os			
99	C3	63	B2	VDD_IO	S									Supply Voltage for digital I/Os				
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	х		02	х	х		Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1		

Table 6. STR750F pin description (continued)

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN.

 After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case, debugging these I/Os via JTAG is not possible).

7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX.

8. For details on remapping these alternate functions, refer to the GPIO_REMAPOR register description.

Power supply scheme 3: Single external 5 V power source

Figure 10. Power supply scheme 3

57

Figure 15. Power consumption measurements in power scheme 4 (regulators disabled)

6.2.2 Current characteristics

Table 8.Current characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	150	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) $^{(2)}$	150	
h-	Output current sunk by any I/O and control pin	25	
١O	Output current source by any I/Os and control pin	- 25	m۸
	Injected current on NRSTIN pin	± 5	ШA
I _{INJ(PIN)} ^{(3) & (4)}	Injected current on XT1 and XT2 pins	± 5	
	Injected current on any other pin (5)	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

1. The user can use GPIOs to source or sink high current (up to 20 mA for O8 type High Sink I/Os). In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption) and must follow the rules described in *Section 6.3.8: I/O port pin characteristics on page 54*.

- 2. All 3.3 V or 5.0 V power (V_{DD_IO} , V_{DDA_ADC} , V_{DDA_PLL}) and ground (V_{SS_IO} , V_{SSA_ADC} , V_{DDA_ADC}) pins must always be connected to the external 3.3V or 5.0V supply.
- 3. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. Data based on T_A=25°C.
- 4. Negative injection disturbs the analog performance of the device. See note in *Section 6.3.12: 10-bit ADC characteristics on page 72.*
- 5. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

6.2.3 Thermal characteristics

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
Т _Ј	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$, and T_{A} unless otherwise specified.

Table 10.	General	operating	conditions

Symbol	Parameter	Conditions	Min	Max	Unit
		Accessing SRAM with 0 wait states	0	64	
		Accessing Flash in burst mode, T _A ≤85° C	0	60	
fucir	Internal AHB Clock frequency	Accessing Flash in burst mode T _A >85° C		56	MHz
		Accessing Flash with 0 wait states	0	32	
		Write access to Flash registers ⁽¹⁾	0	30	
		Accessing Flash in RWW mode	0	16	
f _{PCLK}	Internal APB Clock frequency		0	32	MHz
V	Standard Operating Voltage Power Scheme 1 & 2		3.0	3.6	
VDD_IO	Standard Operating Voltage Power Scheme 3 & 4		4.5	5.5	V
V ₁₈	Standard Operating Voltage Power Scheme 2 & 4		1.65	1.95	
		LQFP100		434	
Р	Power dissipation at $T_A = 85^\circ C$	LQFP64		444	m\//
PD	suffix $7^{(2)}$	LFBGA100		487	mvv
		LFBGA64		344	
	Ambient temperature for 6 suffix	Maximum power dissipation	-40	85	°C
т	version	Low power dissipation ⁽³⁾	-40	105	°C
T _A	Ambient temperature for 7 suffix	Maximum power dissipation	-40	105	°C
	version	Low power dissipation ⁽³⁾	-40	125	°C
TJ	lunction temperature range	6 Suffix Version	-40	105	°C
	ouncion temperature range	7 Suffix Version	-40	125	°C

1. Write access to Flash registers is either a program, erase, set protection or un-set protection operation.

2. If T_A is lower, higher PD values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.2: Thermal characteristics on page 79).

 In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.2: Thermal characteristics on page 79).

Typical power consumption

The following measurement conditions apply to Table 15, Table 16 and Table 17.

In RUN mode:

- Program is executed from Flash (except if especially mentioned). The program consists
 of an infinite loop. When f_{HCLK} > 32 MHz, burst mode is activated.
- A standard 4 MHz crystal source is used.
- In all cases the PLL is used to multiply the frequency.
- All measurements are done in the single supply scheme with internal regulators used (see *Figure 12*)

In WFI Mode:

- In WFI Mode the measurement conditions are similar to RUN mode (OSC4M and PLL enabled). In addition, the Flash can be disabled depending on burst mode activation:
 - For AHB frequencies greater than 32 MHz, burst mode is activated and the Flash is kept enabled by setting the WFI_FLASH_EN bit (this bit cannot be reset when burst mode is activated).
 - For AHB frequencies less than or equal to 32 MHz, burst mode is deactivated, WFI_FLASH_EN is reset and the LP_PARAM14 bit is set (Flash is disabled in WFI mode).

In SLOW mode:

 The same program as in RUN mode is executed from Flash. The CPU is clocked by the FREEOSC, OSC4M, LPOSC or OSC32K. Only EXTIT peripheral is enabled in the MRCC_PCLKEN register.

In SLOW-WFI mode:

 In SLOW-WFI, the measurement conditions are similar to SLOW mode (CPU clocked by a low frequency clock). In addition, the LP_PARAM14 bit is set (FLASH is OFF). The WFI routine itself is executed from SRAM (it is not allowed to execute a WFI from the internal FLASH)

In STOP mode:

• Several measurements are given: in the single supply scheme with internal regulators used (see *Figure 12*): and in the dual supply scheme (see *Figure 13*).

In STANDBY mode:

- Three measurements are given:
 - The RTC is disabled, only the consumption of the LPVREG and RSM remain (almost no leakage currents)
 - The RTC is running, clocked by a standard 32.768 kHz crystal.
 - The RTC is running, clocked by the internal Low Power RC oscillator (LPOSC)
- STANDBY mode is only supported in the single supply scheme (see Figure 12)

Symbol	Para meter	Conditions	3.3V typ ⁽¹⁾	5V typ ⁽²⁾	Unit
(2)	Supply current in	Clocked by OSC4M with PLL multiplication, all peripherals enabled in the MRCC_PLCKEN register: $f_{HCLK}=60$ MHz, $f_{PCLK}=30$ MHz $f_{HCLK}=56$ MHz, $f_{PCLK}=28$ MHz $f_{HCLK}=48$ MHz, $f_{PCLK}=24$ MHz $f_{HCLK}=32$ MHz, $f_{PCLK}=32$ MHz $f_{HCLK}=16$ MHz, $f_{PCLK}=16$ MHz $f_{HCLK}=8$ MHz, $f_{PCLK}=8$ MHz	80 75 65 59 34 20	82 77 67 61 37 22	mA
	RUN mode ⁽⁴⁾	Clocked by OSC4M with PLL multiplication, only EXTIT peripheral enabled in the MRCC_PLCKEN register: $f_{HCLK}=60 \text{ MHz}$, $f_{PCLK}=30 \text{ MHz}$ $f_{HCLK}=56 \text{ MHz}$, $f_{PCLK}=28 \text{ MHz}$ $f_{HCLK}=48 \text{ MHz}$, $f_{PCLK}=24 \text{ MHz}$ $f_{HCLK}=32 \text{ MHz}$, $f_{PCLK}=32 \text{ MHz}$ $f_{HCLK}=16 \text{ MHz}$, $f_{PCLK}=16 \text{ MHz}$ $f_{HCLK}=8 \text{ MHz}$, $f_{PCLK}=8 \text{ MHz}$	65 60 54 42 22 16	67 62 55 44 24 18	mA
I _{DD} ⁽³⁾	Supply current in WFI mode ⁽⁴⁾	Clocked by OSC4M with PLL multiplication, only EXTIT peripheral enabled in the MRCC_PLCKEN register: $f_{HCLK}=60 \text{ MHz}, f_{PCLK}=30 \text{ MHz}^{(5)}$ $f_{HCLK}=56 \text{ MHz}, f_{PCLK}=28 \text{ MHz}^{(5)}$ $f_{HCLK}=48 \text{ MHz}, f_{PCLK}=24 \text{ MHz}^{(5)}$ $f_{HCLK}=32 \text{ MHz}, f_{PCLK}=32 \text{ MHz}^{(6)}$ $f_{HCLK}=16 \text{ MHz}, f_{PCLK}=16 \text{ MHz}^{(6)}$ $f_{HCLK}=8 \text{ MHz}, f_{PCLK}=8 \text{ MHz}^{(6)}$	62 59 53 22 13 10	63 60 54 23 15 11	mA
	Supply current in SLOW mode ⁽⁴⁾	Clocked by FREEOSC: $f_{HCLK}=f_{PCLK}=\sim 5$ MHz, Clocked by OSC4M: $f_{HCLK}=f_{PCLK}=4$ MHz Clocked by LPOSC: $f_{HCLK}=f_{PCLK}=\sim 300$ kHz Clocked by OSC32K: $f_{HCLK}=f_{PCLK}=32.768$ kHz	9 8 3.65 3.5	10 9 3.9 4.2	mA
	Supply current in SLOW-WFI mode ⁽⁴⁾⁽⁷⁾	Clocked by FREEOSC: f _{HCLK} =f _{PCLK} =~5 MHz Clocked by OSC4M: f _{HCLK} =f _{PCLK} =4 MHz Clocked by LPOSC: f _{HCLK} =f _{PCLK} =~300 kHz Clocked by OSC32K: f _{HCLK} =f _{PCLK} =32.768 kHz	3.5 3.1 1.15 0.98	4.0 3.75 1.65 1.5	mA

Subject to genera	I operating	conditions for	r V _{DD}	_{IO} , and	Τ _A
-------------------	-------------	----------------	-------------------	---------------------	----------------

Table 15.	Single supply typical	power consumption in Run,	, WFI, Slow and Slow-WFI modes
-----------	-----------------------	---------------------------	--------------------------------

1. Typical data based on $T_A{=}25^\circ$ C and $V_{DD_IO}{=}3.3V.$

2. Typical data based on $T_A=25^{\circ}$ C and V_{DD} IO=5.0V.

3. The conditions for these consumption measurements are described at the beginning of Section 6.3.4 on page 36.

4. Single supply scheme see *Figure 14*.

5. Parameter setting BURST=1, WFI_FLASHEN=1

6. Parameter setting BURST=0, WFI_FLASHEN=0

7. Parameter setting WFI_FLASHEN=0, OSC4MOFF=1

OSC32K crystal / ceramic resonator oscillator

The STR7 RTC clock can be supplied with a 32.768 kHz Crystal/Ceramic resonator oscillator. All the information given in this paragraph are based on product characterisation with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...).

Table 23. OSC32K crystal / ceramic resonator oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC32K}	Oscillator Frequency			32.768		kHz
R _F	Feedback resistor	V _{DD_IO} =3.3 V or 5.0 V	270	310	370	kΩ
C _{L1} C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator $(R_S)^{(1)}$	R _S =40KΩ		12.5	15	pF
i ₂	XT2 driving current	$V_{DD_{IO}=3.3}$ V or 5.0 V $V_{IN}=V_{SS}$	1		5	μA
t _{SU(OSC32K)} ⁽²⁾	Startup time	$V_{DD_{-}IO}$ is stabilized		2.5		S

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value. Refer to crystal/ceramic resonator manufacturer for more details

 t_{SU(OSC32K)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 32 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal/ceramic resonator manufacturer

Figure 22. Typical application with a 32.768 kHz crystal or ceramic resonator

PLL characteristics

PLL Jitter Terminology

• Self-referred single period jitter (period jitter)

Period Jitter is defined as the difference of the maximum period (T_{max}) and minimum period (T_{min}) at the output of the PLL where T_{max} is the maximum time difference between 2 consecutive clock rising edges and T_{min} is the minimum time difference between 2 consecutive clock rising edges.

See Figure 23

• Self-referred long term jitter (N period jitter)

Self-referred long term Jitter is defined as the difference of the maximum period (T_{max}) and minimum period (T_{min}) at the output of the PLL where T_{max} is the maximum time

6.3.6 Memory characteristics

Flash memory

Subject to general operating conditions for V_{DD_IO} and $V_{18},\,T_A$ = -40 to 105 $^\circ C$ unless otherwise specified.

Cumhal	Devementer	Test Canditions	Va	Unit		
Symbol	Parameter	Test Conditions	Тур	Max ⁽¹⁾	Unit	
t _{PW}	Word Program		35		μs	
t _{PDW}	Double Word Program		60		μs	
t _{PB0}	Bank 0 Program (256K)	Single Word programming of a checker-board pattern	2	4.9 ⁽²⁾	s	
t _{PB1}	Bank 1 Program (16K)	Single Word programming of a checker-board pattern	125	224 ⁽²⁾	ms	
t _{ES}	Sector Erase (64K)	Not preprogrammed (all 1) Preprogrammed (all 0)	1.54 1.176	2.94 ⁽²⁾ 2.38 ⁽²⁾	S	
t _{ES}	Sector Erase (8K)	Not preprogrammed (all 1) Preprogrammed (all 0)	392 343	560 ⁽²⁾ 532 ⁽²⁾	ms	
t _{ES}	Bank 0 Erase (256K)	Not preprogrammed (all 1) Preprogrammed (all 0)	8.0 6.6	13.7 11.2	S	
t _{ES}	Bank 1 Erase (16K)	Not preprogrammed (all 1) Preprogrammed (all 0)	0.9 0.8	1.5 1.3	s	
t _{RPD}	Recovery when disabled			20	μs	
t _{PSL}	Program Suspend Latency			10	μs	
t _{ESL}	Erase Suspend Latency			300	μS	

 Table 26.
 Flash memory characteristics

1. Data based on characterisation not tested in production

2. 10K program/erase cycles.

 Table 27.
 Flash memory endurance and data retention

Symbol	Paramotor	Conditions		Unit		
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	onit
N _{END_B0}	Endurance (Bank 0 sectors)		10			kcycles
N_{END_B1}	Endurance (Bank 1 sectors)		100			kcycles
Y _{RET}	Data Retention	T _A =85° C	20			Years
t _{ESR}	Erase Suspend Rate	Min time from Erase Resume to next Erase Suspend	20			ms

1. Data based on characterisation not tested in production.

Electro magnetic interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbo	Baramotor	Conditions	Monitored	Max vs. [f _O	Unit	
I	i arameter	Conditions	Frequency Band	4/32MHz	4/60MHz	Unit
S _{EMI} F		k level Flash devices: $V_{DD_{-}IO}=3.3 V \text{ or } 5 V,$ $T_{A}=+25^{\circ} C,$ LQFP64 package conforming to SAE J 1752/3	0.1 MHz to 30 MHz	22	26	
			30 MHz to 130 MHz	31	26	dBμV
	Peak level		130 MHz to 1 GHz	19	23	
			SAE EMI Level	>4	>4	-

Table 29. EMI characteristics

Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electro-Static discharge (ESD)

Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models can be simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard.

Table 30.	Absolute n	naximum	ratings
	/1000101011	III A A III A III	raingo

Symbol	Ratings	Conditions	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)		2000	
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	T _A =+25° C	200	V
V _{ESD(CDM)}	Electro-static discharge voltage (Charge Device Model)		750	

1. Data based on product characterisation, not tested in production.

6.3.9 TB and TIM timer characteristics

Subject to general operating conditions for $V_{DD_IO},\,f_{CK_SYS},$ and T_A unless otherwise specified.

Refer to *Section 6.3.8: I/O port pin characteristics on page 54* for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).

Symbol	Parameter		Conditions	Min	Тур	Max	Unit		
t _{w(ICAP)in}	Input capture pulse time	TIM0,1,2		2			t _{CK_TIM}		
			f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}		
t _{res(TIM)}	Timer	ТВ	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns		
	time ⁽¹⁾		$f_{CK_TIM(MAX)} = f_{CK_SYS}$	1			t _{CK_TIM}		
		TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60MHz	16.6 ⁽¹⁾			ns		
	Timer		$f_{CK_TIM(MAX)} = f_{CK_SYS}$	0		f _{CK_TIM} /4	MHz		
f _{EXT}	frequency on TI1 or TI2	external clock frequency on TI1 or TI2	EXTERNAL CIOCH Frequency on TI1 or TI2	TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0		15	MHz
Res _{TIM}	Timer resolution					16	bit		
	16-bit	16-bit	16-bit			1		65536	t _{CK_TIM}
toouurra	Counter clock period when	ter clock TB d when	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs		
COUNTER	is selected			1		65536	t _{CK_TIM}		
	(16-bit Prescaler)	(16-bit Prescaler)	TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs	
						65536x65536	t _{CK_TIM}		
t	Maximum	ТВ	f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	S		
MAX_COUNT	Count					65536x65536	t _{CK_TIM}		
		TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	S		

Table 36. TB and TIM timers

1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to I/O pin, described in : *Output speed on page 57*.

SSP synchronous serial peripheral in slave mode (SPI or TI mode)

Subject to general operating conditions with $C_L\approx 45~\text{pF}$

Symbol	Parameter	Con	ditions	Min	Max	Unit
f	SPI clock froguency		SSP0		2.66 MHz	
ISCK	SFI Clock frequency		SSP1		(f _{PLCK} /12)	
+	NSS input setup time w.r.t		SSP0	0		
^ι su(NSS)	SCK first edge		SSP1	0		
	NSS input hold time w.r.t		SSP0	t _{PCLK} +15ns		
^L h(NSS)	SCK last edge		SSP1	t _{PCLK} +15ns		
+	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +30 ns	
INSSLQV	MISO valid time		SSP1	2t _{PCLK}	3t _{PCLK} +30 ns	
+	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +15 ns	
INSSLQZ	MISO invalid time		SSP1	2t _{PCLK}	3t _{PCLK} +15 ns	20
+	SCK trigger edge to data		SSP0		15	115
ISCKQV	output MISO valid time		SSP1		30	
+	SCK trigger edge to data		SSP0	2t _{PCLK}		
ISCKQX	output MISO invalid time		SSP1	2t _{PCLK}		
t	MOSI setup time w.r.t SCK		SSP0	0		
^t su(MOSI)	sampling edge		SSP1	0		
+	MOSI hold time w.r.t SCK		SSP0	3t _{PCLK} +15 ns		
^t h(MOSI)	sampling edge		SSP1	3t _{PCLK} +15 ns		

 Table 39.
 SSP slave mode characteristics⁽¹⁾

1. Data based on characterisation results, not tested in production.

Figure 33. SPI configuration, slave mode with CPHA=0, single transfer

SMI - serial memory interface

Subject to general operating conditions with $C_L\approx 30$ pF.

Table 40.	SMI characteristics ⁽¹)
-----------	-----------------------------------	---

Symbol	Parameter	Min	Max	Unit
f	SML clock frequency		32 ⁽²⁾⁽³⁾	MU-7
'SMI_CK			48 ⁽⁴⁾	
t _{r(SMI_CK)}	SMI clock rise time		10	ne
t _{f(SMI_CK)}	SMI clock fall time		8	115
t _{v(SMI_DOUT)}	Data output valid time		10	
t _{h(SMI_DOUT)}	Data output hold time		0	
t _{v(SMI_CSSx)}	CSS output valid time		10	
t _{h(SMI_CSSx)}	CSS output hold time		0	
t _{su(SMI_DIN)}	Data input setup time	0		
t _{h(SMI_DIN)}	Data input hold time	5		

1. Data based on characterisation results, not tested in production.

2. Max. frequency = $f_{PCLK}/2 = 64/2 = 32$ MHz.

3. Valid for all temperature ranges: -40 to 105 $^{\circ}\text{C},$ with 30 pF load capacitance.

4. Valid up to 60 °C, with 10 pF load capacitance.

Figure 39. SMI timing diagram

I²C - Inter IC control interface

Subject to general operating conditions for $V_{DD_{-}IO}$, f_{PCLK} , and T_A unless otherwise specified.

The I^2C interface meets the requirements of the Standard I^2C communication protocol described in the following table with the restriction mentioned below:

Restriction: The I/O pins which SDA and SCL are mapped to are not "True" Open-Drain: when configured as open-drain, the PMOS connected between the I/O pin and V_{DD_IO} is disabled, but it is still present. Also, there is a protection diode between the I/O pin and V_{DD_IO} is disabled, but it is still present. Also, there is a protection diode between the I/O pin and V_{DD_IO} . Consequently, when using this I²C in a multi-master network, it is

6.3.12 10-bit ADC characteristics

Subject to general operating conditions for $V_{DDA_ADC},\,f_{PCLK},$ and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Unit
f _{ADC}	ADC clock frequency		0.4		8	MHz
V _{AIN}	Conversion voltage range ⁽²⁾		V_{SSA_ADC}		V_{DDA_ADC}	V
R _{AIN}	External input impedance ⁽³⁾⁽⁴⁾				10	kΩ
C _{AIN}	External capacitor on analog input ⁽³⁾⁽⁴⁾				6.8	pF
l _{ikg}	Induced input leakage current	+400 µA injected on any pin			1	μA
		-400 μA injected on any pin except specific adjacent pins in <i>Table 46</i>			1	μΑ
		-400μA injected on specific adjacent pins in <i>Table 46</i>		40		μΑ
C _{ADC}	Internal sample and hold capacitor			3.5		pF
t _{CAL}	Calibration Time	f _{CK_ADC} =8 MHz	725.25			μs
			5802			1/f _{ADC}
t _{CONV}	Total Conversion time (including sampling time)	f _{CK_ADC} =8 MHz	3.75			μs
			30 (11 for sampling + 19 for Successive Approximation)		1/f _{ADC}	
I _{ADC}		Sunk on V _{DDA_ADC}		3.7		mA

Table 45.10-bit ADC characteristics

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$. They are given only as design guidelines and are not tested.

2. Calibration is needed once after each power-up.

 C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

4. Depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and reduced to allow the use of a larger serial resistor (R_{AIN}). It is valid for all f_{ADC} frequencies ≤ 8 MHz.

ADC accuracy vs. negative injection current

Injecting negative current on specific pins listed in *Table 46* (generally adjacent to the analog input pin being converted) should be avoided as this significantly reduces the accuracy of the conversion being performed. It is recommended to add a Schottky diode (pin to ground) to pins which may potentially inject negative current.

	Table 46.	List of ad	iacent pins
--	-----------	------------	-------------

Analog input	Related adjacent pins			
a	None			
AIN1/P0.03	None			
AIN2/P0.12	P0.11			
AIN3/P0.17	P0.18 and P0.16			
AIN4/P0.19	P0.24			
AIN5/P0.22	None			
AIN6/P0.23	P2.04			
AIN7/P0.27	P1.11 and P0.26			
AIN8/P0.29	P0.30 and P0.28			
AIN9/P1.04	None			
AIN10/P1.06	P1.05			
AIN11/P1.08	P1.04 and P1.13			
AIN12/P1.11	P2.17 and P0.27			
AIN13/P1.12	None			
AIN14/P1.13	P1.14 and P1.01			
AIN15/P1.14	None			

Figure 42. Typical application with ADC

Analog power supply and reference pins

The V_{DDA_ADC} and V_{SSA_ADC} pins are the analog power supply of the A/D converter cell.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see : *General PCB design guidelines on page 74*).

General PCB design guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 43*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA_ADC} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 43. Power supply filtering

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR755FV0T6	64				
STR755FV1T6	128	LQFP100 14x14			
STR755FV2T6	256				40 to 195°C
STR755FV0H6	64		-	-	-40 10 +65 0
STR755FV1H6	128	LFBGA100 10x10			
STR755FV2H6	256				

 Table 49.
 Order codes (continued)

