

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	· .
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str755fr1t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9	Revis	ion hist	ory
8	Order	codes	
		7.2.2	Selecting the product temperature range
		7.2.1	Reference document
	7.2	Therma	I characteristics
	7.1	Package	e mechanical data
7	Packa	ige chai	racteristics
		6.3.12	10-bit ADC characteristics
		6.3.11	USB characteristics
		6.3.10	Communication interface characteristics
		6.3.9	TB and TIM timer characteristics
		6.3.8	I/O port pin characteristics
		6.3.7	EMC characteristics
		6.3.6	Memory characteristics

regulator and the V_{BACKUP} supply is generated internally by the low power voltage regulator. This scheme has the advantage of requiring only one 5.0V power source.

- Power Scheme 4: Dual external 5.0V and 1.8V power sources. In this configuration, the internal voltage regulators are switched off, by forcing the VREG_DIS pin to high level. V_{CORE} is provided externally through the V₁₈ and V_{18REG} power pins and V_{BACKUP} through the V_{18_BKP} pin. This scheme is intended to provide 5V I/O capability.
- **Caution:** When powered by 5.0V, the USB peripheral cannot operate.

Low power modes

The STR750F supports 5 low power modes, SLOW, PCG, WFI, STOP and STANDBY.

- SLOW MODE: the system clock speed is reduced. Alternatively, the PLL and the main oscillator can be stopped and the device is driven by a low power clock (f_{RTC}). The clock is either an external 32.768 kHz oscillator or the internal low power RC oscillator.
- PCG MODE (Peripheral Clock Gating MODE): When the peripherals are not used, their APB clocks are gated to optimize the power consumption.
- WFI MODE (Wait For Interrupts): only the CPU clock is stopped, all peripherals continue to work and can wake-up the CPU when IRQs occur.
- STOP MODE: all clocks/peripherals are disabled. It is also possible to disable the oscillators and the Main Voltage Regulator (In this case the V_{CORE} is entirely powered by V_{18_BKP}). This mode is intended to achieve the lowest power consumption with SRAM and registers contents retained. The system can be woken up by any of the external interrupts / wake-up lines or by the RTC timer which can optionally be kept running. The RTC can be clocked either by the 32.768 kHz Crystal or the Low Power RC Oscillator.

Alternatively, STOP mode gives flexibility to keep the either main oscillator, or the Flash or the Main Voltage Regulator enabled when a fast start after wake-up is preferred (at the cost of some extra power consumption).

- STANDBY MODE: This mode (only available in single supply power schemes) is intended to achieve the lowest power consumption even when the temperature is increasing. The digital power supply (V_{CORE}) is completely removed (no leakage even at high ambient temperature). SRAM and all register contents are lost. Only the RTC remains powered by V_{18_BKP} The STR750F can be switched back from STANDBY to RUN mode by a trigger event on the WKP_STDBY pin or an alarm timeout on the RTC counter.
- **Caution:** It is important to bear in mind that it is forbidden to remove power from the V_{DD_IO} power supply in any of the Low Power Modes (even in STANDBY MODE).

DMA

The flexible 4-channel general-purpose DMA is able to manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

The DMA can be used with the main peripherals: UART0, SSP0, Motor control PWM timer (PWM), standard timer TIM0 and ADC.

RTC (real-time clock)

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a

3.2 Block diagram

	1	2	3	4	5	6	7	8	9	10
A	P0.03	P1.13	P1.14	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07	P1.02
в	P1.12	P0.02	P0.01	P1.05	P1.07	P1.09	P0.04	P2.13	P1.03	P2.10
с	P0.31	P0.00	V _{DD_IO}	V ₁₈	P1.10	P2.09	V _{SS_IO}	V _{SSA_ADC}	P2.11	USB_DP
D	P0.29	P0.30	V _{SS_IO}	V _{SS18}	P1.01	P1.15	V _{DD_IO}	V _{DDA_ADC}	P2.12	USB_DN
Е	P0.28	P0.23	P0.22	$V_{SS_{IO}}$	TEST	P1.00	NRSTOUT	VREG_DIS	NRSTIN	P0.14
F	P2.03	P0.21	P0.20	P2.02	P2.04	P2.05	P2.06	V _{SS18}	V _{SSBKP}	P0.15
G	NJTRST	P1.18	P1.19	P2.01	P2.00	P2.07	2.08	V _{18REG}	V _{18BKP}	XRTC2
н	P0.13	P1.16	P1.17	P2.19	P2.18	P2.17	P0.24	P2.14	P2.16	XRTC1
J	P0.11	P0.12	P1.11	P0.27	P0.19	P0.26	P0.25	P2.15	V _{DD_IO}	V _{SS_IO}
к	P0.10	P0.09	P0.08	P0.18	P0.17	P0.16	XT1	XT2	V _{DDA_PLL}	V _{SSA_PLL}

Table 4. LFBGA100 ball connections

 Table 5.
 LFBGA64 ball connections

	1	2	3	4	5	6	7	8
А	P0.03	V _{SS_IO}	P1.04	P1.06	P1.08	P0.05	P0.06	P0.07
В	P1.12	V _{DD_IO}	P1.05	P1.07	P1.09	P0.04	P1.10	P1.03
С	P0.01	P0.02	P0.00	V ₁₈	V _{SS18}	V _{DD_IO}	V _{SS_IO}	P0.14
D	P0.29	P0.28	TEST	V _{SS_IO}	VREG_DIS	V _{DDA_ADC}	V _{SSA_ADC}	P0.15
Е	P1.18	P1.19	P0.20	P0.21	NRSTOUT	NRSTIN	V _{18BKP}	XRTC2
F	P0.13	NJTRST	P1.16	P1.17	V _{18REG}	V _{SS18}	V _{SSBKP}	XRTC1
G	P0.11	P0.12	P1.11	P0.19	V _{DD_IO}	V _{SS_IO}	V _{DDA_PLL}	V _{SSA_PLL}
н	P0.10	P0.09	P0.08	P0.17	P0.18	P0.16	XT2	XT1

4.1 Pin description table

Legend / abbreviations for Table 6:

Туре:	I = input, O = output, S = supply,
Input levels:	All Inputs are LVTTL at V _{DD_IO} = $3.3V$ +/-0.3V or TTL at V _{DD_IO} = $5V$ ± 0.5V. In both cases, T _T means V _{ILmax} =0.8V V _{IHmin} =2.0V
Inputs:	All inputs can be configured as floating or with internal weak pull-up or pull down (pu/pd)
Outputs:	All Outputs can be configured as Open Drain (OD) or Push-Pull (PP) (see also note 6 below <i>Table 6</i>). There are 3 different types of Output with different drives and speed characteristics:
	 - O8: f_{max} = 40 MHz on C_L=50pF and 8 mA static drive capability for V_{OL}=0.4V and up to 20 mA for V_{OL}=1.3V (see<i>Output driving current on page 55</i>)
	 O4: f_{max} = 20 MHz on C_L=50pF and 4 mA static drive capability for V_{OL}=0.4V (see<i>Output driving</i> <i>current on page 55</i>)
	- O2: $f_{max} = 10$ MHz on C _L =50pF and 2 mA static drive capability of for V _{OL} =0.4V (see <i>Output driving</i> <i>current on page 55</i>)
External interrupts/wake-up lines:	EITx

Figure 12. Power consumption measurements in power scheme 1 (regulators enabled)

Figure 13. Power consumption measurements in power scheme 2 (regulators disabled)

Figure 15. Power consumption measurements in power scheme 4 (regulators disabled)

6.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

6.2.1 Voltage characteristics

Symbol	Ratings	Min	Max	Unit
$V_{DD_x} - V_{SS_x}^{(1)}$	Including V_{DDA_ADC} and V_{DDA_PLL}	-0.3	6.5	V
V ₁₈ - V _{SS18}	Digital 1.8 V Supply voltage on all V ₁₈ power pins (when 1.8 V is provided externally)	-0.3	2.0	
V _{IN}	Input voltage on any pin ⁽²⁾	V _{SS} -0.3 to V _{DD_IO} +0.3	V _{SS} -0.3 to V _{DD_IO} +0.3	
I∆V _{DDx} I	Variations between different 3.3 V or 5.0 V power pins		50	
l∆V _{18x} l	Variations between different 1.8 V power pins ⁽³⁾		25	mV
IV _{SSX} - V _{SS} I	Variations between all the different ground pins		50	
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	see : Absolute maximum	see : Absolute maximum	
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	ratings (electrical sensitivity) on page 52	ratings (electrical sensitivity) on page 52	

Table 7. Voltage characteristics

 All 3.3 V or 5.0 V power (V_{DD_IO}, V_{DDA_ADC}, V_{DDA_PLL}) and ground (V_{SS_IO}, V_{SSA_ADC}, V_{DDA_ADC}) pins must always be connected to the external 3.3V or 5.0V supply. When powered by 3.3V, I/Os are not 5V tolerant.

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Only when using external 1.8 V power supply. All the power (V₁₈, V_{18REG}, V_{18BKP}) and ground (V_{SS18}, V_{SSBKP}) pins must always be connected to the external 1.8 V supply.

6.3.4 Supply current characteristics

The current consumption is measured as described in *Figure 12 on page 30* and *Figure 13 on page 30*.

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$, and T_{A}

Maximum power consumption

For the measurements in *Table 13* and *Table 14*, the MCU is placed under the following conditions:

- All I/O pins are configured in output push-pull 0
- All peripherals are disabled except if explicitly mentioned.
- Embedded Regulators are used to provide 1.8 V (except if explicitly mentioned).

Table 13. Maximum power consumption in RUN and WFI n	nodes
--	-------

Symbol	Parameter	Conditions ⁽¹⁾		Тур ⁽²⁾	Max ⁽³⁾	Unit
I _{DD}	Supply current in RUN mode	External Clock with PLL multiplication, code running from RAM, all peripherals enabled in the MRCC_PLCKEN register: f _{HCLK} =60 MHz, f _{PCLK} =30 MHz Single supply scheme see <i>Figure 12</i> / <i>Figure 14</i>	3.3V and 5V range	80	90	mA
	Supply current in WFI mode	External Clock, code running from RAM: f _{HCLK} =60 MHz, f _{PCLK} =30 MHz Single supply scheme see <i>Figure 12./ Figure 14</i> Parameter setting BURST=1, WFI_FLASHEN=1	3.3V and 5V range	62	67	mA

1. The conditions for these consumption measurements are described at the beginning of Section 6.3.4.

2. Typical data are based on $T_A=25^\circ C,\,V_{DD_IO}=3.3V$ or 5.0V and $V_{18}=1.8V$ unless otherwise specified.

3. Data based on product characterisation, tested in production at $V_{DD_{-}IO}$ max and V_{18} max (1.95V in dual supply mode or regulator output value in single supply mode) and T_A max.

		Conditions ⁽¹⁾						
Symbol	Parameter			Тур ⁽²⁾	T _A 25°C	T _A 85°C	Т _А 105°С	Unit
I _{DD}	Supply current in STOP mode	LP_PARAM bits: ALL OFF ⁽⁴⁾ Single supply scheme see <i>Figure 12</i> .	3.3V range	12	16	117	250	μA
		LP_PARAM bits: ALL OFF Dual supply scheme see <i>Figure 13</i> .	I _{DD_V18} I _{DD_V33}	5 <1	8 3	60 20	110 26	μA
		LP_PARAM bits: ALL OFF ⁽⁴⁾ Single supply scheme see <i>Figure 10</i>	5V range	15	22	160	310	μA
		LP_PARAM bits: ALL OFF Dual supply scheme see <i>Figure 11</i>	I _{DD_V18} I _{DD_V50}	5 3	8 6	60 50	110 65	
	Supply current in	y It in DTO OFF		10	20	25	28	μA
	STANDBY mode		5V range	15	25	30	33	

Table 14. Maximum power consumption in STOP and STANDBY modes

1. The conditions for these consumption measurements are described at the beginning of Section 6.3.4.

2. Typical data are based on $T_A=25^\circ C,\,V_{DD_IO}=3.3V$ or 5.0V and $V_{18}=1.8V$ unless otherwise specified.

3. Data based on product characterisation, tested in production at $V_{DD_{-IO}}$ max and V_{18} max (1.95V in dual supply mode or regulator output value in single supply mode).

4. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4V, which significantly reduces the leakage currents.

Typical power consumption

The following measurement conditions apply to Table 15, Table 16 and Table 17.

In RUN mode:

- Program is executed from Flash (except if especially mentioned). The program consists
 of an infinite loop. When f_{HCLK} > 32 MHz, burst mode is activated.
- A standard 4 MHz crystal source is used.
- In all cases the PLL is used to multiply the frequency.
- All measurements are done in the single supply scheme with internal regulators used (see *Figure 12*)

In WFI Mode:

- In WFI Mode the measurement conditions are similar to RUN mode (OSC4M and PLL enabled). In addition, the Flash can be disabled depending on burst mode activation:
 - For AHB frequencies greater than 32 MHz, burst mode is activated and the Flash is kept enabled by setting the WFI_FLASH_EN bit (this bit cannot be reset when burst mode is activated).
 - For AHB frequencies less than or equal to 32 MHz, burst mode is deactivated, WFI_FLASH_EN is reset and the LP_PARAM14 bit is set (Flash is disabled in WFI mode).

In SLOW mode:

 The same program as in RUN mode is executed from Flash. The CPU is clocked by the FREEOSC, OSC4M, LPOSC or OSC32K. Only EXTIT peripheral is enabled in the MRCC_PCLKEN register.

In SLOW-WFI mode:

 In SLOW-WFI, the measurement conditions are similar to SLOW mode (CPU clocked by a low frequency clock). In addition, the LP_PARAM14 bit is set (FLASH is OFF). The WFI routine itself is executed from SRAM (it is not allowed to execute a WFI from the internal FLASH)

In STOP mode:

• Several measurements are given: in the single supply scheme with internal regulators used (see *Figure 12*): and in the dual supply scheme (see *Figure 13*).

In STANDBY mode:

- Three measurements are given:
 - The RTC is disabled, only the consumption of the LPVREG and RSM remain (almost no leakage currents)
 - The RTC is running, clocked by a standard 32.768 kHz crystal.
 - The RTC is running, clocked by the internal Low Power RC oscillator (LPOSC)
- STANDBY mode is only supported in the single supply scheme (see Figure 12)

Supply and clock manager power consumption

Table 18.	Supply and	clock manager	power	consumption
-----------	------------	---------------	-------	-------------

Symbol	Parameter	Conditions ⁽¹⁾	3.3V Typ	5V Typ	Unit
I _{DD(OSC4M)}	Supply current of resonator oscillator in STOP or WFI mode (LP_PARAM bit: OSC4M ON)	External components specified in: 4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2) on page 46	1815	1795	
I _{DD(FLASH)}	FLASH static current consumption in STOP or WFI mode (LP_PARAM bit FLASH ON)		515	515	
I _{DD(MVREG)}	Main Voltage Regulator static current consumption in STOP mode (LP_PARAM bit: MVREG ON)		130	135	μA
		STOP mode includes leakage where V_{18} is internally set to 1.4 V	12	15	
I _{DD(LPVREG)}	current static current consumption	STANDBY mode where V_{18BKP} and V_{18} are internally set to 1.4 V and 0 V respectively	11	14	

1. Measurements performed in 3.3V single supply mode see *Figure 12*

XRTC1 external clock source

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$

Table 21. XRTC1 external clock source

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Мах	Unit
fxrtc1	External clock source frequency			32.768	500	kHz
V _{XRTC1H}	XRTC1 input pin high level voltage		0.7xV _{DD_IO}		V _{DD_IO}	V
V _{XRTC1L}	XRTC1 input pin low level voltage	see <i>Figure 20</i>	V _{SS}		0.3xV _{DD_IO}	v
t _{w(XRTC1H)} t _{w(XRTC1L)}	XRTC1 high or low time ⁽²⁾		900			nc
t _{r(XRTC1)} t _{f(XRTC1)}	XRTC1 rise or fall time ⁽²⁾				50	115
١L	XRTCx Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD_I} o			±1	μA
C _{IN(RTC1)}	XRTC1 input capacitance ⁽²⁾			5		pF
DuCy _(RTC1)	Duty cycle		30		70	%

1. Data based on typical application software.

2. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 20. Typical application with an external clock source

Figure 25. Connecting unused I/O pins

Output driving current

The GP I/Os have different drive capabilities:

- O2 outputs can sink or source up to +/-2 mA.
- O4 outputs can sink or source up to +/-4 mA.
- outputs can sink or source up to +/-8 mA or can sink +20 mA (with a relaxed V_{OL}).

In the application, the user must limit the number of I/O pins which can drive current to respect the absolute maximum rating specified in *Section 6.2.2*:

- The sum of the current sourced by all the I/Os on V_{DD_IO}, plus the maximum RUN consumption of the MCU sourced on V_{DD_IO}, can not exceed the absolute maximum rating IV_{DD_IO}.
- The sum of the current sunk by all the I/Os on V_{SS_IO} plus the maximum RUN consumption of the MCU sunk on V_{SS_IO} can not exceed the absolute maximum rating IV_{SS_IO}.

Subject to general operating conditions for $V_{\text{DD}\ \text{IO}}$ and T_{A} unless otherwise specified.

6.3.10 Communication interface characteristics

SSP synchronous serial peripheral in master mode (SPI or TI mode)

General operating conditions: V_{33}, 3.0V to 3.3V, V18 ~=1.8V, $C_L\approx 45$ pF.

Symbol	Parameter	Conditions		Min	Max	Unit	
f	SPI clock froguopov ⁽²⁾		SSP0		16	MHz	
ISCK	SFI Clock frequency		SSP1		8		
+	CDL algoly rise time		SSP0		14		
۲r(SCK)	SFT CIOCK TISE LITTE		SSP1		33		
	SPI clock fall time		SSP0		11		
٩(SCK)			SSP1		30		
t _{w(SCKH)}	SCK high and low time		SSP0		19		
tw(SCKL)	SCK high and low time		SSP1		30		
t	NSS low to Data Output MOSI valid time		SSP0		0.5t _{SCK} +15ns		
INSSLQV			SSP1		0.5t _{SCK} +30ns		
	SCK last edge to NSS high	CPHA = 0	SSP0		0.5t _{SCK} +15ns		
t			SSP1		0.5t _{SCK} +30ns		
SCKNSSH		CPHA = 1	SSP0		t _{SCK} +15ns	ns	
			SSP1		t _{SCK} +30ns		
t	SCK trigger edge to data		SSP0		15		
ISCKQV	output MOSI valid time		SSP1		30		
t _{SCKQX}	SCK trigger edge to data output MOSI invalid time		SSP0	0			
			SSP1	0			
	Data input (MISO) setup		SSP0	25			
t _{su}	time w.r.t SCK sampling edge		SSP1	25			
t.	Data input (MISO) hold time		SSP0	0			
чh	w.r.t SCK sampling edge		SSP1	0			

 Table 38.
 SSP master mode characteristics⁽¹⁾

1. Data based on characterisation results, not tested in production.

2. Max frequency for the 2 SSPs is $f_{PCLK}/2$; f_{PCLK} max = 32 MHz. This takes into account the frequency limitation due to I/O speed capability. SSP0 uses IO4 type while SSP1 uses IO2 type I/Os.

Figure 31. TI configuration - master mode, single transfer

	t _{c(SCK)}	t _{c(SCK)}		
NSS OUTPUT	· · · · · · · · · · · · · · · · · · ·			
SCK OUTPUT	ample trigger, sample trigger	sample trigger sample trigger sam	mple trigger sample trigg	yer sample
	XX		ѕв оџт 🗸 🍌	LSB OUT
MISO INPUT DONT CARE MSB IN	<u>'</u> /'/			LSB IN DONT CARE
•	FRAME 1		FRAME	2

Figure 37. TI configuration - slave mode, single transfer

not possible to power off the STR7x while some another I²C master node remains powered on: otherwise, the STR7x will be powered by the protection diode.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	$t_{f(SDA)}$ SDA and SCL fall time $t_{f(SCL)}$		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μδ
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μS
Cb	Capacitive load for each bus line		400		400	pF

 Table 41.
 SDA and SCL characteristics

1. f_{PCLK} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time $t_{h(SDA)}$ is not applicable

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

7.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 10: General operating conditions on page 34*.

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum Ambient Temperature in °C,
- Θ_{JA} is the Package Junction-to-Ambient Thermal Resistance, in ° C/W,
- P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$,
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum Power Dissipation on Output Pins. Where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma (\mathsf{V}_{\mathsf{OL}}^* \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}}^* \mathsf{V}_{\mathsf{OH}})^* \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table 48.Thermal characteristics⁽¹⁾

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch	45	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 64 - 8 x 8 x 1.7mm	58	°C/W
Θ_{JA}	Thermal Resistance Junction-Ambient LFBGA 100 - 10 x 10 x 1.7mm	41	°C/W

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

8 Order codes

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR750FV0T6	64				
STR750FV1T6	128	LQFP100 14x14		Yes	-40 to +85°C
STR750FV2T6	256		Vaa		
STR750FV0H6	64		ies		
STR750FV1H6	128	LFBGA100 10x10			
STR750FV2H6	256				
STR751FR0T6	64			Yes	-40 to +85°C
STR751FR1T6	128	LQFP64 10x10	l		
STR751FR2T6	256				
STR751FR0H6	64		-		
STR751FR1H6	128	LFBGA64 8x8			
STR751FR2H6	256				
STR752FR0T6	64			-	-40 to +85°C
STR752FR1T6	128	LQFP64 10x10			
STR752FR2T6	256		Voc		
STR752FR0H6	64		163		
STR752FR1H6	128	LFBGA64 8x8			
STR752FR2H6	256				
STR752FR0T7	64			-	-40 to +105°C
STR752FR1T7	128	LQFP64 10x10			
STR752FR2T7	256		Voc		
STR752FR0H7	64		162		
STR752FR1H7	128	LFBGA64 8x8			
STR752FR2H7	256				
STR755FR0T6	64			-	
STR755FR1T6	128	LQFP64 10x10			
STR755FR2T6	256		_		-40 to ±85°C
STR755FR0H6	64		_		
STR755FR1H6	128	LFBGA64 8x8			
STR755FR2H6	256				
