

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	72
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LFBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str755fv1h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.

WDG (watchdog timer)

The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as watchdog to reset the device when a problem occurs, or as free running timer for application time out management.

Timebase timer (TB)

The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O pins. It can be used for software triggering, or to implement the scheduler of a real-time operating system.

Synchronizable standard timers (TIM2:0)

The three standard timers are based on a 16-bit auto-reload counter and feature up to 2 input captures and 2 output compares (for external triggering or time base / time out management). They can work together with the PWM timer via the Timer Link feature for synchronization or event chaining. In reset state, timer Alternate Function I/Os are connected to the same

I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices, timer Alternate Function I/Os can be connected, or "remapped", to other I/O ports as summarized in *Table 3* and detailed in *Table 6*. This remapping is done by the application via a control register.

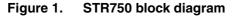
		Nu	Number of alternate function I/Os					
Standard timer functions		100-pin	64-pin package					
		package	Default mapping	Remapped				
ΤΙΜ Ο	Input Capture	2	1	2				
T IIVI O	Output Compare/PWM	2	1	2				
TIM 1	Input Capture	2	1	1				
	Output Compare/PWM	2	1	1				
TIM 2	Input Capture	2	2	2				
111112	Output Compare/PWM	2	1	2				

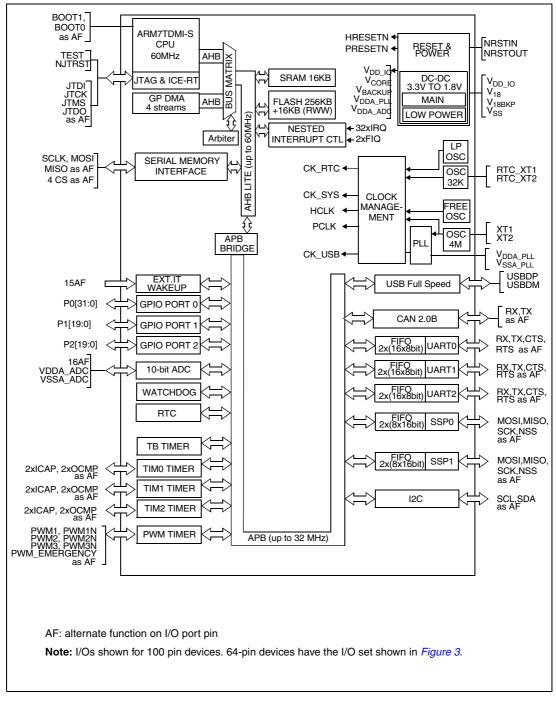
Table 3. Standard timer alternate function I/Os

Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is mapped to a DMA channel.

Motor control PWM timer (PWM)

The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6 channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or centre-aligned patterns and supports dead-time insertion. It has many features in common with the standard TIM timers which has the same architecture and it can work together with the TIM timers via the Timer Link feature for synchronization or event chaining. The PWM timer is mapped to a DMA channel.




GPIOs (general purpose input/output)

Each of the 72 GPIO pins (38 GPIOs in 64-pin devices) can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Port 1.15 is an exception, it can be used as general-purpose input only or wake-up from STANDBY mode (WKP_STDBY). Most of the GPIO pins are shared with digital or analog alternate functions.

3.2 Block diagram

Tab	le 6.		STR750F pin description (continued)													
	Pin	n°					In	put		C)utpu	ıt	λ			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function
				P0.12 /											UART0: Clear To Send input	ADC: Analog input 2
26	J2	17	G2	UART2_RX / UART0_CTS / ADC_IN2 / SMI_CS1	I/O	Τ _Τ	x	х		04	x	х		Port 0.12	Serial Memory Interface: chip select output 1	UART2: Receive Data input (when remapped) ⁽⁸⁾
27	J1	18	G1	P0.11 / UART0_TX / BOOT1 / SMI_CS2	I/O	Τ _Τ	x	x		O4	x	x		Port 0.11/Boot mode selection input 1	UART0: Transmit data output	Serial Memory Interface: chip select output 2
28	K1	19	H1	P0.10 / UART0_RX / SMI_CS3	I/O	Τ _Τ	x	x	EIT4	02	x	x		Port 0.10	UART0: Receive Data input	Serial Memory Interface: chip select output 3
29	K2	20	H2	P0.09 / I2C_SDA	I/O	TT	х	х		04	Х	Х		Port 0.09	I2C: Serial Data	
30	K3	21	H3	P0.08 / I2C_SCL	I/O	TT	х	х	EIT3	O4	х	Х		Port 0.08	I2C: Serial clock	
31	H4			P2.19	I/O	TT	х	Х		02	Х	Х		Port 2.19		
32	H5			P2.18	I/O	TT	х	х		O2	х	Х		Port 2.18		
33	H6			P2.17 / UART2_RTS	I/O	Τ _Τ	x	х		O2	х	х		Port 2.17	UART2: Ready To	Send output ⁽⁴⁾
34	JЗ	22	G3	P1.11 /UART0_RTS ADC_IN12	I/O	Τ _Τ	x	х	EIT11	O8	x	х		Port 1.11	UART0: Ready To Send output ⁽⁴⁾	ADC: Analog input 12
35	J4			P0.27 / UART2_RTS / ADC_IN7	I/O	Τ _Τ	x	х		02	x	x		Port 0.27	UART2: Ready To Send output ⁽⁸⁾	ADC: Analog input 7
36	J6			P0.26 / UART2_CTS	I/O	Τ _Τ	x	х		O2	х	х		Port 0.26	UART2: Clear To	Send input
37	J7			P0.25 / UART2_TX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.25	UART2: Transmit (remappable to P	
38	H7			P0.24 / UART2_RX	I/O	Τ _Τ	x	х		O2	х	х		Port 0.24	UART2: Receive ((remappable to P	
39	J5	23	G4	P0.19/USB_CK/ SSP1_NSS/	I/O	T _T	x	x	EIT6	O2	x	x		Port 0.19	SSP1: Slave select input (remappable to P0.11) ⁽⁸⁾	ADC: Analog input 4
				ADC_IN4											USB: 48 MHz Clock input	
40	K4	24	H5	P0.18 / SSP1_MOSI	I/O	Τ _Τ	x	х		O2	х	х		Port 0.18	SSP1: Master out (remappable to P	
41	K5	25	H4	P0.17 / SSP1_MISO / ADC_IN3	I/O	Τ _Τ	x	х		O2	x	x		Port 0.17	SSP1: Master in/slave out data (remappable to P0.09) ⁽⁸⁾	ADC: Analog input 3
42	K6	26	H6	P0.16 / SSP1_SCLK	I/O	Τ _Τ	x	х		O2	х	х		Port 0.16	SSP1: serial clock P0.08) ⁽⁸⁾	(remappable to

Table 6.	STR750F pin description (continued)
----------	-------------------------------------

	Pin	n°					In	put		C)utpu	ıt	y				
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Standby	Main function (after reset)	Alternate	e function	
91	A4	59	A3	P1.04 / PWM3N / ADC_IN9	I/O	Τ _Τ	x	х		04	х	х		Port 1.04	PWM: PWM3 complementary output ⁽⁴⁾ ADC: analog input 9		
92	A3			P1.14 / ADC_IN15	I/O	Τ _Τ	x	х		O8	х	х		Port 1.14	ADC: analog input 15		
93	A2			P1.13 / ADC_IN14	I/O	Τ _Τ	x	х	EIT13	O8	х	х		Port 1.13	ADC: analog input 14		
94	D5			P1.01 / TIM0_TI2	I/O	TT	x	х		02	x	x		Port 1.01	ort 1.01 TIM0: Input Capture / trigger / external clock 2 (remappable to P0.05) ⁽⁸⁾		
95	E6			P1.00 / TIM0_OC2	I/O	Τ _Τ	x	х		O2	х	х		Port 1.00	TIM0: Output com (remappable to Po		
96	C4	60	C4	V18	S									Stabilization for main voltage regulator. Requires external capacitors 33nF between V18 and VSS18. See <i>Figure 4.2</i> . To be connected to the 1.8V external power supply when embedded regulators are not used.			
97	D4	61	C5	VSS18	S									Ground Volta	ge for the main volt	age regulator.	
98	D3	62	A2	VSS_IO	S									Ground Volta	ge for digital I/Os		
99	C3	63	B2	VDD_IO	S									Supply Voltag	e for digital I/Os		
100	A1	64	A1	P0.03 / TIM2_TI1 / ADC_IN1	I/O	Τ _Τ	x	х		02	x	x		Port 0.03	TIM2: Input Capture / trigger / external clock 1	ADC: analog input 1	

Table 6. STR750F pin description (continued)

1. For STR755FVx part numbers, the USB pins must be left unconnected.

2. The non available pins on LQPFP64 and LFBGA64 packages are internally tied to low level.

3. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O pin and VDD_IO.

4. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where these functions are listed in the table.

5. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to NRSTOUT pin (if available) or NRSTIN.

 After reset, these pins are enabled as JTAG alternate function see (*Port reset state on page 16*). To use these ports as general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAPOR register must be set by software (in this case, debugging these I/Os via JTAG is not possible).

7. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while for the second one, they are mapped to P0.15/CAN_TX and P0.14/CAN_RX.

8. For details on remapping these alternate functions, refer to the GPIO_REMAPOR register description.

6.1.6 Power supply schemes

When mentioned, some electrical parameters can refer to a dedicated power scheme among the four possibilities. The four different power schemes are described below.

Power supply scheme 1: Single external 3.3 V power source

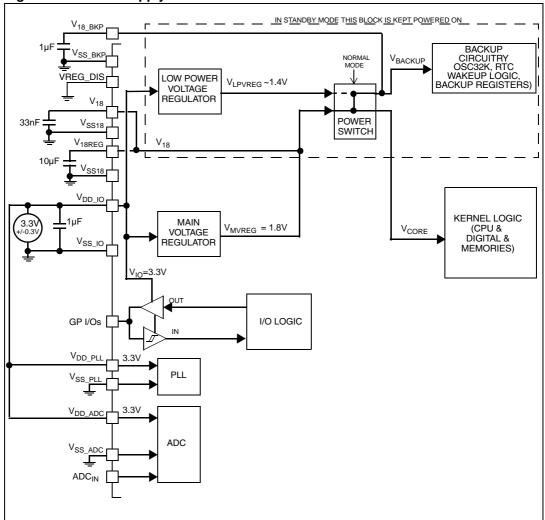


Figure 8. Power supply scheme 1

6.2.2 Current characteristics

Table 8.Current characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD_IO} ⁽¹⁾	Total current into $V_{DD_{IO}}$ power lines (source) ⁽²⁾	150	
I _{VSS_IO} ⁽¹⁾	Total current out of V_{SS} ground lines (sink) ⁽²⁾	150	
I	Output current sunk by any I/O and control pin	25	
IIO	Output current source by any I/Os and control pin	- 25	mA
	Injected current on NRSTIN pin	± 5	ША
I _{INJ(PIN)} ^{(3) & (4)}	Injected current on XT1 and XT2 pins	± 5	
	Injected current on any other pin ⁽⁵⁾	± 5	
$\Sigma I_{\rm INJ(PIN)}^{(3)}$	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

1. The user can use GPIOs to source or sink high current (up to 20 mA for O8 type High Sink I/Os). In this case, the user must ensure that these absolute max. values are not exceeded (taking into account the RUN power consumption) and must follow the rules described in *Section 6.3.8: I/O port pin characteristics on page 54*.

- 2. All 3.3 V or 5.0 V power (V_{DD_IO} , V_{DDA_ADC} , V_{DDA_PLL}) and ground (V_{SS_IO} , V_{SSA_ADC} , V_{DDA_ADC}) pins must always be connected to the external 3.3V or 5.0V supply.
- 3. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. Data based on T_A=25°C.
- 4. Negative injection disturbs the analog performance of the device. See note in *Section 6.3.12: 10-bit ADC characteristics on page 72.*
- 5. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

6.2.3 Thermal characteristics

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

300

250

200

150 100

50

0

-40

25

IStop (uA)

Figure 16. Power consumption in STOP mode Figure 17. Pow in Single supply scheme (3.3 V Sing range)

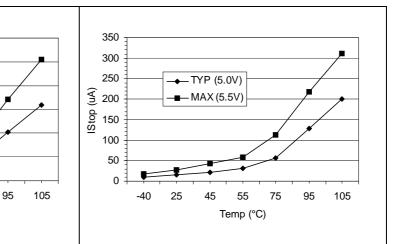
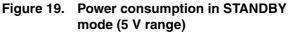
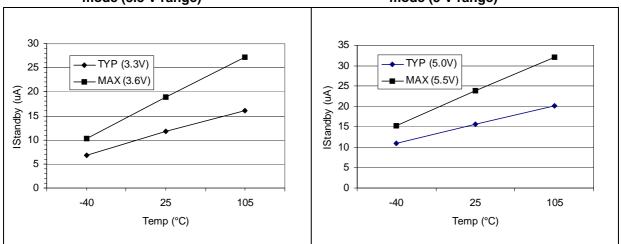


Figure 18. Power consumption in STANDBY mode (3.3 V range)

-TYP (3.3V)


MAX (3.6V)

45


55

Temp (°C)

75

57

7. Power consumption in STOP mode Single supply scheme (5 V range)

Table 16.Dual supply supply typical power consumption in Run, WFI, Slow and
Slow-WFI modes

To calculate the power consumption in Dual supply mode, refer to the values given in *Table 15*. and consider that this consumption is split as follows: $I_{DD}(single supply) \sim I_{DD}(dual supply) = I_{DD} \vee 18 + I_{DD}(VDD_{IO})$

For 3.3V range: $I_{DD(VDD_IO)} \sim 1$ to 2 mA For 5V range: $I_{DD(VDD_IO)} \sim 2$ to 3 mA Therefore most of the consumption is sunk on the V₁₈ power supply This formula does not apply in STOP and STANDBY modes, refer to *Table 17*.

Subject to general operating conditions for $V_{\text{DD_IO}}\text{,}$ and T_{A}

Table 17. Typical power consumption in STOP and STANDBY modes

Symbol	Parameter	Conditions		3.3V Typ ⁽¹⁾	5V Typ ⁽²⁾	Unit
		LP_PARAM bits: ALL OFF ⁽⁵⁾		12	15	
	Supply current	LP_PARAM bits : MVREG ON, OSC4M OFF, F OFF ⁽⁶⁾	LASH	130	135	
	in STOP mode ⁽⁴⁾	LP_PARAM bits: MVREG ON, OSC4M ON , FI	_ASH	1950	1930	μA
		LP_PARAM bits: MVREG ON, OSC4M OFF, FL	_ASH ON ⁽⁶⁾	630	635	
		LP_PARAM bits: MVREG ON, OSC4M ON, FL	2435	2425		
I _{DD} ⁽³⁾	Supply current	LPPARAM bits: ALL OFF, with V ₁₈ =1.8 V	I _{DD_V18} I _{DD_V33}	5 <1	5 <1	
		LP_PARAM bits: OSC4M ON, FLASH OFF	I _{DD_V18} I _{DD_V33}	410 1475	410 1435	μA
	mode ⁽⁷⁾	LP_PARAM bits: OSC4M OFF, FLASH ON	I _{DD_V18} I _{DD_V33}	550 <1	550 1	μΛ
		LP_PARAM bits: OSC4M ON, FLASH ON		910 1475	910 1445	
	Supply current	RTC OFF		11	14	
	in STANDBY mode ⁽⁴⁾	RTC ON clocked by OSC32K		14	18	μA

1. Typical data are based on $T_A=25^{\circ}$ C, $V_{DD IO}=3.3$ V and $V_{18}=1.8$ V unless otherwise indicated in the table.

2. Typical data are based on $T_A=25^{\circ}C$, $V_{DD_IO}=5.0$ V and $V_{18}=1.8$ V unless otherwise indicated in the table.

3. The conditions for these consumption measurements are described at the beginning of Section 6.3.4 on page 36.

4. Single supply scheme see Figure 12.

5. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4 V, which significantly reduces the leakage currents.

6. In this mode, the whole digital circuitry is powered internally by the MVREG at 1.8 V.

7. Dual supply scheme see Figure 13.

6.3.5 Clock and timing characteristics

XT1 external clock source

Subject to general operating conditions for $V_{\text{DD}_\text{IO}}\text{,}$ and $T_{\text{A}}\text{.}$

Table 20.	X11	external	CIOCK	source

Symbol	Parameter	Conditions ^{(1) (2)}	Min	Тур	Мах	Unit
f _{XT1}	External clock source frequency			4	60	MHz
V _{XT1H}	XT1 input pin high level voltage		0.7xV _{DD_IO}		V _{DD_IO}	v
V _{XT1L}	XT1 input pin low level voltage	see Figure 20	V _{SS}		0.3xV _{DD_IO}	v
t _{w(XT1H)} t _{w(XT1L)}	XT1 high or low time ⁽³⁾		6			ns
$\begin{array}{c}t_{r(XT1)}\\t_{f(XT1)}\end{array}$	XT1 rise or fall time ⁽³⁾				20	115
١L	XTx Input leakage current	$\begin{array}{l} V_{SS} \leq V_{IN} \leq \\ V_{DD_IO} \end{array}$			±1	μA
C _{IN(XT1)}	XT1 input capacitance ⁽³⁾			5		pF
DuCy _(XT1)	Duty cycle		45		55	%

1. Data based on typical application software.

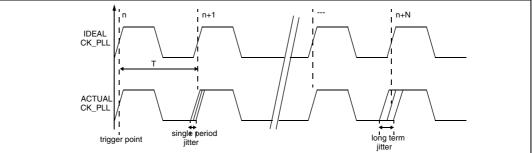
2. Time measured between interrupt event and interrupt vector fetch. $\Delta t_{c(INST)}$ is the number of t_{CPU} cycles needed to finish the current instruction execution.

3. Data based on design simulation and/or technology characteristics, not tested in production.

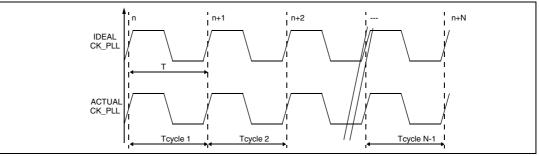
difference between N+1 consecutive clock rising edges and T_{min} is the minimum time difference between N+1 consecutive clock rising edges.

N should be kept sufficiently large to have a long term jitter (ex: thousands).

For N=1, this becomes the single period jitter.


See Figure 23

• Cycle-to-cycle jitter (N period jitter)


This corresponds to the time variation between adjacent cycles over a random sample of adjacent clock cycles pairs. Jitter(cycle-to-cycle) = Max(Tcycle n- Tcycle n-1) for n=1 to N.

See Figure 24

Figure 24. Cycle-to-cycle jitter

6.3.7 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electro magnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behaviour is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/ Class	l
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD_IO}{=}3.3$ V or 5 V, $T_{A}{=}{+}25^{\circ}$ C, $f_{CK_SYS}{=}32$ MHz conforms to IEC 1000-4-2	Class A	
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD_IO} =3.3 V or 5 V, T _A =+25° C, f _{CK_SYS} =32 MHz conforms to IEC 1000-4-4	Class A]

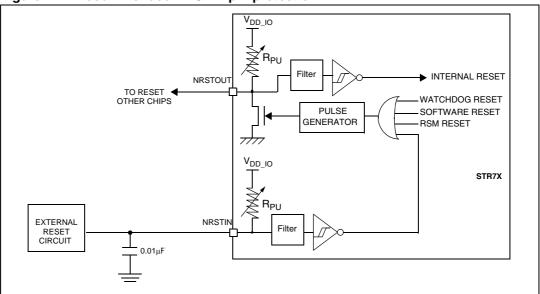


Figure 27. Recommended NRSTIN pin protection

1. The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in NRSTIN and NRSTOUT pins on page 58. Otherwise the reset will not be taken into account internally.

6.3.9 TB and TIM timer characteristics

Subject to general operating conditions for $V_{DD_IO},\,f_{CK_SYS},$ and T_A unless otherwise specified.

Refer to *Section 6.3.8: I/O port pin characteristics on page 54* for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
t _{w(ICAP)in}	Input capture pulse time	TIM0,1,2		2			t _{CK_TIM}
	Timer	ТВ	f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns
t _{res(TIM)}	resolution time ⁽¹⁾		f _{CK_TIM(MAX)} = f _{CK_SYS}	1			t _{CK_TIM}
		TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60MHz	16.6 ⁽¹⁾			ns
	Timer		f _{CK_TIM(MAX)} = f _{CK_SYS}	0		f _{CK_TIM} /4	MHz
^f EXT frequency	external clock frequency on TI1 or TI2	TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0		15	MHz
Res _{TIM}	Timer resolution					16	bit
^t COUNTER	16-bit Counter clock period when internal clock is selected (16-bit Prescaler)			1		65536	t _{CK_TIM}
			f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs
				1		65536	t _{CK_TIM}
		16-bit TIM0,1,2 Prescaler)	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	0.0166		1092	μs
	Maximum Possible Count					65536x65536	t _{CK_TIM}
		ТВ	f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58	s
MAX_COUNT						65536x65536	t _{CK_TIM}
		-	TIM0,1,2	f _{CK_TIM} = f _{CK_SYS} = 60 MHz			71.58

Table 36. TB and TIM timers

1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to I/O pin, described in : *Output speed on page 57*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		$f_{CK_TIM(MAX)} = f_{CK_SYS}$	1			$t_{\rm CK_TIM}$
t _{res(PWM)}	PWM resolution time	f _{CK_TIM} = f _{CK_SYS} = 60 MHz	16.6 ⁽¹⁾			ns
Res _{PWM}	PWM resolution				16	bit
V _{OS} ⁽¹⁾	PWM/DAC output step voltage	V _{DD_IO} =3.3 V, Res=16-bits		50 ⁽¹⁾		μV
VOS` /		V _{DD_IO} =5.0 V, Res=16-bits		76 ⁽¹⁾		μV
	Timer clock period		1		65536	t _{CK_TIM}
^t COUNTER	when internal clock is selected	f _{CK_TIM} =60 MHz	0.0166		1087	μs
t	Maximum Possible				65536x 65536	^t ск_тім
^t MAX_COUNT	Count	$f_{CK_{TIM}} = f_{CK_{SYS}} =$ 60 MHz			71.58	S

Table 37. PWM Timer (PWM)

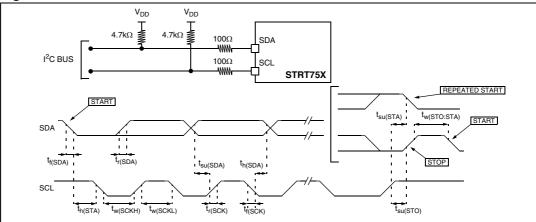
1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to an I/O pin, as described in : *Output speed on page 57*.

not possible to power off the STR7x while some another I²C master node remains powered on: otherwise, the STR7x will be powered by the protection diode.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		Unit
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μS
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μS
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs
Cb	Capacitive load for each bus line		400		400	pF

 Table 41.
 SDA and SCL characteristics


1. f_{PCLK} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

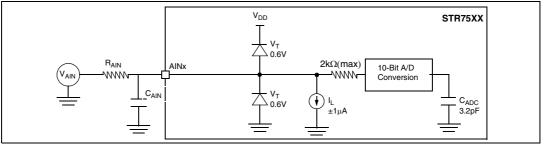
2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time $t_{h(SDA)}$ is not applicable

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.


ADC accuracy vs. negative injection current

Injecting negative current on specific pins listed in *Table 46* (generally adjacent to the analog input pin being converted) should be avoided as this significantly reduces the accuracy of the conversion being performed. It is recommended to add a Schottky diode (pin to ground) to pins which may potentially inject negative current.

Table 46. List of adjacent pi

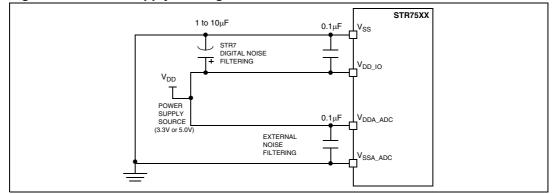
Analog input	Related adjacent pins
a	None
AIN1/P0.03	None
AIN2/P0.12	P0.11
AIN3/P0.17	P0.18 and P0.16
AIN4/P0.19	P0.24
AIN5/P0.22	None
AIN6/P0.23	P2.04
AIN7/P0.27	P1.11 and P0.26
AIN8/P0.29	P0.30 and P0.28
AIN9/P1.04	None
AIN10/P1.06	P1.05
AIN11/P1.08	P1.04 and P1.13
AIN12/P1.11	P2.17 and P0.27
AIN13/P1.12	None
AIN14/P1.13	P1.14 and P1.01
AIN15/P1.14	None

Figure 42. Typical application with ADC

Analog power supply and reference pins

The V_{DDA_ADC} and V_{SSA_ADC} pins are the analog power supply of the A/D converter cell.

Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see : *General PCB design guidelines on page 74*).


General PCB design guidelines

To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals.

- Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB.
- Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1 μF and optionally, if needed 10 pF capacitors as close as possible to the STR7 power supply pins and a 1 to 10 μF capacitor close to the power source (see *Figure 43*).
- The analog and digital power supplies should be connected in a star network. Do not use a resistor, as V_{DDA_ADC} is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy.
- Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs near the A/D input being converted.

Software filtering of spurious conversion results

For EMC performance reasons, it is recommended to filter A/D conversion outliers using software filtering techniques.

Figure 43. Power supply filtering

Order code	Flash Prog. Memory (Bank 0) Kbytes	Package	CAN Periph	USB Periph	Nominal Temp. Range (T _A)
STR755FV0T6	64				
STR755FV1T6	128	LQFP100 14x14			
STR755FV2T6	256				-40 to +85°C
STR755FV0H6	64		-	-	-40 IO +05 C
STR755FV1H6	128	LFBGA100 10x10			
STR755FV2H6	256				

Table 49. Order codes (continued)

9 Revision history

Table 50.	Document revision history
-----------	---------------------------

Date	Revision	Description of Changes
25-Sep-2006	1	Initial release
30-Oct-2006	2	Added power consumption data for 5V operation in Section 6
04-Jul-2007	3	Changed datasheet title from STR750F to STR750FXX STR751Fxx STR752Fxx STR755xx. Added <i>Table 1: Device summary on page 1</i> Added note 1 to <i>Table 6</i> Added STOP mode IDD max. values in <i>Table 14</i> Updated XT2 driving current in <i>Table 23</i> . Updated RPD in <i>Table 32</i> Updated <i>Table 21: XRTC1 external clock source on page 45</i> Updated <i>Table 34: Output speed on page 57</i> Added characteristics for <i>SSP synchronous serial peripheral in master</i> <i>mode (SPI or TI mode) on page 62</i> and <i>SSP synchronous serial</i> <i>peripheral in slave mode (SPI or TI mode) on page 65</i> Added characteristics for <i>SMI - serial memory interface on page 68</i> Added <i>Table 42: USB startup time on page 70</i>
23-Oct-2007 4 Updated Section 6.2.3: Thermal characteristics on page 33 Updated P _D , T _J and T _A in Section 6.3: Operating conditions on page 44 Updated Table 20: XT1 external clock source on page 44 Updated Table 21: XRTC1 external clock source on page 45		Updated P_D , T_J and T_A in Section 6.3: Operating conditions on page 34 Updated Table 20: XT1 external clock source on page 44 Updated Table 21: XRTC1 external clock source on page 45 Updated Section 7: Package characteristics on page 76 (inches rounded to 4 decimal digits instead of 3)
Modified note 3 below Table 8: Current characteristics on pageAdded AHB clock frequency for write access to Flash registers17-Feb-20095Table 10: General operating conditions on page 34		Modified note 3 below Table 41: SDA and SCL characteristics on

