E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM7®
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	I ² C, SPI, SSI, SSP, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	72
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/str755fv1t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9	Revis	ion hist	ory
8	Order	codes	
		7.2.2	Selecting the product temperature range
		7.2.1	Reference document
	7.2	Therma	I characteristics
	7.1	Package	e mechanical data
7	Packa	ige chai	racteristics
		6.3.12	10-bit ADC characteristics
		6.3.11	USB characteristics
		6.3.10	Communication interface characteristics
		6.3.9	TB and TIM timer characteristics
		6.3.8	I/O port pin characteristics
		6.3.7	EMC characteristics
		6.3.6	Memory characteristics

regulator and the V_{BACKUP} supply is generated internally by the low power voltage regulator. This scheme has the advantage of requiring only one 5.0V power source.

- Power Scheme 4: Dual external 5.0V and 1.8V power sources. In this configuration, the internal voltage regulators are switched off, by forcing the VREG_DIS pin to high level. V_{CORE} is provided externally through the V₁₈ and V_{18REG} power pins and V_{BACKUP} through the V_{18_BKP} pin. This scheme is intended to provide 5V I/O capability.
- **Caution:** When powered by 5.0V, the USB peripheral cannot operate.

Low power modes

The STR750F supports 5 low power modes, SLOW, PCG, WFI, STOP and STANDBY.

- SLOW MODE: the system clock speed is reduced. Alternatively, the PLL and the main oscillator can be stopped and the device is driven by a low power clock (f_{RTC}). The clock is either an external 32.768 kHz oscillator or the internal low power RC oscillator.
- PCG MODE (Peripheral Clock Gating MODE): When the peripherals are not used, their APB clocks are gated to optimize the power consumption.
- WFI MODE (Wait For Interrupts): only the CPU clock is stopped, all peripherals continue to work and can wake-up the CPU when IRQs occur.
- STOP MODE: all clocks/peripherals are disabled. It is also possible to disable the oscillators and the Main Voltage Regulator (In this case the V_{CORE} is entirely powered by V_{18_BKP}). This mode is intended to achieve the lowest power consumption with SRAM and registers contents retained. The system can be woken up by any of the external interrupts / wake-up lines or by the RTC timer which can optionally be kept running. The RTC can be clocked either by the 32.768 kHz Crystal or the Low Power RC Oscillator.

Alternatively, STOP mode gives flexibility to keep the either main oscillator, or the Flash or the Main Voltage Regulator enabled when a fast start after wake-up is preferred (at the cost of some extra power consumption).

- STANDBY MODE: This mode (only available in single supply power schemes) is intended to achieve the lowest power consumption even when the temperature is increasing. The digital power supply (V_{CORE}) is completely removed (no leakage even at high ambient temperature). SRAM and all register contents are lost. Only the RTC remains powered by V_{18_BKP} The STR750F can be switched back from STANDBY to RUN mode by a trigger event on the WKP_STDBY pin or an alarm timeout on the RTC counter.
- **Caution:** It is important to bear in mind that it is forbidden to remove power from the V_{DD_IO} power supply in any of the Low Power Modes (even in STANDBY MODE).

DMA

The flexible 4-channel general-purpose DMA is able to manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.

The DMA can be used with the main peripherals: UART0, SSP0, Motor control PWM timer (PWM), standard timer TIM0 and ADC.

RTC (real-time clock)

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a

GPIOs (general purpose input/output)

Each of the 72 GPIO pins (38 GPIOs in 64-pin devices) can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Port 1.15 is an exception, it can be used as general-purpose input only or wake-up from STANDBY mode (WKP_STDBY). Most of the GPIO pins are shared with digital or analog alternate functions.

4 Pin description

Port reset state

The reset state of the I/O ports is GPIO input floating. Exceptions are P1[19:16] and P0.13 which are configured as JTAG alternate functions:

- The JTAG inputs (JTDI, JTMS and JTDI) are configured as input floating and are ready to accept JTAG sequences.
- The JTAG output JTDO is configured as floating when idle (no JTAG operation) and is configured in output push-pull only when serial JTAG data must be output.
- The JTAG output RTCK is always configured as output push-pull. It outputs '0' level during the reset phase and then outputs the JTCK input signal resynchronized 3 times by the internal AHB clock.
- The GPIO_PCx registers do not control JTAG AF selection, so the reset values of GPIO_PCx for P1[19:16] and P0. 13 are the same as other ports. Refer to the GPIO section of the STR750 Reference Manual for the register description and reset values.
- P0.11 and P0.00 are sampled by the boot logic after reset, prior to fetching the first word of user code at address 0000 0000h.
- When booting from SMI (and only in this case), the reset state of the following GPIOs is "SMI alternate function output enabled":
 - P0.07 (SMI_DOUT)
 - P0.05 (SMI_CLK)
 - P0.04 (SMI_CS0)
 - P0.06 (SMI_DIN)

Note that the other SMI pins: SMI_CS1,2,3 (P0.12, P0.11, P0.10) are not affected.

To avoid excess power consumption, unused I/O ports must be tied to ground.

	Pin	n°					In	put		0)utpu	ıt	yc			
LQFP100 ⁽¹⁾	LFBGA100 ⁽¹⁾	LQFP64 ⁽²⁾	LFBGA64 ⁽²⁾	Pin name	Type	Input Level	floating	pd/nd	Ext. int /Wake-up	Capability	OD (3)	PP	Usable in Stand	Main function (after reset)	Alternate	function
1	B1	1	B1	P1.12 / ADC_IN13	I/O	Τ _Τ	x	х	EIT12	O8	х	х		Port 1.12	ADC: Analog input 13	
2	B2	2	C2	P0.02 / TIM2_OC1 / ADC_IN0	I/O	Τ _Τ	x	х	EIT0	O8	x	x		Port 0.02	TIM2: Output Compare 1 ⁽⁴⁾	ADC: Analog input 0
3	B3	3	C1	P0.01 / TIM0_TI1 / MCO	I/O	Τ _Τ	x	х		O8	x	x		Port 0.01	TIM0: Input Capture / trigger / external clock 1	Main Clock Output
4	C2	4	СЗ	P0.00 / TIM0_OC1 / BOOT0	I/O	Τ _Τ	x	х		O8	x	x		Port 0.00 / Boot mode selection input 0	TIM0: Output Compare 1	
5	C1			P0.31 / TIM1_TI2	I/O	Τ _Τ	х	х		O2	х	х		Port 0.31	TIM1: Input Capture / trigger / external clock 2	
6	D2			P0.30 / TIM1_OC2	I/O	Τ _Τ	x	х		O2	х	х		Port 0.30	TIM1: Output Con	npare 2

Table 6. STR750F pin description

4.2 External components

Figure 4. Required external capacitors when regulators are used

6 Electrical parameters

6.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_Amax (given by the selected temperature range).

Data based on product characterisation, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A=25^{\circ}$ C, $V_{DD_{-}IO}=3.3$ V (for the 3.0 V \leq V_{DD_{-}IO} \leq 3.6 V voltage range) and V₁₈=1.8 V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

Power supply scheme 4: Dual external 1.8 V and 5.0 V supply

6.1.7 I/O characteristics versus the various power schemes (3.3V or 5.0V)

Unless otherwise mentioned, all the I/O characteristics are valid for both

- V_{DD IO}=3.0 V to 3.6 V with bit EN33=1
- V_{DD IO}=4.5 V to 5.5 V with bit EN33=0

When $V_{DD \ IO}$ =3.0 V to 3.6 V, I/Os are not 5V tolerant.

6.1.8 Current consumption measurements

All the current consumption measurements mentioned below refer to Power scheme 1 and 2 as described in *Figure 12* and *Figure 13*

4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2)

The STR750 system clock or the input of the PLL can be supplied by a OSC4M which is a 4 MHz clock generated from a 4 MHz or 8 MHz crystal or ceramic resonator. If using an 8 MHz oscillator, software set the XTDIV bit to enable a divider by 2 and generate a 4 MHz OSC4M clock. All the information given in this paragraph are based on product characterisation with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC4M}	Oscillator frequency	4 MHz Crystal/Resonator Oscillator connected on XT1/XT2 XTDIV=0 or 8 MHz Crystal/Resonator Oscillator connected on XT1/XT2 XTDIV=1		4		MHz
R _F	Feedback resistor		200	240	270	kΩ
C _{L1} ⁽²⁾ C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator $(R_S)^{(3)}$	R _S =200Ω			60	pF
i ₂	XT2 driving current	V _{DD_IO} =3.3 V or 5.0 V		425		μA
t _{SU(OSC4M)} ⁽⁴⁾	Startup time at V _{DD_IO} power-up			1		ms

Table 22.	4/8 MHz crysta	I / ceramic resonator	oscillator	(XT1/XT2)	(1)
Table 22.	4/0 IVITZ CIYSLA	i / ceramic resonator	oscillator	(^ /^ 2)	Ľ

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

For C_{L1} and C_{L2} it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.) designed for high-frequency applications and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the 2. same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included when sizing C_{L1} and C_{L2} (10 pF can be used as a rough estimate of the combined pin and board capacitance).

- 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
- $t_{SU(OSC4M)}$ is the typical start-up time measured from the moment $V_{DD \ IO}$ is powered (with a quick $V_{DD \ IO}$ ramp-up from 0 to 3.3V (<50µs) to a stabilized 4MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal/ceramic resonator manufacturer.

57

Figure 21. Typical application with a 4 or 8 MHz crystal or ceramic resonator

OSC32K crystal / ceramic resonator oscillator

The STR7 RTC clock can be supplied with a 32.768 kHz Crystal/Ceramic resonator oscillator. All the information given in this paragraph are based on product characterisation with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...).

Table 23. OSC32K crystal / ceramic resonator oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC32K}	Oscillator Frequency			32.768		kHz
R _F	Feedback resistor	V _{DD_IO} =3.3 V or 5.0 V	270	310	370	kΩ
C _{L1} C _{L2}	Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator $(R_S)^{(1)}$	R _S =40KΩ		12.5	15	pF
i ₂	XT2 driving current	$V_{DD_{IO}=3.3}$ V or 5.0 V $V_{IN}=V_{SS}$	1		5	μA
t _{SU(OSC32K)} ⁽²⁾	Startup time	$V_{DD_{-}IO}$ is stabilized		2.5		S

 The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R_S value. Refer to crystal/ceramic resonator manufacturer for more details

 t_{SU(OSC32K)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 32 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal/ceramic resonator manufacturer

Figure 22. Typical application with a 32.768 kHz crystal or ceramic resonator

PLL characteristics

PLL Jitter Terminology

• Self-referred single period jitter (period jitter)

Period Jitter is defined as the difference of the maximum period (T_{max}) and minimum period (T_{min}) at the output of the PLL where T_{max} is the maximum time difference between 2 consecutive clock rising edges and T_{min} is the minimum time difference between 2 consecutive clock rising edges.

See Figure 23

• Self-referred long term jitter (N period jitter)

Self-referred long term Jitter is defined as the difference of the maximum period (T_{max}) and minimum period (T_{min}) at the output of the PLL where T_{max} is the maximum time

difference between N+1 consecutive clock rising edges and T_{min} is the minimum time difference between N+1 consecutive clock rising edges.

N should be kept sufficiently large to have a long term jitter (ex: thousands).

For N=1, this becomes the single period jitter.

See Figure 23

• Cycle-to-cycle jitter (N period jitter)

This corresponds to the time variation between adjacent cycles over a random sample of adjacent clock cycles pairs. Jitter(cycle-to-cycle) = Max(Tcycle n- Tcycle n-1) for n=1 to N.

See Figure 24

Figure 24. Cycle-to-cycle jitter

6.3.6 Memory characteristics

Flash memory

Subject to general operating conditions for V_{DD_IO} and $V_{18},\,T_A$ = -40 to 105 $^\circ C$ unless otherwise specified.

Cumhal	Devementer	Test Canditions	Va	11		
Symbol	Parameter	Test Conditions	Тур	Max ⁽¹⁾	Unit	
t _{PW}	Word Program		35		μs	
t _{PDW}	Double Word Program		60		μs	
t _{PB0}	Bank 0 Program (256K)	Single Word programming of a checker-board pattern	2	4.9 ⁽²⁾	s	
t _{PB1}	Bank 1 Program (16K)	Single Word programming of a checker-board pattern	125	224 ⁽²⁾	ms	
t _{ES}	Sector Erase (64K)	Not preprogrammed (all 1) Preprogrammed (all 0)	1.54 1.176	2.94 ⁽²⁾ 2.38 ⁽²⁾	S	
t _{ES}	Sector Erase (8K)	Not preprogrammed (all 1) Preprogrammed (all 0)	392 343	560 ⁽²⁾ 532 ⁽²⁾	ms	
t _{ES}	Bank 0 Erase (256K)	Not preprogrammed (all 1) Preprogrammed (all 0)	8.0 6.6	13.7 11.2	S	
t _{ES}	Bank 1 Erase (16K)	Not preprogrammed (all 1) Preprogrammed (all 0)	0.9 0.8	1.5 1.3	s	
t _{RPD}	Recovery when disabled			20	μs	
t _{PSL}	Program Suspend Latency			10	μs	
t _{ESL}	Erase Suspend Latency			300	μS	

 Table 26.
 Flash memory characteristics

1. Data based on characterisation not tested in production

2. 10K program/erase cycles.

 Table 27.
 Flash memory endurance and data retention

Symbol	Paramotor	Conditions		Unit		
Symbol	Falameter	Conditions	Min ⁽¹⁾	Тур	Max	0.int
N _{END_B0}	Endurance (Bank 0 sectors)		10			kcycles
N_{END_B1}	Endurance (Bank 1 sectors)		100			kcycles
Y _{RET}	Data Retention	T _A =85° C	20			Years
t _{ESR}	Erase Suspend Rate	Min time from Erase Resume to next Erase Suspend	20			ms

1. Data based on characterisation not tested in production.

6.3.7 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electro magnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behaviour is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Table 28. EMC characteristics	Table 28.	EMC	characteristics
-------------------------------	-----------	-----	-----------------

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD_{IO}}$ =3.3 V or 5 V, T _A =+25° C, f _{CK_SYS} =32 MHz conforms to IEC 1000-4-2	Class A
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD_{-}IO}=3.3$ V or 5 V, T _A =+25° C, f _{CK_SYS} =32 MHz conforms to IEC 1000-4-4	Class A

Figure 27. Recommended NRSTIN pin protection

1. The user must ensure that the level on the NRSTIN pin can go below the V_{IL(NRSTIN)} max. level specified in *NRSTIN and NRSTOUT pins on page 58.* Otherwise the reset will not be taken into account internally.

Figure 28. SPI configuration - master mode, single transfer

SSP synchronous serial peripheral in slave mode (SPI or TI mode)

Subject to general operating conditions with $C_L\approx 45~\text{pF}$

Symbol	Parameter	Con	ditions	Min	Max	Unit
f	SPI clock froguency		SSP0		2.66 MHz	
SCK	SFI Clock frequency		SSP1		(f _{PLCK} /12)	WHZ
+	NSS input setup time w.r.t		SSP0	0		
^ι su(NSS)	SCK first edge		SSP1	0		
	NSS input hold time w.r.t		SSP0	t _{PCLK} +15ns		
^L h(NSS)	SCK last edge		SSP1	t _{PCLK} +15ns		
+	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +30 ns	
INSSLQV	MISO valid time		SSP1	2t _{PCLK}	3t _{PCLK} +30 ns	
	NSS low to Data Output		SSP0	2t _{PCLK}	3t _{PCLK} +15 ns	
INSSLQZ	MISO invalid time		SSP1	2t _{PCLK}	3t _{PCLK} +15 ns	20
+	SCK trigger edge to data		SSP0		15	115
ISCKQV	output MISO valid time		SSP1		30	
+	SCK trigger edge to data		SSP0	2t _{PCLK}		
ISCKQX	output MISO invalid time		SSP1	2t _{PCLK}		
t	MOSI setup time w.r.t SCK		SSP0	0		
^ı su(MOSI)	sampling edge		SSP1	0		
+	MOSI hold time w.r.t SCK		SSP0	3t _{PCLK} +15 ns		
ካ(MOSI)	sampling edge		SSP1	3t _{PCLK} +15 ns		

 Table 39.
 SSP slave mode characteristics⁽¹⁾

1. Data based on characterisation results, not tested in production.

Figure 33. SPI configuration, slave mode with CPHA=0, single transfer

not possible to power off the STR7x while some another I²C master node remains powered on: otherwise, the STR7x will be powered by the protection diode.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standar I ²	rd mode C	Fast mod	Unit	
		Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μο
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000	20+0.1C _b	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300	20+0.1C _b	300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μδ
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μS
Cb	Capacitive load for each bus line		400		400	pF

 Table 41.
 SDA and SCL characteristics

1. f_{PCLK} , must be at least 8 MHz to achieve max fast I²C speed (400 kHz).

2. Data based on standard I²C protocol requirement, not tested in production.

3. The maximum hold time $t_{h(SDA)}$ is not applicable

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are done at CMOS levels: $0.3xV_{DD}$ and $0.7xV_{DD}$.

6.3.11 USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table 42. USB startup time

Symbol	Parameter	Conditions	Max	Unit
t _{STARTUP}	USB transceiver startup time		1	μs

Table 43.USB characteristics

USB DC Electrical Characteristics					
Symbol	Parameter	Conditions	Min. ⁽¹⁾⁽²⁾	Max. ⁽¹⁾⁽²⁾	Unit
		Input Levels			
V _{DI}	Differential Input Sensitivity	I(DP, DM)	0.2		
V _{CM}	Differential Common Mode Range	Includes V _{DI} range	0.8	2.5	V
V _{SE}	Single Ended Receiver Threshold		1.3	2.0	
Output Levels					
V _{OL}	Static Output Level Low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6V ⁽³⁾		0.3	V
V _{OH}	Static Output Level High	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}^{(3)}$	2.8	3.6	v

1. All the voltages are measured from the local ground potential.

 It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased. This will not damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be affected.

3. R_L is the load connected on the USB drivers

Figure 41. USB: data signal rise and fall time

able 44.	USB: Full spee	d electrical	characteristics
----------	----------------	--------------	-----------------

Symbol	Parameter	Conditions	Min	Max	Unit	
Driver characteristics:						
t _r	Rise time ⁽¹⁾	C _L =50 pF	4	20	ns	
t _f	Fall Time ¹⁾	C _L =50 pF	4	20	ns	

57

ADC accuracy with f_{CK_SYS} = 20 MHz, f_{ADC} =8 MHz, R_{AIN} < 10 k Ω This assumes that the ADC is calibrated ⁽¹⁾					
Symbol	Parameter	Conditions	Тур	Max	Unit
IE _T I	Total unadjusted error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	1	1.2	
		V _{DDA_ADC} =5.0 V	1	1.2	
IE _O I	Offset error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.15	0.5	
		V _{DDA_ADC} =5.0 V	0.15	0.5	
E _G	Gain Error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	-0.8	-0.2	ISB
		V _{DDA_ADC} =5.0 V	-0.8	-0.2	100
IE _D I	Differential linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.7	0.9]
		V _{DDA_ADC} =5.0 V	0.7	0.9]
ΙΕ _L Ι	Integral linearity error ^{(2) (3)}	V _{DDA_ADC} =3.3 V	0.6	0.8	
		V _{DDA_ADC} =5.0 V	0.6	0.8	

Table 47.ADC accuracy

1. Calibration is needed once after each power-up.

2. Refer to ADC accuracy vs. negative injection current on page 73

3. ADC Accuracy vs. MCO (Main Clock Output): the ADC accuracy can be significantly degraded when activating the MCO on pin P0.01 while converting an analog channel (especially those which are close to the MCO pin). To avoid this, when an ADC conversion is launched, it is strongly recommended to disable the MCO.

75/84

Figure 46. 100-pin low profile flat package (14x14)

Figure 47. 64-ball low profile fine pitch ball grid array package

