

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	489 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86d990hz008sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

© 2002 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

List of Figures

Figure 1.	Functional Block Diagram	. 4
Figure 2.	48-Pin SSOP Pin Assignments	. 5
Figure 3.	40-Pin DIP Pin Assignment	. 6
Figure 4.	28-Pin SOIC/DIP Pin Assignment—User Mode	. 7
Figure 5.	Program Memory Map	12
Figure 6.	Standard Z8 Register File (Working Reg. Groups 0-F, Bank 0)	13
Figure 7.	Z8 Expanded Register File Architecture	14
Figure 8.	Interrupt Block Diagram	16
Figure 9.	External Interrupt Sources IRQ0–IRQ2 Block Diagram	17
Figure 10.	IRQ Logic	18
Figure 11.	Interrupt Request Timing	18
Figure 12.	General Input/Output Pin	26
Figure 13.	Analog Comparators	28
Figure 14.	ADC Block Diagram	29
Figure 15.	Low-Pass Filter (with 8-MHz Crystal)	30
Figure 16.	Active Glitch/Power Filter	32
Figure 17.	I-V Characteristics for the Current Sink Pad P43	34
Figure 18.	T ₁ Counter/Timer Block Diagram	35
Figure 19.	Register File	36
Figure 20.	Prescaler 1 Register	36
Figure 21.	Counter/Timer 1 Register	37
Figure 22.	Timer Mode Register	37
Figure 23.	Starting the Count	38
Figure 24.	Counting Modes	39
Figure 25.	Timer Mode Register T _{OUT} Operation	40
Figure 26.	Counter/Timer Output Using T _{OUT}	41
Figure 27.	Internal Clock Output Using T _{OUT}	41
Figure 28.	Timer Mode Register T _{IN} Operation	42
Figure 29.	Prescaler 1 T _{IN} Operation	42
Figure 30.	External Clock Input Mode	43
Figure 31.	Gated Clock Input Mode	43
Figure 32.	Triggered Clock Mode	44
Figure 33.	Counter/Timer Architecture	46
Figure 34.	Transmit Mode Flowchart	48

Table 33.	P6M Register (Group/Bank 0Fh, Register 6)	71
Table 34.	T1 Register [Group/Bank F0h, Register 2 (R242)]	72
Table 35.	TMR Register [Group/Bank F0h, Register 1 (R241)]	72
Table 36.	PRE1 Register [Group/Bank F0h, Register 3 (R243)]	73
Table 37.	CTR1 Register (In Transmit Mode) (Group/Bank 0Dh, Register 1)	74
Table 38.	CTR1 Register (in Demodulation Mode) (Group/Bank 0Dh, Register 1)	75
Table 39.	CTR3 Register (Group/Bank 0Dh, Register 3)	76
Table 40.	CTR0 Register (Group/Bank 0Dh, Register 0)	77
Table 41.	HI8 Register (Group/Bank 0Dh, Register B)	78
Table 42.	LO8 Register (Group/Bank 0Dh, Register A)	78
Table 43.	TC8H Register (Group/Bank 0Dh, Register 5)	79
Table 44.	TC8L Register (Group/Bank 0Dh, Register 4)	79
Table 45.	CTR2 Register (Group/Bank 0Dh, Register 2)	80
Table 46.	HI16 Register (Group/Bank 0Dh, Register 9)	81
Table 47.	LO16 Register (Group/Bank 0Dh, Register 8)	81
Table 48.	TC16H Register (Group/Bank 0Dh, Register 7)	82
Table 49.	TC16L Register (Group/Bank 0Dh, Register 6)	82
Table 50.	SMR Register (Group/Bank 0Fh, Register B)	83
Table 51.	P2SMR Register (Group/Bank 0Fh, Register 1)	84
Table 52.	P5SMR Register (Group/Bank 0Fh, Register 5)	84
Table 53.	Absolute Maximum Ratings	85
Table 54.	DC Characteristics for the Z86D99X (OTP Only)	87
Table 55.	DC Characteristics for the Z86L99X (Mask Only)	88
Table 56.	Analog-to-Digital Converter Characteristics	89
Table 57.	AC Characteristics	90

- Three timer interrupts
- One low-battery detector flag

Operating Characteristics

- 8-MHz operation
- 3.0 V to 5.5 V operating voltage (Z86D990/Z86D991)
- 2.3 V to 5.5 V operating voltage (Z86L990/Z86L991)
- Low power consumption with three standby modes:
 - Stop
 - Halt
 - Low Voltage Standby
- Low-battery detection flag
- Low-voltage protection circuit (also known as V_{BO}, or voltage brownout, circuit)
- Watch-dog timer and power-on reset circuits

User-Programmable Option Bits

- Clock source—RC/other (LC, resonator, or crystal)
- Watch-dog timer permanently enable
- 32-kHz crystal
- Port 20–27 pull-up resistive transistor
- Port 40–42 pull-up resistive transistor
- Port 44–47 pull-up resistive transistor
- Port 50–51 pull-up resistive transistor
- Port 54–57 pull-up resistive transistor
- Port 60–63 pull-up resistive transistor (not available in Z86D991/Z86L991)
- Port 64–67 pull-up resistive transistor (not available in Z86D991/Z86L991)
- P43 high impedance in STOP mode (available in OTP only)
 Force P43 to output a 1 in the open-drain configuration

Pin Descriptions

Figure 2 through Figure 4 show the pin names and locations.

Notes:

- 1. Both V_{SS} pins must be connected to ground.
- 2. NC is no connection to the die.
- 3. AV_{DD} must be connected to V_{DD} _ CORE and a 10- μ F capacitor for good A/D conversion.
- 4. Power must be connected to V_{DD_padring}. Current passes to V_{DD_CORE} through the internal power filter.

Figure 2. 48-Pin SSOP Pin Assignments

	Pin #						
	28	40	48	_			
Symbol	PDIP/SOIC	PDIP	SSOP	Direction	Description		
P41	20	30	35	I/O	Port 4 Bit 1, T16 Output		
P42	21	31	36	I/O	Port 4 Bit 2		
P43	23	33	39	Output	T8/T16 Output, Controlled current output		
P44	4	8	9	I/O	Port 4 Bit 4, A/D Channel 0*		
P45	5	9	10	I/O	Port 4 Bit 5, A/D Channel 1*		
P46	6	10	11	I/O	Port 4 Bit 6, A/D Channel 2*		
P47	7	11	12	I/O	Port 4 Bit 7, A/D Channel 3*		
P50, CREF1	18	28	33	I/O	Port 5 Bit 0, Comparator 1 reference		
P51, CIN1	11	17	20	I/O	Port 5 Bit 1, Capture timer input, IRQ ₂		
P52, CIN2	12	18	21	Input	Port 5 Bit 2, Timer 1 timer input, IRQ ₀		
P53, CREF2	13	19	22	Input	Port 5 Bit 3, Comparator 2 reference, IRQ ₁		
P54	14	20	23	I/O	Port 5 Bit 4, High drive output		
P55	15	25	28	I/O	Port 5 Bit 5, High drive output		
P56	17	27	32	I/O	Port 5 Bit 6, Timer 1 output, High drive output		
P57	16	26	29	I/O	Port 5 Bit 7, High drive output		
P60		39	47	I/O	Port 6 Bit 0		
P61		40	48	I/O	Port 6 Bit 1		
P62		1	1	I/O	Port 6 Bit 2		
P63		2	2	I/O	Port 6 Bit 3		
P64		21	24	I/O	Port 6 Bit 4		
P65		22	25	I/O	Port 6 Bit 5		
P66		23	26	I/O	Port 6 Bit 6		
P67		24	27	I/O	Port 6 Bit 7		
XTAL1	10	16	18	Input	Crystal, Oscillator clock		
XTAL2	9	15	17	Output	Crystal, Oscillator clock		
AV _{DD}		13	14		Analog power supply		
V _{DD CORE}		13	15		Z8 core power supply		
AV _{SS}		6	7		Analog ground		
V _{Ref-}		7	8	Input	A/D converter lower reference		
V _{Ref+}		12	13	Input	A/D converter upper reference		
V _{DD padring}	8**	14	16		Power supply (pad ring)		
V _{SS}	22**	32	37, 38		Ground		
Notes:	*A/D convei	ter is no	ot availab	le in the 28-	pin configuration.		
	**In the 28-pin configuration, all three (core, pad ring, and analog) powers are tied together						

Table 2. Pin Descriptions (Continued)

Location (Hex)	
FFFF	
	256 bytes
	Executable RAM
FF00	
	Not Implemented
3FFF/7FFF	
(ROM)/(OTP)	PROGRAM
	MEMORY
000C	Location of the first byte of the initial instruction executed after
	RESET
000B	IRQ ₅ (lower byte)
000A	IRQ ₅ (upper byte)
0009	IRQ ₄ (lower byte)
0008	IRQ ₄ (upper byte)
0007	IRQ ₃ (lower byte)
0006	IRQ ₃ (upper byte)
0005	IRQ ₂ (lower byte)
0004	IRQ ₂ (upper byte)
0003	IRQ ₁ (lower byte)
0002	IRQ ₁ (upper byte)
0001	IRQ ₀ (lower byte)
0000	IRQ ₀ (upper byte)

Figure 5. Program Memory Map

Z8 Standard Register File (Bank 0)

Bank 0 of the Z8 expanded register file architecture is known as the standard register file of the Z8. As shown in Figure 6, the Z8 standard register file consists of 16 groups of sixteen 8-bit registers known as Working Register (WR) groups. Working Register Group F contains various control and status registers. The lower half of Working Register Group 0 consists of I/O port registers (R0 to R7), the upper eight registers are available for use as general-purpose RAM registers. Working Register Group 1 through Group E of the standard register file are available to be used as general-purpose RAM registers. The user can use 233 bytes of general-purpose RAM registers in the standard Z8 register file (Bank 0).

start the interrupt process. However, the IPR does not have to be initialized for polled processing.

Interrupts must be globally enabled using the EI instruction. Setting bit 7 of the IMR is not sufficient. Subsequent to this EI instruction, interrupts can be enabled either by IMR manipulation or by use of the EI instruction, with equivalent effects.

Additionally, interrupts must be disabled by executing a DI instruction before the IPRs or IMRs can be modified. Interrupts can then be enabled by executing an EI instruction.

IRQ Software Interrupt Generation

IRQ can be used to generate software interrupts by specifying IRQ as the destination of any instruction referencing the Z8 Standard Register File. These Software Interrupts (SWIs) are controlled in the same manner as hardware-generated requests (the IPR and the IMR control the priority and enabling of each SWI level).

To generate a SWI, the request bit in the IRQ is set as follows:

OR IRQ, #*NUMBER*

where the immediate data, *NUMBER*, has a 1 in the bit position corresponding to the appropriate level of the SWI.

For example, for an SWI on IRQ5, *NUMBER* has a 1 in bit 5. With this instruction, if the interrupt system is globally enabled, IRQ5 is enabled, and there are no higher priority pending requests, control is transferred to the service routine pointed to by the IRQ5 vector.

Reset Conditions

A system reset overrides all other operating conditions and puts the Z8 into a known state. The control and status registers are reset to their default conditions after a power-on reset (POR) or a Watch-Dog Timer (WDT) time-out while in RUN mode. The control and status registers are not reset to their default conditions after Stop Mode Recovery (SMR) while in HALT or STOP mode.

General-purpose registers are undefined after the device is powered up. Resetting the Z8 does not affect the contents of the general-purpose registers. The registers keep their most recent value after any reset, as long as the reset occurs in the specified V_{CC} operating range. Registers do not keep their most recent state from a V_{LV} reset, if V_{CC} drops below V_{RAM} (see Table 54 on page 87).

Following a reset (see Table 5), the first routine executed must be one that initializes the control registers to the required system configuration.

equivalent to a hardware POR reset. If the mask option of the permanently enabled watch-dog timer is selected, it runs when power up. If the option is not selected, the WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction.

The WDT instruction does not affect the Zero (Z), Sign (S), and Overflow (V) flags. Permanently enabled WDTs are always enabled, and the WDT instruction is used to refresh it. The WDT cannot be disabled after it has been initially enabled. The WDT is off during both HALT and STOP modes.

The WDT circuit is driven by an on-board RC oscillator. The time-out period for the WDT is fixed to a typical value (see Table 57 on page 90).

Power Management

In addition to the standard RUN mode, the Z8 supports three power-down modes to minimize device current consumption. The following three modes are supported:

- HALT
- STOP
- Low-Voltage Standby

Table 6 shows the status of the internal CPU clock (SCLK), the internal Timer clock (TCLK), the external oscillator, and the Watch-Dog Timer during the RUN mode and three low-power modes.

Operating Mode	SCLK	TCLK	External OSC	WDT*		
RUN	On	On	On	On		
HALT	Off	On	On	Off		
STOP	Off	Off	Off	Off		
Low-Voltage Standby	Off	Off	Off	Off		
Note: * When WDT is enabled by the mask option bit						

Table 6. Clock Status in Operating Modes

Using the Power-Down Modes

In order to enter HALT or STOP mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. You can flush the

Controlled Current Output

P43 is an open-drain output-only pin on the Z86D990/D991, but it can be configured as output or Tristate High Impedance on the Z86L990/L991. To function properly, Bit 3 of P4M must be set to zero to configure the pin as an open-drain output. For the Z86L990/L991 after reset, P43 defaults to Tristate High Impedance while the Z86D990/D991 P43 is always configured as output. The data at Port 4 must be initialized as it is undefined at power-on reset.

The current output is a controlled current source that is controlled by the output of the value of P43 (see Table 9). P43 *cannot* be configured as input, and if P43 is read, P43 always returns the state of the output value (1 for no sink and 0 for sink).

P43 uses internal current reference and will draw current if it outputs a low logic even without external connection. This applies to both Run mode and Stop mode.

Parameter	Min	Max	Conditions
Rise time		0.4 μ	LED load
Fall time		0.02 μ	LED load
V _{outmin}		0.54 V	@27C
Comparator response		0.2 μ	
Regulated current	80 mA	120 mA	
Internal resistance		80 Ω	

Table 9. Current Sink Pad P43 Specifications (Preliminary)

The pad driver can function in two modes:

controlled current output, when the voltage on the pad is over a minimum value

$$V_{pad} > V_{outmin}$$

• resistive pull down when the driver cannot regulate the current; in this mode, the gate of the NMOS pull down is raised to the power rail.

The I-V characteristics of the pad are presented in Figure 17.

Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC

Figure 17. I-V Characteristics for the Current Sink Pad P43

The CPU reads the mode of the pad driver by reading bit number 2 from the LB register. This bit is the output of a Set-Reset flip-flop that sets whenever the voltage on the pad is lower than V_{outmin} and is reset by a CPU write to the respective register.

T1 Timer

The Z86D99/Z86L99 family provides one general-purpose 8-bit counter/timer, T_1 , driven by its own 6-bit prescaler, PRE₁. The T_1 counter/timer is independent of the processor instruction sequence, which relieves software from time-critical operations such as interval timing and event counting.

The T_1 counter/timer operates in either single-pass or continuous mode. At the end-of-count, counting either stops or the initial value is reloaded and counting continues. Under software control, new values are loaded immediately or when the end-of-count is reached. Software also controls the counting mode, how the counter/timer is started or stopped, and the counter/timer's use of I/O lines. Both the counter and prescaler registers can be altered while the counter/timer is running.

The six most significant bits (D_2-D_7) of PRE₁ hold the prescaler count modulo, a value from 11 to 64 decimal. The prescaler register also contains control bits that specify T₁ counting modes. These bits also indicate whether the clock source for T₁ is internal or external.

The counter/timer T_1 (F2h) consists of an 8-bit down-counter, a write-only register that holds the initial count value, and a read-only register that holds the current count value (see Figure 18 on page 35). The initial value can range from 1 to 256 decimal (01h, 02h, ..., 00h). Figure 21 illustrates the counter/timer register.

Figure 21. Counter/Timer 1 Register

Counter/Timer Operation

Under software control, T_1 is started and stopped using the Timer Mode register (F1h) bits D_2 - D_3 : a Load bit and an Enable Count bit. See Figure 22.

The time interval (i) until end-of-count, is given by

i = t x p x v

where t is 8 divided by XTAL frequency, p is the prescaler value (1 - 64), and v is the counter/timer value (1 - 256). The prescaler and counter/timer are true divideby-n counters.

$\mathbf{T}_{\text{OUT}}\,\mathbf{Modes}$

The Timer Mode register TMR (F1h) (Figure 25) is used in conjunction with the Port 5 Mode register P5M to configure P5₆ for T_{OUT} operation. In order for T_{OUT} to function, P5₆ must be defined as an output line by setting P5M bit D₆ to 0. Output is controlled by one of the counter/timers (T₀ or T₁) or the internal clock.

R241 TMR Timer Mode Register (F1h; Read/Write)

Figure 25. Timer Mode Register T_{OUT} Operation

The P5₆ output is selected by TMR bits D₇ and D₆. T₁ is selected by setting D₇ and D₆ to 1 and 0, respectively. The counter/timer T_{OUT} mode is turned off by setting TMR bits D₇ and D₆ both to 0, freeing P3₆ to be a data output line.

 T_{OUT} is initialized to a logic 1 whenever the TMR Load bit D_2 is set to 1.

At end-of-count, the interrupt request line IRQ_5 clocks a toggle flip-flop. The output of this flip-flop drives the T_{OUT} line P5₆. In all cases, when the counter/timer reaches its end-of-count, T_{OUT} toggles to its opposite state (see Figure 26). If, for example, the counter/timer is in continuous counting mode, T_{OUT} has a 50% duty cycle output. You can control the duty cycle by varying the initial values after each end-of-count.

Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If CTR1, D1 is 0, T8_OUT is 1. If CTR1, D1 is 1, T8_OUT is 0.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1 D1). If the initial value (CTR1 D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In single-pass mode (CTR0 D6), T8 counts down to 0 and stops, T8_OUT toggles, the time-out status bit (CTR0 D5) is set, and a time-out interrupt can be generated if it is enabled (CTR0 D1). In modulo-N mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. Then T8 loads a new count (if T8_OUT level is 0), TC8L is loaded; if T8_OUT is 1, TC8H is loaded.

Note: Do not use the same instructions for stopping the counter/ timers and setting the status bits. Two successive commands are necessary—the first command for stopping counter/timers and the second command for resetting the status bits because one counter/timer clock interval must complete for the initiated event to actually occur.

T8 Demodulation Mode

Program TC8L and TC8H to FFh. After T8 is enabled, when the first edge (rising, falling, or both, depending on CTR1 D5, D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both, depending on CTR1 D5, D4) is detected during counting, the current value of T8 is one's complemented and put into one of the capture registers. If T8 is a positive edge, data is placed in LO8. If T8 is a negative edge, data is placed in H18. One of the edge-detect status bits (CTR1 D1, D0) is set, and an interrupt can be generated if enabled (CTR0 D2). Meanwhile, T8 is loaded with TC8H and starts counting again. If T8 reaches 0, the time-out status bit (CTR0 D5) is set, and an interrupt can be generated if enabled (CTR0 D1), and T8 continues counting from FFh (see Figure 35).

3	Decimal Adjust Flag (D)	R/W	1 0	Used for BCD arithmetic—after a subtraction, the flag is set to 1; following an addition, it is cleared to 0
2	Half Carry Flag (H)	R/W	1 0	Set to 1, whenever an addition generates a "carry out" of bit position 3 (overflow) of an accumulator; or subtraction generates a "borrow into" bit 3
1_	User Flag (F2)	R/W	1 0	User definable
0	User Flag (F1)	R/W	1 0	User definable

Table 15. FLAGS Register [Group/Bank F0h, Register C (R252)] (Continued)

Register Pointer (RP)

Z8 instructions can access registers directly or indirectly using either a 4-bit or 8bit address field. The upper nibble of the Register Pointer, as described in Table 16, contains the base address of the active Working Register GROUP. The lower nibble contains the base address of the Expanded Register File BANK. When using 4-bit addressing, the 4-bit address of the working register (r0 to rF) is combined with the upper nibble of the Register Pointer (identifying the WR GROUP), thus forming the 8-bit actual address.

Bit	7	6	5	4	3	2	1	0
Bit/Field	Working	Registe	r Group		Expanded Register File Bank			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
R = Read, W = Write, X = Indeterminate								
Bit								
Position	Bit/Field		R/W	Value	Description			
7654	Working Register Group Pointer		R/W	Х	Identifies Groups, Registers	1 of 16 p each cont	ossible W aining 16	R Working
3210	Expande Register Bank Poi	d File inter	R/W	Х	Identifies Banks; o valid for t	1 of 16 p nly Banks the Z86D9	ossible Ef 6 0, D, and 99/Z86L99	RF Fare family

Interrupt Request Register

The IRQ, as described in Table 23, is a read/write register that stores the interrupt requests for both vectored and polled interrupts. When an interrupt request is made by any of the six interrupts, the corresponding bit in the IRQ is set to 1.

Bit	7	6	5	4	3	2	1	0	
Bit/Field	Interrupt	t Edge	Set IRQ5	Set IRQ4	Set IRQ3	Set IRQ2	Set IRQ1	Set IRQ0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
R = Read, W	= Write, X	K = Indete	erminate						
Bit									
Position	Bit/Field		R/W	Value	Description				
76	Interrupt	Edge	R/W	11	P51 Rise	/FallingP5	52 Rise/Fa	alling	
	Trigger			10	P51 Risir	ng P52 Fa	lling		
				01	P51 Falli	ngP52 Ris	sing		
				00	P51 Falli	ngP52 Fa	lling		
5	Set IRQ5	5	R	1	IRQ ₅ Ina	ctive			
			R	0	IRQ ₅ Act	ive			
			W	1	Set IRQ5				
			W	0	Reset IR	Q ₅			
4	Set IRQ ₄	Ļ	R	1	IRQ ₄ Ina	ctive			
			R	0	IRQ ₄ Act	ive			
			W	1	Set IRQ ₄	_			
			W	0	Reset IR	Q ₄			
3	Set IRQ ₃		R	1	IRQ ₃ Ina	ctive			
			R	0	IRQ ₃ Active				
			W	1	Set IRQ ₃	_			
			W	0	Reset IR	Q ₃			
2	Set IRQ ₂	2	R	1	IRQ ₂ Ina	ctive			
			R	0	IRQ ₂ Act	ive			
			W	1	Set IRQ ₂	_			
			W	0	Reset IR	Q ₂			
1_	Set IRQ ₁		R	1	IRQ ₁ Ina	ctive			
			R	0	IRQ ₁ Act	ive			
			W	1	Set IRQ ₁	-			
			W	0	Reset IR	Q ₁			
0	Set IRQ0)	R	1	IRQ ₀ Ina	ctive			
			R	0	IRQ ₀ Act	ive			
			W	1	Set IRQ0				
			W	0	Reset IR	Q ₀			

Table 23. IRQ (Group/Bank 0Fh, Register A)

2	T ₁ Load	R/W	1 0	Load T ₁ No effect
10	Reserved	R W	1 X	Always reads 11 No effect

Table 35. TMR Register [Group/Bank F0h, Register 1 (R241)] (Continued)

T1 Prescale Register (PRE1)

The T1 prescaler consists of an 8-bit register and a 6-bit down-counter. The six most significant bits (D2–D7) of PRE1 hold the prescaler's count modulo, a value from 1 to 64 decimal, as shown in Table 36. The prescale register also contains control bits that specify the counting mode and clock source for T1.

Table 36. PRE1	Register	[Group/Bank F0h,	Register 3 (R24	3)]
----------------	----------	------------------	-----------------	-----

Bit	7	6	5	4	3	2	1	0	
Bit/Field	Prescal	er_Modul	0				Clock_ Source	Count_ Mode	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
R = Read, W	= Write,	X = Indete	erminate						
Bit									
Position	Bit/Field	ł	R/W	Value	Descrip	tion			
765432	Prescale	er Modulo	R/W	Data	Range: 1 to 64 Decimal				
1_	Clock So	ource	R/W	1	T ₁ Interr	al			
				0	T ₁ Exter	nal (T _{IN} o	n P52)		
0	Count M	ode	R/W	1	T ₁ Modu	lo-n			
				0	T ₁ Single	e Pass			

Timer Control Registers—T8 and T16 Timers

One of the unique features of the Z86D99/Z86L99 family is a special timer architecture to automate the generation and reception of complex pulses or signals. This timer architecture consists of one programmable 8-bit counter timer with two capture registers and two load registers and a programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair and their associated control registers. These counter/timers can work independently or can be combined together using a number of user-selectable modes governed by the T8/T16 control registers.

T8/T16 Control Register A (CTR1)

The T8/T16 Control Register A controls the functions in common with both the T_8 and T_{16} counter/timers. The T_8 and T_{16} counter/timers have two primary modes of operation: Transmit Mode and Demodulation Mode. Transmit Mode is used for generating complex waveforms. The Transmit Mode has two submodes: Normal Mode and Ping-Pong Mode. The settings for CTR1 in Transmit Mode are given in Table 37.

Bit	7	6	5	4	3	2	1	0	
Bit/Field	Mode	P43 Out	T8/T16 I	_oaic	Transmit_ Submode		Initial_ T8 Out	Initial_ T16_ Out	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
R = Read, W	= Write, >	<pre>< = Indete</pre>	erminate	-		-	-	-	
Bit									
Position	Bit/Field		R/W	Value	Descript	ion			
7	Mode		R/W	1	Demodul	ation			
				0	Transmit				
_6	P43_Out		R/W	1	P43 configured as T8/T16 Output			utput	
				0	P43 configured as I/O				
54	T ₈ /T ₁₆ Lo	ogic	R/W	11	NAND				
				10	NOR				
				01	OR				
				00	AND				
32	Transmit	_	R/W	11	T16_Out	= 1			
	Submode	Э		10	T16_Out = 0				
				01	Ping-Pong Mode				
				00	Normal Operation				
1_	Initial_T8	_Out	R/W	1	T8_Out s	set to 1 ini	tially		
				0	T8_Out s	set to 0 ini	tially		
0	Initial_T1	6_Out	R/W	1	T16_Out	set to 1 ir	nitially		
				0	T16_Out	set to 0 ir	nitially		

Table 37. CTR1 Register (In Transmit Mode) (Group/Bank 0Dh, Register 1)

T16 MS-Byte Load Register (TC16H)

The T16 MS-Byte Load Register, as described in Table 48, is loaded with the most significant byte of the T_{16} counter value.

Table 48. TC16H Register (Group/Bank 0Dh, Register 7)

Bit	7	6	5	4	3	2	1	0	
Bit/Field	T16_Da	ata_HI							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
R = Read, V	V = Write	, X = Inde	eterminate	;					
Bit									
Position	Bit/Fie	ld	R/W	Value	Description				
76543210	T ₁₆ Dat	ta HI	R/W	Data	MS-Byte of the T ₁₆ Counter				

T16 LS-Byte Load Register (TC16L)

The T16 LS-Byte Load Register, as described in Table 49, is loaded with the least significant byte of the T_{16} counter value.

Table 49. TC16L Register (Group/Bank 0Dh, Register 6)

Di+	7	6	5	4	2	2	1	0
ЫІ	1	0	5	4	3	Z	I	U
Bit/Field	T16_Da	ta_LO						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
R = Read, V	V = Write,	X = Indet	erminate					
Bit								
Position	Bit/Field	ł	R/W	Value	Descri	ption		
76543210	T ₁₆ Data	a LO	R/W	Data	LS-Byte of the T ₁₆ Counter			

Stop-Mode Recovery Control Registers

The Z86D99/Z86L99 family of products allows 16 individual I/O pins (Ports 2 and 5) to be used as a stop-mode recovery sources. The STOP mode is exited when one of these SMR sources is toggled.