




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                  |
|----------------------------|-----------------------------------------------------------|
| Core Processor             | Z8                                                        |
| Core Size                  | 8-Bit                                                     |
| Speed                      | 8MHz                                                      |
| Connectivity               | -                                                         |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, WDT                     |
| Number of I/O              | 24                                                        |
| Program Memory Size        | 32KB (32K x 8)                                            |
| Program Memory Type        | ОТР                                                       |
| EEPROM Size                | -                                                         |
| RAM Size                   | 489 x 8                                                   |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                 |
| Data Converters            | -                                                         |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                           |
| Mounting Type              | Through Hole                                              |
| Package / Case             | 28-DIP (0.600", 15.24mm)                                  |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/z86d991pz008sg |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

#### **ZiLOG Worldwide Headquarters**

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

#### **Document Disclaimer**

© 2002 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property rights.



# List of Figures

| Figure 1.  | Functional Block Diagram                                    | . 4 |
|------------|-------------------------------------------------------------|-----|
| Figure 2.  | 48-Pin SSOP Pin Assignments                                 | . 5 |
| Figure 3.  | 40-Pin DIP Pin Assignment                                   | . 6 |
| Figure 4.  | 28-Pin SOIC/DIP Pin Assignment—User Mode                    | . 7 |
| Figure 5.  | Program Memory Map                                          | 12  |
| Figure 6.  | Standard Z8 Register File (Working Reg. Groups 0-F, Bank 0) | 13  |
| Figure 7.  | Z8 Expanded Register File Architecture                      | 14  |
| Figure 8.  | Interrupt Block Diagram                                     | 16  |
| Figure 9.  | External Interrupt Sources IRQ0–IRQ2 Block Diagram          | 17  |
| Figure 10. | IRQ Logic                                                   | 18  |
| Figure 11. | Interrupt Request Timing                                    | 18  |
| Figure 12. | General Input/Output Pin                                    | 26  |
| Figure 13. | Analog Comparators                                          | 28  |
| Figure 14. | ADC Block Diagram                                           | 29  |
| Figure 15. | Low-Pass Filter (with 8-MHz Crystal)                        | 30  |
| Figure 16. | Active Glitch/Power Filter                                  | 32  |
| Figure 17. | I-V Characteristics for the Current Sink Pad P43            | 34  |
| Figure 18. | T <sub>1</sub> Counter/Timer Block Diagram                  | 35  |
| Figure 19. | Register File                                               | 36  |
| Figure 20. | Prescaler 1 Register                                        | 36  |
| Figure 21. | Counter/Timer 1 Register                                    | 37  |
| Figure 22. | Timer Mode Register                                         | 37  |
| Figure 23. | Starting the Count                                          | 38  |
| Figure 24. | Counting Modes                                              | 39  |
| Figure 25. | Timer Mode Register T <sub>OUT</sub> Operation              | 40  |
| Figure 26. | Counter/Timer Output Using T <sub>OUT</sub>                 | 41  |
| Figure 27. | Internal Clock Output Using T <sub>OUT</sub>                | 41  |
| Figure 28. | Timer Mode Register T <sub>IN</sub> Operation               | 42  |
| Figure 29. | Prescaler 1 T <sub>IN</sub> Operation                       | 42  |
| Figure 30. | External Clock Input Mode                                   | 43  |
| Figure 31. | Gated Clock Input Mode                                      | 43  |
| -          | Triggered Clock Mode                                        |     |
|            | Counter/Timer Architecture                                  |     |
| Figure 34. | Transmit Mode Flowchart                                     | 48  |



# List of Tables

| Table 1.  | Z86L99/Z86D99 Feature Comparison                                | 1  |
|-----------|-----------------------------------------------------------------|----|
| Table 2.  | Pin Descriptions                                                | 7  |
| Table 3.  | Interrupt Types, Sources, and Vectors                           | 15 |
| Table 4.  | Interrupt Edge Select for External Interrupts                   | 17 |
| Table 5.  | Control and Status Register Reset Conditions                    | 20 |
| Table 6.  | Clock Status in Operating Modes                                 | 22 |
| Table 7.  | Special Port Pin Functions                                      | 27 |
| Table 8.  | Active Glitch/Filter Specifications (Preliminary)               | 32 |
| Table 9.  | Current Sink Pad P43 Specifications (Preliminary)               | 33 |
| Table 10. | I/O Port Registers (Group 0, Bank 0, Registers 0-F)             | 52 |
| Table 11. | Timer Control Registers (Group 0, Bank D, Registers 0-F)        | 53 |
| Table 12. | Control and Status Registers (Group F, Bank 0,                  | 50 |
| Table 12  | Registers 0–F)                                                  | 53 |
| Table 13. | SMR and Port Mode Registers (Group 0, Bank F,<br>Registers 0–F) | 54 |
| Table 14. | Register Description Locations                                  | 55 |
| Table 15. | FLAGS Register [Group/Bank F0h, Register C (R252)]              | 57 |
| Table 16. | RP Register [Group/Bank F0h, Register D (R253)]                 | 58 |
| Table 17. | SP Register [Group/Bank F0h, Register F (R255)]                 | 59 |
| Table 18. | LB Register (Group/Bank 0Dh, Register C)                        | 60 |
| Table 19. | ADCCTRL Register (Group/Bank 0Fh, Register 8)                   | 61 |
| Table 20. | ADCDATA Register (Group/Bank 00h, Register 7)                   | 62 |
| Table 21. | IMR (Group/Bank 0Fh, Register B)                                | 63 |
| Table 22. | IPR (Group/Bank 0Fh, Register 9)                                | 64 |
| Table 23. | IRQ (Group/Bank 0Fh, Register A)                                | 65 |
| Table 24. | P456CON Register (Group/Bank 0Fh, Register 0)                   | 67 |
| Table 25. | P3M Register [Group/Bank F0h, Register 7 (R247)]                | 68 |
| Table 26. | P2 Register [Group/Bank 00h, Register 2 (R2)]                   | 68 |
| Table 27. | P2M Register [Group/Bank F0h, Register 6 (R246)]                | 68 |
| Table 28. | P4 Register [Group/Bank 00h, Register 4 (R4)]                   | 69 |
| Table 29. | P4M Register (Group/Bank 0Fh, Register 2)                       | 69 |
| Table 30. | P5 Register [Group/Bank 00h, Register 5 (R5)]                   | 70 |
| Table 31. | P5M Register (Group/Bank 0Fh, Register 4)                       | 70 |
| Table 32. | P6 Register [Group/Bank 00h, Register 6 (R6)]                   | 71 |



# Interrupts

The Z86D99/Z86L99 family allows up to six different interrupts, three external and three internal, from nine possible sources. The six interrupts are assigned as follows:

- Three edge-triggered external interrupts (P51, P52, and P53), two of which are shared with the two analog comparators
- One internal interrupt assigned to the T8 Timer
- One internal interrupt assigned to the T16 Timer
- One internal interrupt shared between the Low-Battery Detect flag and the T1 Timer

Table 3 presents the interrupt types, the interrupt sources, and the location of the specific interrupt vectors.

|                  |                                                                                                                                                                            | Vector   |                                                                                                                                                                 |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name             | Source                                                                                                                                                                     | Location | Comments                                                                                                                                                        |  |
| IRQ <sub>0</sub> | P52 (F/R), Comparator 2                                                                                                                                                    | 0,1      | External interrupt (P52) is triggered by<br>either rising or falling edge; internal<br>interrupt generated by Comparator 2<br>is mapped into IRQ <sub>0</sub>   |  |
| IRQ <sub>1</sub> | P53 (F)                                                                                                                                                                    | 2,3      | External interrupt (P53) is triggered by a falling edge                                                                                                         |  |
| IRQ <sub>2</sub> | P51 (R/F), Comparator 1                                                                                                                                                    | 4,5      | External interrupt (P51) is triggered by<br>either a rising or falling edge; internal<br>interrupt generated by Comparator 1<br>is mapped into IRQ <sub>2</sub> |  |
| IRQ <sub>3</sub> | T16 Timer                                                                                                                                                                  | 6,7      | Internal interrupt                                                                                                                                              |  |
| IRQ <sub>4</sub> | T8 Timer                                                                                                                                                                   | 8,9      | Internal interrupt                                                                                                                                              |  |
| IRQ <sub>5</sub> | LVD, T1 Timer                                                                                                                                                              | 10,11    | Internal interrupt, LVD flag is<br>multiplexed with T1 Timer End-of-<br>Count interrupt                                                                         |  |
| Notes:           | F = Falling-edge triggered; R = Rising-edge triggered.<br>When LVD is enabled, IRQ5 is triggered only by low-voltage detection. Timer<br>1 does not generate an interrupt. |          |                                                                                                                                                                 |  |

#### Table 3. Interrupt Types, Sources, and Vectors

These interrupts can be masked and their priorities set by using the Interrupt Mask Register (IMR) and Interrupt Priority Register (IPR) (Figure 8.) When more than one interrupt is pending, priorities are resolved by a priority encoder, controlled by the IPR.



### **Mode Registers**

Each port has an associated Mode Register that determines the port's functions and allows dynamic change in port functions during program execution. Port and Mode Registers are mapped into the Standard Register File. Because of their close association, Port and Mode Registers are treated like any other general-purpose register. There are no special instructions for port manipulation. Any instruction that addresses a register can address the ports. Data can be directly accessed in the Port Register, with no extra moves.

#### Input and Output Registers

Each of the four ports (Ports 2, 4, 5, and 6) has an input register, an output register, and associated buffer and control logic. Because there are separate input and output registers associated with each port, writing bits defined as inputs store the data in the output register. This data cannot be read as long as the bits are defined as inputs. However, if the bits are reconfigured as output, the data stored in the output register is reflected on the output pins and can then be read. This mechanism allows the user to initialize the outputs before driving their loads.

Because port inputs are asynchronous to the Z8 internal clock, a READ operation could occur during an input transition. In this case, the logic level might be uncertain (somewhere between a logic 1 and 0).

#### **General Port I/O**

The eight I/O lines of each port (except P43, P52, and P53) can be configured under software control to be either input or output, independently. Bits programmed as outputs can be globally programmed as either push-pull or opendrain. See Figure 12.



# Peripherals

### **Analog Comparators**

The Z86D99/Z86L99 family includes two independent on-chip general-purpose analog comparators as shown in Figure 13. The comparators are multiplexed with a digital input signal by the P456CON register. They can also be used to generate interrupts IRQ0 and IRQ2. The comparators are turned off in STOP mode.

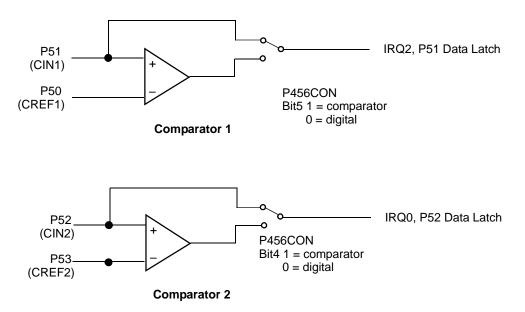



Figure 13. Analog Comparators

## Analog/Digital Converter (ADC)

The Z86D99/Z86L99 family incorporates an 8-bit ADC that uses a sigma delta architecture (Figure 14) comprised of a modulator and a digital filter. The input is selected (bit 3,2 from ADCCTRL) with an analog mux from 4 (P47–P44) pins that can be configured as analog inputs (bit 7–4 from ADCCTRL).

**Note:** Whenever an input pin has an analog value, the digital input buffer has to be disabled in order to reduce the current through the device.



## **Controlled Current Output**

P43 is an open-drain output-only pin on the Z86D990/D991, but it can be configured as output or Tristate High Impedance on the Z86L990/L991. To function properly, Bit 3 of P4M must be set to zero to configure the pin as an open-drain output. For the Z86L990/L991 after reset, P43 defaults to Tristate High Impedance while the Z86D990/D991 P43 is always configured as output. The data at Port 4 must be initialized as it is undefined at power-on reset.

The current output is a controlled current source that is controlled by the output of the value of P43 (see Table 9). P43 *cannot* be configured as input, and if P43 is read, P43 always returns the state of the output value (1 for no sink and 0 for sink).

P43 uses internal current reference and will draw current if it outputs a low logic even without external connection. This applies to both Run mode and Stop mode.

| Parameter           | Min   | Max    | Conditions |
|---------------------|-------|--------|------------|
| Rise time           |       | 0.4 μ  | LED load   |
| Fall time           |       | 0.02 μ | LED load   |
| V <sub>outmin</sub> |       | 0.54 V | @27C       |
| Comparator response |       | 0.2 μ  |            |
| Regulated current   | 80 mA | 120 mA |            |
| Internal resistance |       | 80 Ω   |            |

Table 9. Current Sink Pad P43 Specifications (Preliminary)

The pad driver can function in two modes:

controlled current output, when the voltage on the pad is over a minimum value

$$V_{pad} > V_{outmin}$$

• resistive pull down when the driver cannot regulate the current; in this mode, the gate of the NMOS pull down is raised to the power rail.

The I-V characteristics of the pad are presented in Figure 17.

Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC



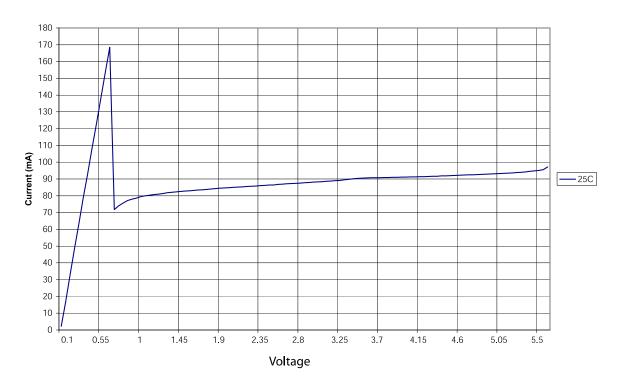



Figure 17. I-V Characteristics for the Current Sink Pad P43

The CPU reads the mode of the pad driver by reading bit number 2 from the LB register. This bit is the output of a Set-Reset flip-flop that sets whenever the voltage on the pad is lower than  $V_{outmin}$  and is reset by a CPU write to the respective register.

#### T1 Timer

The Z86D99/Z86L99 family provides one general-purpose 8-bit counter/timer,  $T_1$ , driven by its own 6-bit prescaler, PRE<sub>1</sub>. The  $T_1$  counter/timer is independent of the processor instruction sequence, which relieves software from time-critical operations such as interval timing and event counting.

The  $T_1$  counter/timer operates in either single-pass or continuous mode. At the end-of-count, counting either stops or the initial value is reloaded and counting continues. Under software control, new values are loaded immediately or when the end-of-count is reached. Software also controls the counting mode, how the counter/timer is started or stopped, and the counter/timer's use of I/O lines. Both the counter and prescaler registers can be altered while the counter/timer is running.



| Grp/Bnk Reg | Register Function             | Identifier |
|-------------|-------------------------------|------------|
| (FOh) rF    | Stack Pointer                 | SP         |
| (F0h) rE    | General-purpose RAM Register  | GPR        |
| (F0h) rD    | Register Pointer              | RP         |
| (F0h) rC    | Program Control Flag Register | Flags      |
| (FOh) rB    | Interrupt Mask Register       | IMR        |
| (F0h) rA    | Interrupt Request Register    | IRQ        |
| (F0h) r9    | Interrupt Priority Register   | IPR        |
| (F0h) r8    | Reserved                      |            |
| (F0h) r7    | Port 3 Mode Register          | P3M        |
| (F0h) r6    | Port 2 Mode Register          | P2M        |
| (F0h) r5    | Reserved                      |            |
| (FOh) r4    | Reserved                      |            |
| (FOh) r3    | T1 Prescale Register          | PRE1       |
| (F0h) r2    | T1 Data Register              | T1         |
| (F0h) r1    | T1 Mode Register              | TMR        |
| (F0h) r0    | Reserved                      |            |

Table 11. Control and Status Registers (Group F, Bank 0, Registers 0-F)

Table 12. Timer Control Registers (Group 0, Bank D, Registers 0–F)

| Grp/Bnk R | leg | Register Function            | Identifier |
|-----------|-----|------------------------------|------------|
| (0Dh) rF  | 7   | Reserved                     |            |
| (0Dh) rE  | Ŧ   | Reserved                     |            |
| (0Dh) rE  | )   | Reserved                     |            |
| (0Dh) rC  |     | Low-Battery Detect Flag      | LB         |
| (0Dh) rB  | 3   | T16 MS-Byte Capture Register | HI8        |
| (0Dh) rA  | Ą   | T16 LS-Byte Capture Register | LO8        |
| (0Dh) r9  | )   | T8 High Capture Register     | HI16       |
| (0Dh) r8  | 3   | T8 Low Capture Register      | LO16       |
| (0Dh) r7  | 7   | T16 MS-Byte Hold Register    | TC16H      |
| (0Dh) r6  | 5   | T16 LS-Byte Hold Register    | TC16L      |
| (0Dh) r5  | 5   | T8 High Hold Register        | TC8H       |
| (0Dh) r4  | ļ   | T8 Low Hold Register         | TC8L       |
| (0Dh) r3  | 3   | T8/T16 Control Register B    | CTR3       |
| (0Dh) r2  | 2   | T16 Control Register         | CTR2       |
| (0Dh) r1  |     | T8/T16 Control Register A    | CTR1       |
| (0Dh) r0  | )   | T8 Control Register          | CTR0       |



| Grp/Bnk Reg | Register Function           | Identifier |
|-------------|-----------------------------|------------|
| (OFh) rF    | Reserved                    |            |
| (0Fh) rE    | Reserved                    |            |
| (OFh) rD    | Reserved                    |            |
| (0Fh) rC    | Reserved                    |            |
| (OFh) rB    | Stop Mode Recovery Register | SMR        |
| (OFh) rA    | Reserved                    |            |
| (0Fh) r9    | Reserved                    |            |
| (0Fh) r8    | ADC Control Register        | ADCCTRL    |
| (0Fh) r7    | Reserved                    |            |
| (0Fh) r6    | Port 6 Mode                 | P6M        |
| (0Fh) r5    | Port 5 Stop Mode Recovery   | P5SMR      |
| (0Fh) r4    | Port 5 Mode Register        | P5M        |
| (0Fh) r3    | Reserved                    |            |
| (0Fh) r2    | Port 4 Mode Register        | P4M        |
| (0Fh) r1    | Port 2 Stop Mode Recovery   | P2SMR      |
| (0Fh) r0    | Port Configuration Register | P456CON    |

Table 13. SMR and Port Mode Registers (Group 0, Bank F, Registers 0–F)

# **Register Error Conditions**

Registers in the Z8 Standard Register File must be used correctly because certain conditions produce inconsistent results and must be avoided.

- Registers F5h-F9h are write-only registers. If an attempt is made to read these registers, FFh is returned. Reading any write-only register returns FFh.
- When the Register Pointer (register FDH) is read, the least significant four bits (lower nibble) indicate the current Expanded Register File Bank. (For example, 0000 indicates the Standard Register File, while 1010 indicates Expanded Register File Bank A.)
- Writing to bits that are selected as timer outputs changes the I/O register but has no effect on the pin signal.
- The Z8 instruction DJNZ uses any general-purpose working register as a counter.
- Logical instructions such as OR and AND require that the current contents of the operand be read. They do not function properly on write-only registers.



| Addres | S                          |                            |                  |          |
|--------|----------------------------|----------------------------|------------------|----------|
| Grp/Bn | k Register                 | <b>Register Function</b>   | Symbol           | Location |
| 0Dh    | r11                        | T8 High Capture            | HI8 <sup>†</sup> | page 78  |
| 0Dh    | r12                        | Low Battery Detect         | LB               | page 60  |
| 0Fh    | r0                         | Port Configuration (A)     | P456CON          | page 67  |
| 0Fh    | r1                         | Port 2 SMR Source          | P2SMR            | page 84  |
| 0Fh    | r2                         | Port 4 Mode                | P4M              | page 69  |
| 0Fh    | r4                         | Port 5 Mode                | P5M              | page 70  |
| 0Fh    | r5                         | Port 5 SMR Source          | P5SMR            | page 84  |
| 0Fh    | rб                         | Port 6 Mode                | P6M              | page 71  |
| 0Fh    | r8                         | ADC Control                | ADCCTRL          | page 61  |
| 0Fh    | r11                        | Stop Mode Recovery         | SMR              | page 83  |
| F0h    | r1 (R241)                  | T1 Timer Mode              | TMR              | page 72  |
| F0h    | r2 (R242)                  | T1 Timer Data              | T1               | page 72  |
| F0h    | r3 (R243)                  | T1 Timer Prescale          | PRE1             | page 73  |
| F0h    | r6 (R246)                  | Port 2 Mode                | P2M              | page 68  |
| F0h    | r7 (R247)                  | Port Configuration (B)     | P3M              | page 67  |
| F0h    | r9 (R249)                  | Interrupt Priority         | IPR              | page 64  |
| F0h    | r10 (R250)                 | Interrupt Request          | IRQ              | page 65  |
| F0h    | r11 (R251)                 | Interrupt Mask             | IMR              | page 63  |
| F0h    | r12 (R252)                 | Program Control Flags      | Flags            | page 57  |
| F0h    | r13 (R253)                 | Register Pointer           | RP               | page 58  |
| F0h    | r15 (R255)                 | Stack Pointer              | SP               | page 59  |
|        | This register is n<br>MR). | ot reset following Stop Me | ode Recovery     |          |

 Table 14. Register Description Locations (Continued)

### **Flags and Pointer Registers**

In addition to the three standard Z8 flag and pointer registers (Program Control Register Pointer, and Stack Pointer), the Z86D99/Z86L99 family includes a Low-Battery Detect Flag register.



| 3  | Decimal Adjust<br>Flag (D) | R/W | 1<br>0 | Used for BCD arithmetic—after a subtraction, the flag is set to 1; following an addition, it is cleared to 0                                                      |
|----|----------------------------|-----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Half Carry<br>Flag (H)     | R/W | 1<br>0 | Set to 1, whenever an addition<br>generates a "carry out" of bit position<br>3 (overflow) of an accumulator; or<br>subtraction generates a "borrow into"<br>bit 3 |
| 1_ | User Flag (F2)             | R/W | 1<br>0 | User definable                                                                                                                                                    |
| 0  | User Flag (F1)             | R/W | 1<br>0 | User definable                                                                                                                                                    |

#### Table 15. FLAGS Register [Group/Bank F0h, Register C (R252)] (Continued)

#### **Register Pointer (RP)**

Z8 instructions can access registers directly or indirectly using either a 4-bit or 8bit address field. The upper nibble of the Register Pointer, as described in Table 16, contains the base address of the active Working Register GROUP. The lower nibble contains the base address of the Expanded Register File BANK. When using 4-bit addressing, the 4-bit address of the working register (r0 to rF) is combined with the upper nibble of the Register Pointer (identifying the WR GROUP), thus forming the 8-bit actual address.

| Bit                                    | 7                                | 6                     | 5                     | 4   | 3                                                                                                          | 2   | 1   | 0        |
|----------------------------------------|----------------------------------|-----------------------|-----------------------|-----|------------------------------------------------------------------------------------------------------------|-----|-----|----------|
| Bit/Field                              | Bit/Field Working Register Group |                       |                       | )   | Expanded Register File Bank                                                                                |     |     |          |
| R/W                                    | R/W                              | R/W                   | R/W                   | R/W | R/W                                                                                                        | R/W | R/W | R/W      |
| Reset                                  | 0                                | 0                     | 0                     | 0   | 0                                                                                                          | 0   | 0   | 0        |
| R = Read, W = Write, X = Indeterminate |                                  |                       |                       |     |                                                                                                            |     |     |          |
| Bit                                    |                                  |                       |                       |     |                                                                                                            |     |     |          |
| Position                               | Bit/Fie                          | ld                    | R/W Value Description |     |                                                                                                            |     |     |          |
| 7654                                   |                                  | g Register<br>Pointer | R/W                   | Х   | Identifies 1 of 16 possible WR<br>Groups, each containing 16 Worki<br>Registers                            |     |     |          |
| 3210                                   | Expano<br>Registe<br>Bank P      | er File               | R/W                   | Х   | Identifies 1 of 16 possible ERF<br>Banks; only Banks 0, D, and F are<br>valid for the Z86D99/Z86L99 family |     |     | nd F are |



# Port Configuration Registers (P456CON and P3M)

The port configuration register (described in Table 24) switches the comparator inputs from digital to analog and allows Ports 4, 5, and/or 6 to be switched from push/pull active outputs to open drain outputs. In ZiLOG Test Mode, bit 3 of this register is used to enable the Address Strobe/Data Strobe. Bit 3 is not available in User Mode.

| Bit         | 7                 | 6                              | 5         | 4      | 3                                                                                                                                     | 2   | 1      | 0              |  |
|-------------|-------------------|--------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------|-----|--------|----------------|--|
|             |                   |                                | P51_      | P52_   |                                                                                                                                       | P6_ | P5_    | P4_            |  |
| Bit/Field   | Not Us            | ed                             | Mode      | Mode   | Reserved Output Output                                                                                                                |     | Output |                |  |
| R/W         | R/W               | R/W                            | R/W       | R/W    | R/W                                                                                                                                   | W   | W      | W              |  |
| Reset       | 0                 | 0                              | 0         | 0      | 0                                                                                                                                     | 1   | 1      | 1 <sup>†</sup> |  |
| R = Read, V | V = Write,        | X = Inde                       | eterminat | e      |                                                                                                                                       |     |        |                |  |
| Bit         |                   |                                |           |        |                                                                                                                                       |     |        |                |  |
| Position    | Bit/Fie           | ld                             | R/W       | Value  | Descriptio                                                                                                                            | on  |        |                |  |
| 76          | Not Us            | ed                             | R/W       |        | These bits exist but do not have any<br>function assigned to them; they are<br>reserved for future extensions and mus<br>not be used. |     |        |                |  |
| 5           | Compa<br>Mode     | rator 1                        | R/W       | 1<br>0 | Analog (P50, P51 as Inputs)<br>Digital inputs                                                                                         |     |        |                |  |
| 4           | Compa<br>Mode     | Comparator 2<br>Mode           |           | 1<br>0 | Analog comparator inputs (P52, P53<br>configured as Inputs)<br>Digital inputs                                                         |     |        |                |  |
| 3           | Reserv            | red                            |           |        |                                                                                                                                       |     |        |                |  |
| 2           |                   | Port 6 Output<br>Configuration |           | 1<br>0 | Push-Pull Active<br>Open Drain Outputs<br>Always reads back 1*                                                                        |     |        |                |  |
| 1_          | Port 5<br>Config  |                                | W         | 1<br>0 | Push-Pull Active<br>Open Drain Outputs<br>Always reads back 1*                                                                        |     |        |                |  |
| 0           | Port 4<br>Configu | •                              | W         | 1<br>0 | Push-Pull Active<br>Open Drain Outputs<br>Always reads back 1* <sup>†</sup>                                                           |     |        |                |  |

#### Table 24. P456CON Register (Group/Bank 0Fh, Register 0)

Note: \*Do not use the read-modify-write instructions (for example, OR and AND) with this register. Bits 0, 1, and 2 always read back 1.

Note: <sup>†</sup>For Z86L990/L991, P43 can never be configured as push-pull. After any reset, P43 is configured as tristate high impedance.

Port 2 outputs are configured using the P3M Register, shown in Table 25. Bit 0 of the P3M Register switches Port 2 from push/pull active to open drain outputs. No other bits in this register are implemented.



# T8/T16 Control Register B (CTR3)

The T8/T16 Control Register B, known as CTR3, is a new register to the Z86D99/Z86L99 family. This register allows the  $T_8$  and  $T_{16}$  counters to be synchronized. The settings of CTR3 are described in Table 39.

| Bit                                | 7                    | 6             | 5            | 4        | 3                | 2         | 1   | 0   |  |
|------------------------------------|----------------------|---------------|--------------|----------|------------------|-----------|-----|-----|--|
| Bit/Field                          | T16_<br>Enable       | T8_<br>Enable | Sync<br>Mode | Reserv   | served           |           |     |     |  |
| R/W                                | R/W                  | R/W           | R/W          | R/W      | R/W              | R/W       | R/W | R/W |  |
| Reset                              | 0                    | 0             | 0            | Х        | Х                | Х         | X   | Х   |  |
| R = Read, V                        | V = Write,           | X = Indete    | erminate     |          |                  |           |     |     |  |
| Bit                                |                      |               |              |          |                  |           |     |     |  |
| Position                           | Bit/Field            | 1             | R/W          | Value    | Description      |           |     |     |  |
| 7                                  | T <sub>16</sub> Enal | ole           | R            | 1        | Counter Enabled  |           |     |     |  |
|                                    |                      |               | R            | 0        | Counte           | r Disable | d   |     |  |
|                                    |                      |               | W            | 1        | Enable           | Counter   |     |     |  |
|                                    |                      |               | W            | 0        | Stop Counter     |           |     |     |  |
| _6                                 | T <sub>8</sub> Enab  | le            | R            | 1        | Counter Enabled  |           |     |     |  |
|                                    | Ũ                    |               |              | Counte   | Counter Disabled |           |     |     |  |
|                                    |                      |               | W            | 1        | Enable           | Counter   |     |     |  |
|                                    |                      |               | W            | 0        | Stop C           | ounter    |     |     |  |
| 5                                  | Sync Mode R/         |               |              | 1        | Enable Sync Mode |           |     |     |  |
|                                    | -                    |               |              | 0        | Diable Sync Mode |           |     |     |  |
| 43210 Reserved R 1 Always reads 11 |                      |               |              | reads 11 | .111             |           |     |     |  |
|                                    |                      |               | W            | Х        | No Effe          | ect       |     |     |  |

#### Table 39. CTR3 Register (Group/Bank 0Dh, Register 3)



# T16 Control Register (CTR2)

The T16 Control Register, known as CTR2, controls the operation of the 16-bit  $T_{16}$  timer (see Table 45).

| Bit         | 7                     | 6                        | 5            | 4      | 3                        | 2                       | 1                       | 0           |  |  |
|-------------|-----------------------|--------------------------|--------------|--------|--------------------------|-------------------------|-------------------------|-------------|--|--|
| Bit/Field   | T16_                  | Single/<br>Mod-<br>ulo-n | Time_<br>Out | T16_CI | ock                      | Capture<br>INT_<br>Mask | Counter<br>INT_<br>Mask | P41_<br>Out |  |  |
| R/W         | R/W                   | R/W                      | R/W          | R/W    | R/W                      | R/W                     | R/W                     | R/W         |  |  |
| Reset       | 0                     | 0                        | 0            | 0      | 0                        | 0                       | 0                       | 0           |  |  |
| R = Read, V | N = Write, X          | ( = Indete               | erminate     |        |                          |                         |                         |             |  |  |
| Bit         |                       |                          |              |        |                          |                         |                         |             |  |  |
| Position    | Bit/Field             |                          | R/W          | Value  | Descrip                  | tion                    |                         |             |  |  |
| 7           | T <sub>16</sub> Enab  | le                       | R            | 1      |                          | Counter Enabled         |                         |             |  |  |
|             |                       |                          | R            | 0      |                          | Disabled                |                         |             |  |  |
|             |                       |                          | W            | 1      | Enable (                 |                         |                         |             |  |  |
|             |                       |                          | W            | 0      | Stop Co                  | unter                   |                         |             |  |  |
| _6          | Single/               |                          | R/W          |        | In Transmit Mode:        |                         |                         |             |  |  |
|             | Modulo-n              | 1                        |              | 1      | Single P                 | ass                     |                         |             |  |  |
|             |                       |                          |              | 0      | Modulo-                  | n                       |                         |             |  |  |
|             |                       |                          |              |        | In Demo                  | dulation M              | lode:                   |             |  |  |
|             |                       |                          |              | 1      | T <sub>16</sub> Doe      | s Not Rec               | ognize Ed               | ge          |  |  |
|             |                       |                          |              | 0      | T <sub>16</sub> Rec      | ognizes Eo              | dge                     |             |  |  |
| 5           | Time_Out              |                          | R            | 1      | Counter Timeout Occurred |                         |                         |             |  |  |
|             |                       |                          | R            | 0      |                          | nter Timeo              | ut                      |             |  |  |
|             |                       |                          | W            | 1      | Reset Fl                 | •                       |                         |             |  |  |
|             |                       |                          | W            | 0      | No Effec                 | t                       |                         |             |  |  |
| 43          | T <sub>16</sub> Clock | (                        | R/W          | 11     | SCLK/8                   |                         |                         |             |  |  |
|             |                       |                          |              | 10     | SCLK/4                   |                         |                         |             |  |  |
|             |                       |                          |              | 01     | SCLK/2                   |                         |                         |             |  |  |
|             |                       |                          |              | 00     | SCLK                     |                         |                         |             |  |  |
| 2           | Capture I             | nterrupt                 | R/W          | 1      | Enable [                 | Data Captu              | ure Interru             | pt          |  |  |
|             | Mask                  | •                        |              | 0      |                          | Data Capt               |                         | •           |  |  |
| 1_          | Counter I             | nterrupt                 | R/W          | 1      | Enable 7                 | Fime_Out                | Interrupt               |             |  |  |
|             | Mask                  | -                        |              | 0      |                          | Time_Out                | •                       |             |  |  |
| 0           | P41_Out               |                          | R/W          | 1      | P41 con                  | figured as              | T <sub>16</sub> Outp    | ut          |  |  |
|             |                       |                          |              | 0      | P41 con                  | figured as              | I/O                     |             |  |  |

# Table 45. CTR2 Register (Group/Bank 0Dh, Register 2)



| Symbol           | Parameter                       | V <sub>DD</sub> | Min                  | Max     | Units    | Comments                                                         |
|------------------|---------------------------------|-----------------|----------------------|---------|----------|------------------------------------------------------------------|
| V <sub>DD</sub>  | Power Supply Voltage            |                 | 3                    | 5.5     |          |                                                                  |
| V <sub>CH</sub>  | Clock Input High Voltage        | 3.0 V           | 0.8Vdd               | Vdd+0.3 | V        | Driven by Ext. clock                                             |
|                  |                                 | 5.5 V           | 0.8Vdd               | Vdd+0.3 | V        | generator                                                        |
| V <sub>CL</sub>  | Clock Input Low Voltage         | 3.0 V           | Vss-0.3              | 0.2Vdd  |          | Driven by Ext. clock                                             |
|                  |                                 | 5.5 V           | Vss-0.3              | 0.2Vdd  |          | generator                                                        |
| VIH              | Input High Voltage              | 3.0 V           | 0.7Vdd               | Vdd+0.3 | V        |                                                                  |
|                  |                                 | 5.5 V           | 0.7Vdd               | Vdd+0.3 | V        |                                                                  |
| V <sub>IL</sub>  | Input Low Voltage               | 3.0 V           | Vss-0.3              | 0.2Vdd  | V        |                                                                  |
|                  |                                 | 5.5 V           | Vss–0.3              | 0.2Vdd  | V        |                                                                  |
| V <sub>OH1</sub> | Output High Voltage             | 3.0 V           | V <sub>DD</sub> -0.8 |         | V        | –1.2 mA                                                          |
|                  | Regular I/O                     | 5.5 V           | V <sub>DD</sub> 0.8  |         | V        |                                                                  |
| V <sub>OH2</sub> | High Drive Pins (P54, P55, P56, | 3.0 V           | V <sub>DD</sub> -0.8 |         | V        | –5.0 mA                                                          |
|                  | P57)                            | 5.5 V           | V <sub>DD</sub> -0.8 |         | V        |                                                                  |
| V <sub>OL1</sub> | Regular I/O                     | 3.0 V           |                      | 0.4     | V        | 2 mA                                                             |
|                  | Output low voltage              | 5.5 V           |                      | 0.8     | V        | 4.0 mA                                                           |
| V <sub>OL2</sub> | High Drive Pins (P54, P55, P56, | 3.0 V           |                      | 0.4     | V        | 4 mA                                                             |
|                  | P57)                            | 5.5 V           |                      | 0.8     | V        | 7.0 mA                                                           |
| I <sub>CCO</sub> | Controlled Current Output (P43) | 3.0 V           | 70                   | 120     | mA       | Vout = 1.2 V to VDD                                              |
|                  |                                 | 5.5 V           | 70                   | 120     | mA       | (see Figure 17)                                                  |
| IIL              | Input Leakage                   | 3.0 V           | -1                   | 1 μΑ    | μΑ       | Vin=0 V, Vdd                                                     |
|                  |                                 | 5.5 V           | -1                   | 1 μΑ    | μA       | Vin=0 V, Vdd                                                     |
| I <sub>CC</sub>  | Supply Current                  | 3.0 V           |                      | 10      | mA       | at 8 MHz                                                         |
|                  |                                 | 5.5 V           |                      | 15      | mA       | at 8 MHz                                                         |
|                  |                                 | 3.0 V           |                      | 250     | μΑ       | at 32 KHz                                                        |
|                  |                                 | 5.5 V           |                      | 850     | μA       | at 32 KHz                                                        |
|                  |                                 |                 |                      |         |          | ADC is off.                                                      |
| I <sub>CC1</sub> | Standby Current (Halt Mode)     | 3.0 V           |                      | 3       | mA       | Vin=0 V, Vdd                                                     |
|                  |                                 | 5.5 V           |                      | 5       | mA       | at 8 MHz<br>Clearly divided by 40                                |
|                  |                                 | 3.0 V<br>5.5 V  |                      | 2<br>4  | mA<br>mA | Clock divided by 16<br>XTAL running                              |
|                  |                                 | 5.5 V           |                      | 4       | IIIA     | ADC is off.                                                      |
|                  | Standby Current (STOP Mode)     | 3.0 V           |                      | 20      | μA       | Vin=0 V, Vdd; ADC is off.                                        |
| I <sub>CC2</sub> | Standby Current (STOP Mode)     | 5.5 V           |                      | 30      | μΑ<br>μΑ | P43=1 or high impedance                                          |
|                  |                                 | 5.5 V           |                      | 50      | μΑ       | WDT, Comparators, Low<br>Voltage Detection, and ADC (if          |
|                  |                                 |                 |                      |         |          | applicable) are disabled. The                                    |
|                  |                                 |                 |                      |         |          | IC might draw more current if<br>any of the above peripherals is |
|                  |                                 |                 |                      |         |          | enabled.                                                         |
| I <sub>ADC</sub> | Current with A/D Running        | 3.0 V           |                      | 500     | μA       |                                                                  |
|                  | č                               | 5.5 V           |                      | 900     | μΑ       |                                                                  |
| V <sub>LV</sub>  | Vdd Low-Voltage Protection      |                 |                      | 2.90    | V        | Low voltage protection                                           |
|                  | -                               |                 |                      |         |          | is also known as                                                 |
|                  |                                 |                 |                      |         |          | brownout.                                                        |
|                  |                                 |                 |                      |         |          | Typical is 2.6 V.                                                |
| V <sub>LB</sub>  | Low-Battery Detection           |                 |                      | VLV+    | V        |                                                                  |
|                  |                                 |                 |                      | 0.5     | V        |                                                                  |

# Table 54. DC Characteristics for the Z86D99X (OTP Only)



# **Analog-to-Digital Converter Characteristics**

Table 56 lists the analog-to-digital converter characteristics.

#### Table 56. Analog-to-Digital Converter Characteristics

| Parameter                                                | Minimum                               | Typical          | Maximum                | Units |
|----------------------------------------------------------|---------------------------------------|------------------|------------------------|-------|
| Resolution                                               |                                       | 8                |                        | bits  |
| Integral Nonlinearity                                    |                                       | 0.5              | 1                      | LSB   |
| Differential Nonlinearity                                |                                       | 0.5              | 1                      | LSB   |
| Zero Error at 25 °C                                      |                                       |                  | 7.8                    | mV    |
| Supply Voltage Range (OTP)                               | 3.0                                   |                  | 5.5                    | V     |
| Supply Voltage Range (ROM)                               | 2.3                                   |                  | 5.5                    | V     |
| Power Dissipation (No Load)                              |                                       |                  | 1.2                    | mW    |
| Clock Frequency (f ADC)                                  |                                       |                  | 4                      | MHz   |
| Input Voltage Range                                      | V <sub>Ref-</sub>                     |                  | V <sub>Ref+</sub>      | V     |
| Step Response                                            |                                       |                  | 2/(0.0021 X f ADC)     | S     |
| ADC Input Capacitance                                    | 25                                    |                  | 40                     | pF    |
| Vref Input Capacitance                                   | 25                                    |                  | 40                     | pF    |
| V <sub>Ref+</sub> Range                                  | V <sub>Ref-</sub> +2.0                |                  | AV <sub>DD</sub>       | V     |
| V <sub>Ref-</sub> Range                                  | AGND                                  |                  | V <sub>Ref+</sub> -2.0 | V     |
| (V <sub>Ref+</sub> )–(V <sub>Ref</sub> )                 | 2.0                                   |                  | AV <sub>DD</sub>       | V     |
| Temperature Range                                        | 0                                     |                  | 70                     | °C    |
| 3-db Frequency                                           |                                       | (0.0021 X f ADC) |                        | Hz    |
| Signal to Noise                                          | 47                                    |                  |                        | db    |
| ADC Output Code                                          |                                       | Dout             |                        |       |
| Vref Input Source Impedance                              |                                       |                  | 1.0                    | kOhms |
| ADC Input Source Impedance                               |                                       |                  | 1.0                    | kOhms |
| Notes: Dout= [(Vin-V <sub>Ref</sub> -)/(V <sub>Ref</sub> | <sub>f+</sub> –V <sub>Ref–</sub> )] X |                  | 1.0                    | KOIII |

f ADC = set in ADCCTRL configuration register

Step Response is the time to track the input if a step from V<sub>Ref-</sub> to V<sub>Ref+</sub> is applied.

The ADC input is a switching capacitor that charges up to the applied input voltage whenever it is configured as an ADC input. If you switch it from digital mode to



the ADC input mode, the switching capacitor starts to charge up from 0 V. For the maximum swing (Dout = 0 to FF), it takes 2/(0.0021x f ADC). For an 8-MHz MCU crystal (with clock divide-by-two mode), the internal system clock is 4 MHz. In ADCCTRL, if you select the ADC frequency = system clock divided by 1 option, f ADC = 4 MHz. The step response = 238 uS.

# **AC Characteristics**

Table 57 lists the AC characteristics.

| No. | Symbol       | Parameter                         | VDD   | Min  | Max   | Units |
|-----|--------------|-----------------------------------|-------|------|-------|-------|
| 1   | ТрС          | Input Clock Period                | 2.3 V | 120  | DC    | ns    |
|     |              |                                   | 5.5 V | 120  | DC    |       |
| 2   | TrC, TfC     | Clock Input Rise and Fall Times   | 2.3 V |      | 25 ns |       |
|     |              |                                   | 5.5 V |      | 25 ns |       |
| 3   | TwC          | Input Clock Width                 | 2.3 V | 5.0  |       | ns    |
|     |              |                                   | 5.5 V | 5.0  |       | ns    |
| 4   | TwTinL       | Timer Input Low Width             | 2.3 V | 2TPC |       |       |
|     |              |                                   | 5.5 V | 2TPC |       | ns    |
| 5   | TwTinH       | Timer Input High Width            | 2.3 V | 2    |       | ТрС   |
|     |              |                                   | 5.5 V | 2    |       | ТрС   |
| 6   | TpT1in       | Timer 1 Input Period              | 2.3 V | 8    |       | ТрС   |
|     |              |                                   | 5.5 V | 8    |       | ТрС   |
| 7   | TrTin, TfTin | Timer Input Rise and Fall Time    | 2.3 V |      | 100   | ns    |
|     |              |                                   | 5.5 V |      | 100   | ns    |
| 8   | TwIL         | Interrupt Request Low Time        | 2.3 V | 100  |       | ns    |
|     |              |                                   | 5.5 V | 70   |       | ns    |
| 9   | TwIH         | Interrupt Request Input High Time | 2.3 V | 5    |       | ТрС   |
|     |              |                                   | 5.5 V | 5    |       | ТрС   |
| 10  | Twsm         | Stop-Mode Recovery Width Spec     | 2.3 V | 12   |       | ns    |
|     |              |                                   | 5.5 V | 12   |       | ns    |
| 12  | Twdt         | Watch-Dog Timer Time Out          | 2.3 V | 25   |       | ms    |
|     |              |                                   | 5.5 V | 10   |       | ms    |

### **Table 57. AC Characteristics**



INCH

MAX

0.110

0.015

0.094

0.0135

0.010

0.630

0.299

0.410

0.040

0.025 BSC

MIN

0.095

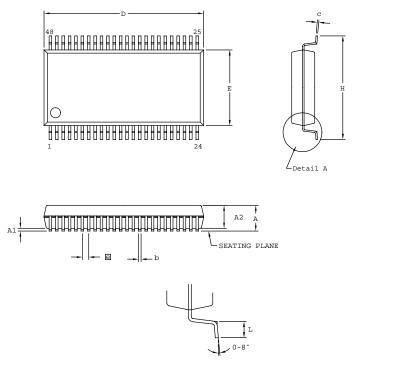
0.009

0.086

0.008

0.005

0.620


0.291

0.400

0.020

# Packaging

Figure 37 through Figure 40 show the available packages.



Detail A

Figure 37. 48-Pin SSOP

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

MILLIMETER

MAX

2.79

0.38

2.39

0.34

0.25

16.00

7.59

10.41

1.016

0.635 BSC

MIN

2.41

0.23

2.18

0.20

0.13

15.75

7.39

10.16

0.51

SYMBOL

A A1

A2

b

C

D

Ε

8

Н

L



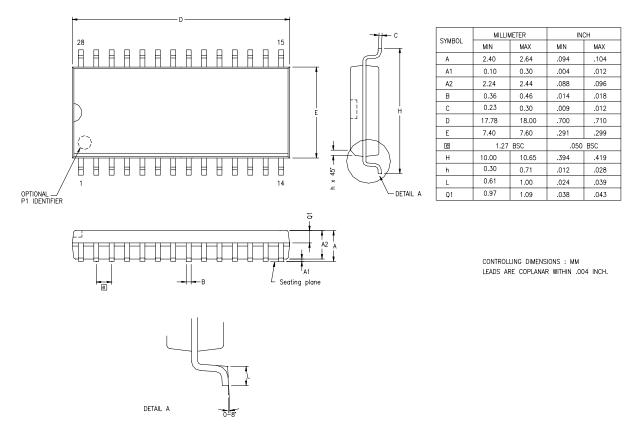



Figure 40. 28-Pin SOIC