

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	489 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86d991sz008sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 1.	Z86L99/Z86D99 Feature Comparison	1
Table 2.	Pin Descriptions	7
Table 3.	Interrupt Types, Sources, and Vectors	15
Table 4.	Interrupt Edge Select for External Interrupts	17
Table 5.	Control and Status Register Reset Conditions	20
Table 6.	Clock Status in Operating Modes	22
Table 7.	Special Port Pin Functions	27
Table 8.	Active Glitch/Filter Specifications (Preliminary)	32
Table 9.	Current Sink Pad P43 Specifications (Preliminary)	33
Table 10.	I/O Port Registers (Group 0, Bank 0, Registers 0-F)	52
Table 11.	Timer Control Registers (Group 0, Bank D, Registers 0-F)	53
Table 12.	Control and Status Registers (Group F, Bank 0,	50
Table 12	Registers 0–F)	53
Table 13.	SMR and Port Mode Registers (Group 0, Bank F, Registers 0–F)	54
Table 14.	Register Description Locations	55
Table 15.	FLAGS Register [Group/Bank F0h, Register C (R252)]	57
Table 16.	RP Register [Group/Bank F0h, Register D (R253)]	58
Table 17.	SP Register [Group/Bank F0h, Register F (R255)]	59
Table 18.	LB Register (Group/Bank 0Dh, Register C)	60
Table 19.	ADCCTRL Register (Group/Bank 0Fh, Register 8)	61
Table 20.	ADCDATA Register (Group/Bank 00h, Register 7)	62
Table 21.	IMR (Group/Bank 0Fh, Register B)	63
Table 22.	IPR (Group/Bank 0Fh, Register 9)	64
Table 23.	IRQ (Group/Bank 0Fh, Register A)	65
Table 24.	P456CON Register (Group/Bank 0Fh, Register 0)	67
Table 25.	P3M Register [Group/Bank F0h, Register 7 (R247)]	68
Table 26.	P2 Register [Group/Bank 00h, Register 2 (R2)]	68
Table 27.	P2M Register [Group/Bank F0h, Register 6 (R246)]	68
Table 28.	P4 Register [Group/Bank 00h, Register 4 (R4)]	69
Table 29.	P4M Register (Group/Bank 0Fh, Register 2)	69
Table 30.	P5 Register [Group/Bank 00h, Register 5 (R5)]	70
Table 31.	P5M Register (Group/Bank 0Fh, Register 4)	70
Table 32.	P6 Register [Group/Bank 00h, Register 6 (R6)]	71

- Interrupt Control (IPR, IMR, and IRQ)
- Stop Mode Recovery (SMR, P2SMR, and P5SMR)
- Low-Battery Detect (LB) Flag

The Z8 uses a 16-bit Program Counter (PC) to determine the sequence of current program instructions. The PC is not an addressable register.

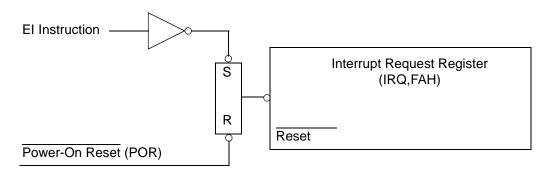
Peripheral registers are used to transfer data, configure the operating mode, and control the operation of the on-chip peripherals. Any instruction that references the register file can access the peripheral registers. The following are peripheral control registers:

- Analog/Digital Converter (ADCCTRL and ADCDATA)
- T1 Timer/Counter (TMR, T1, and PRE1)
- T8 Timer/Counter (CTR0, HI8, LO8, TC8H, and TC8L)
- T16 Timer/Counter (CTR2, HI16, LO16, TC16H, and TC16L)
- T8/T16 Control Registers (CTR1and CTR3)

In addition, the four port registers are considered to be peripheral registers. The following are port control registers:

- Port Configuration Registers (P456CON and P3M)
- Port 2 Control and Mode Registers (P2 and P2M)
- Port 4 Control and Mode Registers (P4 and P4M)
- Port 5 Control and Mode Registers (P5 and P5M)
- Port 6 Control and Mode Registers (P6 and P6M)

The functions and applications of the control and peripheral registers are explained in "Control and Status Registers" on page 52.


Memory (ROM/OTP and RAM)

There are four basic address spaces available to support a wide range of configurations:

- Program memory (on-chip)
- Standard register file
- Expanded register file
- Executable RAM

The Z8 standard register file totals up to 256 consecutive bytes organized as 16 groups of 16 eight-bit registers. These registers consist of I/O port registers,

Figure 8. Interrupt Block Diagram

Interrupt requests are stored in the Interrupt Request Register (IRQ), which can also be used for polling. When an interrupt request is granted, the Z8 enters an "interrupt machine cycle" that globally disables all other interrupts, saves the program counter (the address of the next instruction to be executed) and status flags, and finally branches to the vector location for the interrupt granted. It is only at this point that control passes to the interrupt service routine for the specific interrupt.

All six interrupts can be globally disabled by resetting the master Interrupt Enable (bit 7 of the IMR) with a Disable Interrupts (DI) instruction. Interrupts are globally enabled by setting the same bit with an Enable Interrupts (EI) instruction.

Descriptions of three interrupt control registers—the Interrupt Request Register, the Interrupt Mask Register, and the Interrupt Priority Register—are provided in "Register Summary" on page 52. The Z8 family supports both vectored and polled interrupt handling.

External Interrupt Sources

External sources involve interrupt request lines P51, P52, and P53 (IRQ_2 , IRQ_0 , and IRQ_1 , respectively.) IRQ_0 , IRQ_1 , and IRQ_2 are generated by a transition on the corresponding port pin. As shown in Figure 9, when the appropriate port pin (P51, P52, or P53) transitions, the first flip-flop is set. The next two flip-flops synchronize the request to the internal clock and delay it by two internal clock periods. The output of the most recent flip-flop (IRQ_0 , IRQ_1 , or IRQ_2) sets the corresponding Interrupt Request Register bit.

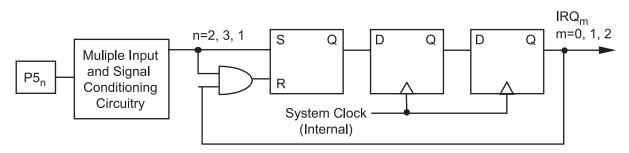


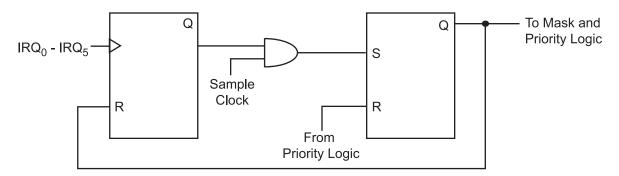
Figure 9. External Interrupt Sources IRQ₀–IRQ₂ Block Diagram

The programming bits for the Interrupt Edge Select function are located in the IRQ register, bits 6 and 7. The configuration of these bits and the resulting interrupt edge is shown in Table 4.

Interrupt Request Register		Interrupt Edge		
Bit 7	Bit 6	IRQ ₂ (P51)	IRQ ₀ (P52)	
0	0	Falling	Falling	
0	1	Falling	Rising	
1	0	Rising	Falling	
1	1	Rising/Falling	Rising/Falling	

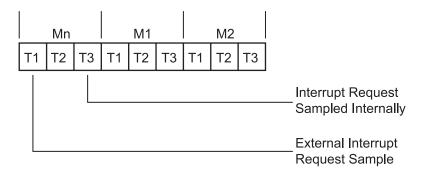
Table 4. Interrupt Edge Select for External Interrupts

Note: Although interrupts are edge triggered, minimum interrupt request Low and High times must be observed for proper operation. See "Electrical Characteristics" on page 85 for exact timing requirements (T_WIL, T_WIH) on external interrupt requests.


Internal Interrupt Sources

Internal sources are ORed with the external sources, so that either an internal or external source can trigger the interrupt.

Interrupt Request Register Logic and Timing


Figure 10 shows the logic diagram for the Interrupt Request Register. The leading edge of an interrupt request sets the first flip-flop. It remains set until the interrupt requests are sampled.

Internal interrupt requests are sampled during the most recent clock cycle before an Op Code fetch (see Figure 11.) External interrupt requests are sampled two internal clocks earlier than internal interrupt requests because of the synchronizing flip-flops shown in Figure 9.

At sample time, the interrupt request is transferred to the second flip-flop shown in Figure 10, which drives the interrupt mask and priority logic. When an interrupt cycle occurs, this flip-flop is reset only for the highest priority level that is enabled.

The user has direct access to the second flip-flop by reading and writing to the IRQ. The IRQ is read by specifying it as the source register of an instruction, and the IRQ is written by specifying it as the destination register.

Interrupt Initialization

After RESET, all interrupts are disabled and must be re-initialized before vectored or polled interrupt processing can begin. The Interrupt Priority Register, Interrupt Mask Register, and Interrupt Request Register must be initialized, in that order, to

start the interrupt process. However, the IPR does not have to be initialized for polled processing.

Interrupts must be globally enabled using the EI instruction. Setting bit 7 of the IMR is not sufficient. Subsequent to this EI instruction, interrupts can be enabled either by IMR manipulation or by use of the EI instruction, with equivalent effects.

Additionally, interrupts must be disabled by executing a DI instruction before the IPRs or IMRs can be modified. Interrupts can then be enabled by executing an EI instruction.

IRQ Software Interrupt Generation

IRQ can be used to generate software interrupts by specifying IRQ as the destination of any instruction referencing the Z8 Standard Register File. These Software Interrupts (SWIs) are controlled in the same manner as hardware-generated requests (the IPR and the IMR control the priority and enabling of each SWI level).

To generate a SWI, the request bit in the IRQ is set as follows:

OR IRQ, #*NUMBER*

where the immediate data, *NUMBER*, has a 1 in the bit position corresponding to the appropriate level of the SWI.

For example, for an SWI on IRQ5, *NUMBER* has a 1 in bit 5. With this instruction, if the interrupt system is globally enabled, IRQ5 is enabled, and there are no higher priority pending requests, control is transferred to the service routine pointed to by the IRQ5 vector.

Reset Conditions

A system reset overrides all other operating conditions and puts the Z8 into a known state. The control and status registers are reset to their default conditions after a power-on reset (POR) or a Watch-Dog Timer (WDT) time-out while in RUN mode. The control and status registers are not reset to their default conditions after Stop Mode Recovery (SMR) while in HALT or STOP mode.

General-purpose registers are undefined after the device is powered up. Resetting the Z8 does not affect the contents of the general-purpose registers. The registers keep their most recent value after any reset, as long as the reset occurs in the specified V_{CC} operating range. Registers do not keep their most recent state from a V_{LV} reset, if V_{CC} drops below V_{RAM} (see Table 54 on page 87).

Following a reset (see Table 5), the first routine executed must be one that initializes the control registers to the required system configuration.

Special Functions

Table 7 defines the special functions of Ports 4 and 5.

Table 7. Special Port Pin Functions

Function	Pin	Signal	Configuration Register
Analog Comparator Inputs	P51	CIN1	P456CON
	P52	CIN2	P456CON
Analog Comparator	P50	CREF1	
References	P53	CREF2	
Analog Comparator Outputs	P54	COUT1	
	P55	COUT2	
ADC Channels	P44	ADC0	ADCCTRL
	P45	ADC1	ADCCTRL
	P46	ADC2	ADCCTRL
	P47	ADC3	ADCCTRL
External Interrupts	P52	IRQ ₀	IMR and IRQ
	P53	IRQ ₁	IMR and IRQ
	P51	IRQ ₂	IMR and IRQ
T _{IN} External Clock Input	P52	T _{IN}	TMR and PRE1
Capture Timer Input	P51	Demodulator_Input	CTR1
T1 Timer Output	P56	T1OUT	TMR
T8 Output	P40	P40_Out	CTR0
T16 Output	P41	P41_Out	CTR2
Combined T8/T16 Output	P43	P43_Out	CTR1
Controlled Current Output			
ZiLOG Test Mode	P41	DSn Enable	P456CON
	P42	ASn Enable	P456CON

Controlled Current Output

P43 is an open-drain output-only pin on the Z86D990/D991, but it can be configured as output or Tristate High Impedance on the Z86L990/L991. To function properly, Bit 3 of P4M must be set to zero to configure the pin as an open-drain output. For the Z86L990/L991 after reset, P43 defaults to Tristate High Impedance while the Z86D990/D991 P43 is always configured as output. The data at Port 4 must be initialized as it is undefined at power-on reset.

The current output is a controlled current source that is controlled by the output of the value of P43 (see Table 9). P43 *cannot* be configured as input, and if P43 is read, P43 always returns the state of the output value (1 for no sink and 0 for sink).

P43 uses internal current reference and will draw current if it outputs a low logic even without external connection. This applies to both Run mode and Stop mode.

Parameter	Min	Max	Conditions
Rise time		0.4 μ	LED load
Fall time		0.02 μ	LED load
V _{outmin}		0.54 V	@27C
Comparator response		0.2 μ	
Regulated current	80 mA	120 mA	
Internal resistance		80 Ω	

Table 9. Current Sink Pad P43 Specifications (Preliminary)

The pad driver can function in two modes:

controlled current output, when the voltage on the pad is over a minimum value

$$V_{pad} > V_{outmin}$$

• resistive pull down when the driver cannot regulate the current; in this mode, the gate of the NMOS pull down is raised to the power rail.

The I-V characteristics of the pad are presented in Figure 17.

Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC

Counter/timer 1 is driven by a timer clock generated by dividing the internal clock by four. The divide-by-four stage, the 6-bit prescaler, and the 8-bit counter/timer form a synchronous 16-bit divide chain. Counter/timer T_1 can also be driven by an external input (T_{IN}) using Port P52. Port P5₆ can serve as a timer output (T_{OUT}) through which T_1 or the internal clock can be output. The timer output toggles at the end-of-count. Figure 18 is a block diagram of the counter/timer.

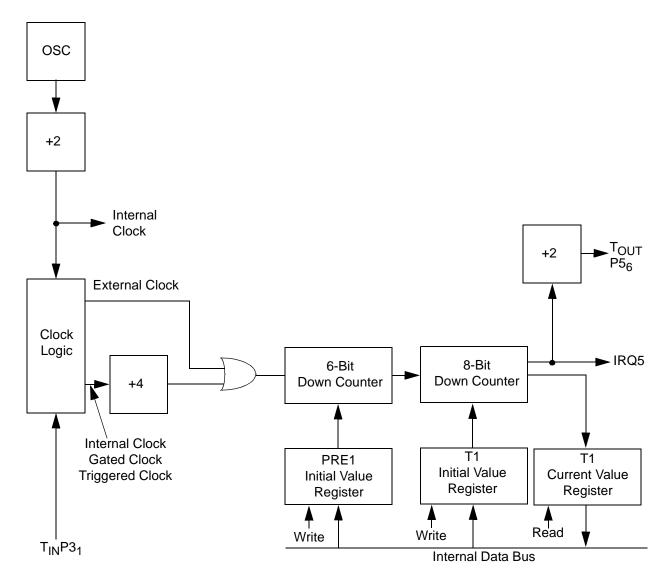


Figure 18. T₁ Counter/Timer Block Diagram

The six most significant bits (D_2-D_7) of PRE₁ hold the prescaler count modulo, a value from 11 to 64 decimal. The prescaler register also contains control bits that specify T₁ counting modes. These bits also indicate whether the clock source for T₁ is internal or external.

The counter/timer T_1 (F2h) consists of an 8-bit down-counter, a write-only register that holds the initial count value, and a read-only register that holds the current count value (see Figure 18 on page 35). The initial value can range from 1 to 256 decimal (01h, 02h, ..., 00h). Figure 21 illustrates the counter/timer register.

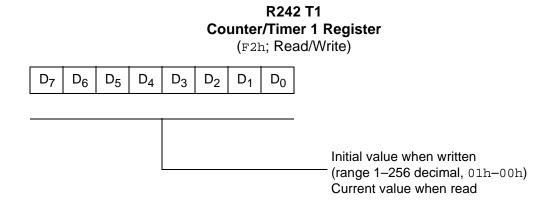
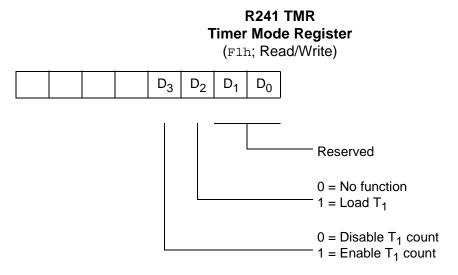
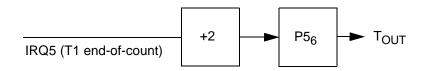



Figure 21. Counter/Timer 1 Register

Counter/Timer Operation


Under software control, T_1 is started and stopped using the Timer Mode register (F1h) bits D_2 - D_3 : a Load bit and an Enable Count bit. See Figure 22.



Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC

The internal clock can be selected as output instead of T_1 by setting TMR bits D_7 and D_6 both to 1. The internal clock (XTAL frequency/2) is then directly output on P5₆ (Figure 27).

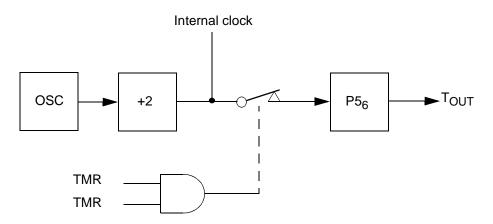
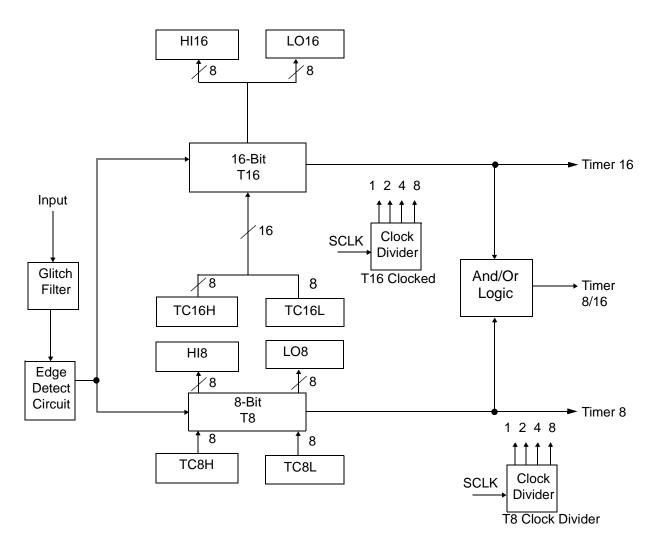


Figure 27. Internal Clock Output Using $T_{\mbox{OUT}}$

While programmed as T_{OUT} , P5₆ cannot be modified by a write to port register P5. However, the Z8 software can examine P5₆'s current output by reading the port register.


\mathbf{T}_{IN} Modes

The Timer Mode register TMR (F1h) (Figure 28) is used in conjunction with the Prescaler register PRE_1 (F3h) (Figure 29) to configure $P5_2$ as T_{IN} . T_{IN} is used in conjunction with T_1 in one of four modes:

- External clock input
- Gated internal clock
- Triggered internal clock
- Retriggerable internal clock

Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If CTR1, D1 is 0, T8_OUT is 1. If CTR1, D1 is 1, T8_OUT is 0.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1 D1). If the initial value (CTR1 D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In single-pass mode (CTR0 D6), T8 counts down to 0 and stops, T8_OUT toggles, the time-out status bit (CTR0 D5) is set, and a time-out interrupt can be generated if it is enabled (CTR0 D1). In modulo-N mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. Then T8 loads a new count (if T8_OUT level is 0), TC8L is loaded; if T8_OUT is 1, TC8H is loaded.

3	Decimal Adjust Flag (D)	R/W	1 0	Used for BCD arithmetic—after a subtraction, the flag is set to 1; following an addition, it is cleared to 0
2	Half Carry Flag (H)	R/W	1 0	Set to 1, whenever an addition generates a "carry out" of bit position 3 (overflow) of an accumulator; or subtraction generates a "borrow into" bit 3
1_	User Flag (F2)	R/W	1 0	User definable
0	User Flag (F1)	R/W	1 0	User definable

Table 15. FLAGS Register [Group/Bank F0h, Register C (R252)] (Continued)

Register Pointer (RP)

Z8 instructions can access registers directly or indirectly using either a 4-bit or 8bit address field. The upper nibble of the Register Pointer, as described in Table 16, contains the base address of the active Working Register GROUP. The lower nibble contains the base address of the Expanded Register File BANK. When using 4-bit addressing, the 4-bit address of the working register (r0 to rF) is combined with the upper nibble of the Register Pointer (identifying the WR GROUP), thus forming the 8-bit actual address.

Bit	7	6	5	4	3	2	1	0	
Bit/Field	it/Field Working Register Group					Expanded Register File Bank			
R/W	R/W	R/W	R/W	R/W	R/W R/W R/W F		R/W		
Reset	0	0	0	0	0	0	0	0	
R = Read, W	/ = Write	, X = Indete	erminate	;					
Bit									
Position	Bit/Fie	ld	R/W	Value	Descri	ption			
7654		g Register Pointer	R/W	Х	Identifies 1 of 16 possible WR Groups, each containing 16 Worki Registers				
3210	Expano Registe Bank P	er File	R/W	Х	Identifies 1 of 16 possible ERF Banks; only Banks 0, D, and F ar valid for the Z86D99/Z86L99 fam				

Interrupt Mask Register

The IMR, as described in Table 21, individually or globally enables the six interrupt requests. Bit 7 of the IMR is the master enable and must be set before any of the individual interrupt requests can be recognized. Bit 7 must be set and reset by the enable interrupts and disable interrupts instructions only. The IMR is automatically reset during an interrupt service routine and set following the execution of an Interrupt Return (IRET) instruction.

Table 21. IMR	(Group/Bank 0Fh,	Register B)
---------------	------------------	-------------

Bit	7	6	5	4	3	2	1	0
		Re-						
Bit/Field	Master	served	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
R = Read, \	W = Write,	X = Indet	erminate	1	÷			
Bit								
Position	Bit/Field	d	R/W	Value	Descri	ption		
7	Master		R/W	1	Enable	Master In	nterrupt	
				0	Disable Master Interrupt			
_6	Reserved		R	1	Always reads 1			
			W	Х	No Effect			
5	IRQ ₅		R/W	1	Enable	IRQ ₅		
	-			0	Disable IRQ ₅			
4	IRQ_4		R/W	1	Enable	IRQ ₄		
				0	Disable	IRQ ₄		
3	IRQ ₃		R/W	1	Enable	IRQ ₃		
	-			0	Disable	IRQ ₃		
2	IRQ ₂		R/W	1	Enable IRQ ₂			
				0	Disable IRQ ₂			
1_	IRQ ₁	IRQ ₁		1	Enable IRQ ₁			
				0	Disable	e IRQ ₁		
0	IRQ ₀		R/W	1	Enable	IRQ ₀		
				0	Disable	e IRQ ₀		

Note: Bit 7 must be reset by the DI instruction before the contents of the Interrupt Mask Register or the Interrupt Priority Register are changed except in the following situations:

- Immediately after a hardware reset
- Immediately after executing an interrupt service routine and before IMR bit
 7 has been set by any instruction

T1 Data Register (T1)

The counter/timer register (T1) consists of an 8-bit down counter, a write-only register that holds the initial count value, and a read-only register that holds the current count value. The initial value of T1 can range from 1 to 255 (0 represents 256) (see Table 34.)

Table 34.T1 Register	[Group/Bank F0h,	Register 2 (R242)]
----------------------	------------------	--------------------

Bit	7	6	5	4	3	2	1	0	
Bit/Field	T1_Value								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
R = Read, W	/ = Write,	X = Indet	erminate						

Bit Position	Bit/Field	R/W	Value	Description
76543210	T ₁ Value	R W	Data Data	Current Value Initial Value (Range 1 to 256 Decimal)

T1 Mode Register (TMR)

Under software control, T1 counter/timer is started and stopped using the T1 Mode Register as shown in Table 35.

Table 35.TMR Register [Group/Bank F0h, Register 1 (R241)]

Bit	7	6	5	4	3	2	1	0
				1	T1	T1		l
Bit/Field	TOUT	Mode	TIN_M	ode	Count	Load	Reserv	ved
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1
R = Read, \	W = Write	e, X = Inde	eterminate	9		÷		·
Bit								
Position	Bit/Fie	ld	R/W	Value	Descrip	otion		
76	T _{OUT} N	Node	R/W	11	Internal	Clock Ol	JT on P5	6
				10	T ₁ OUT	on P56		
				01	Reserve	ed		
				00	Not use	d (P56 co	onfigured	as I/O)
54	T _{IN} Mo	de	R/W	11	Trigger	Input (Re	triggerab	le)
				10	Trigger	Input (No	t-retrigge	rable)
				01	Gate In	• •		,
				00	Externa	I Clock In	put (T _{IN} d	on P52)
3	T₁ Cou	Int	R/W	1	Enable	T₁ Count		
	,			0		T ₁ Count		

T8/T16 Control Register A (CTR1)

The T8/T16 Control Register A controls the functions in common with both the T_8 and T_{16} counter/timers. The T_8 and T_{16} counter/timers have two primary modes of operation: Transmit Mode and Demodulation Mode. Transmit Mode is used for generating complex waveforms. The Transmit Mode has two submodes: Normal Mode and Ping-Pong Mode. The settings for CTR1 in Transmit Mode are given in Table 37.

Bit	7	6	5	4	3	2	1	0
Bit/Field	Mode	P43 Out	T8/T16	_Logic	Transı Subm	_	Initial_ T8_Out	Initial_ T16_ Out
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
R = Read, \	N = Write,	X = Inde	terminate					
Bit								
Position	Bit/Fiel	d	R/W	Value	Descr	iption		
7	Mode		R/W	1	Demo	dulation		
				0	Transr	nit		
_6	P43_0u	ıt	R/W	1	P43 configured as T8/T16 Output			
				0	P43 cc	onfigured a	as I/O	
54	T ₈ /T ₁₆ L	ogic	R/W	11	NAND			
	0 10	-		10	NOR			
				01	OR			
				00	AND			
32	Transmi	t_	R/W	11	T16_C)ut = 1		
	Submod	le		10	T16_C)ut = 0		
				01	•	ong Mode		
				00	Norma	I Operatio	n	
1_	Initial_T	8_Out	R/W	1	T8_Ou	it set to 1	initially	
				0	T8_Ou	it set to 0	initially	
0	Initial_T	16_Out	R/W	1	T16_C	out set to 1	l initially	
				0		out set to C	•	

Table 37. CTR1 Register (In Transmit Mode) (Group/Bank 0Dh, Register 1)

Electrical Characteristics

This section covers the absolute maximum ratings, standard test conditions, DC characteristics, and AC characteristics.

Absolute Maximum Ratings

Table 53 lists the absolute maximum ratings.

Symbol	Description	Min	Max	Units
V _{MAX}	Supply Voltage (*)	-0.3	+7.0	V
T _{STG}	Storage Temp.	–65°	+150°	С
T _A	Oper. Ambient Temp.		†	С
V _{RAM}	Minimum RAM Voltage	1.0 V**		
†See "Orde	n all pins with respect to GND ering Information" on page 95 ed value, not tested.			

Table 53. Absolute Maximum Ratings

Stresses greater than those listed in the preceding table can cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period can affect device reliability.

Standard Test Conditions

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 36).

Analog-to-Digital Converter Characteristics

Table 56 lists the analog-to-digital converter characteristics.

Table 56. Analog-to-Digital Converter Characteristics

Parameter	Minimum	Typical	Maximum	Units
Resolution		8		bits
Integral Nonlinearity		0.5	1	LSB
Differential Nonlinearity		0.5	1	LSB
Zero Error at 25 °C			7.8	mV
Supply Voltage Range (OTP)	3.0		5.5	V
Supply Voltage Range (ROM)	2.3		5.5	V
Power Dissipation (No Load)			1.2	mW
Clock Frequency (f ADC)			4	MHz
Input Voltage Range	V _{Ref-}		V _{Ref+}	V
Step Response			2/(0.0021 X f ADC)	S
ADC Input Capacitance	25		40	pF
Vref Input Capacitance	25		40	pF
V _{Ref+} Range	V _{Ref-} +2.0		AV _{DD}	V
V _{Ref-} Range	AGND		V _{Ref+} -2.0	V
(V _{Ref+})–(V _{Ref})	2.0		AV _{DD}	V
Temperature Range	0		70	°C
3-db Frequency		(0.0021 X f ADC)		Hz
Signal to Noise	47			db
ADC Output Code		Dout		
Vref Input Source Impedance			1.0	kOhms
ADC Input Source Impedance			1.0	kOhms

f ADC = set in ADCCTRL configuration register

Step Response is the time to track the input if a step from V_{Ref-} to V_{Ref+} is applied.

The ADC input is a switching capacitor that charges up to the applied input voltage whenever it is configured as an ADC input. If you switch it from digital mode to

Z86D990/Z86D991 OTP and Z86L99X ROM Low-Voltage Microcontrollers with ADC

SYMBOL

A1

A2

В

B1

INCH

.040

.155

.021

.060

MIN MAX

.020

.125

.015

.040

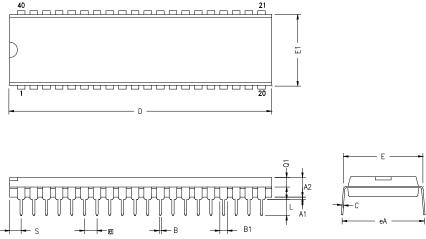
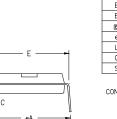



Figure 38. 40-Pin PDIP

С	0.23	0.38	.009	.015	
D	52.07	52.58	2.050	2.070	
Е	15.24	15.75	.600	.620	
E1	13.59	14.22	.535	.560	
e	2.54	TYP	.100 TYP		
eA	15.49	16.76	.610	.660	
L	3.05	3.81	.120	.150	
Q1	1.40	1.91	.055	.075	
S	1.52	2.29	.060	.090	

MILLIMETER

MIN

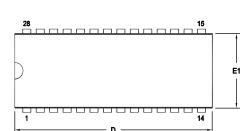
0.51

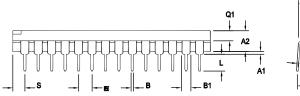
3.18

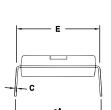
0.38

1.02

MAX

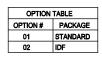

1.02


3.94


0.53

1.52

CONTROLLING DIMENSIONS : INCH



SYMBOL	OPT#	MILLIN	IETER	INC	ж
SIMBOL	01#	MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
ы	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
Е		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
E1	02	12.83	13.08	.505	.515
8		2.54	TYP	.100 BSC	
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
Q1	01	1.40	1.91	.055	.075
Q.I	02	1.40	1.78	.055	.070
•	01	1.52	2.29	.060	.090
S	02	1.02	1.52	.040	.060

CONTROLLING DIMENSIONS : INCH

Note: ZILOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 39. 28-Pin PDIP

Ordering Information

Part	PSI	Description
Z86D99 (OTP)	Z86D990PZ008SC	40-pin PDIP
	Z86D990HZ008SC	48-pin SSOP
	Z86D991PZ008SC	28-pin PDIP
	Z86D991SZ008SC	28-pin SOIC
Z86L99 (Mask ROM)	Z86L990PZ008SC	40-pin PDIP
	Z86L990HZ008SC	48-pin SSOP
	Z86L991PZ008SC	28-pin PDIP
	Z86L991SZ008SC	28-pin SOIC
	Z86L996PZ008SC	28-pin PDIP
	Z86L996SZ008SC	28-pin SOIC
	Z86L997PZ008SC	28-pin PDIP
	Z86L997SZ008SC	28-pin SOIC
Emulator	Z86L9900100ZEM	Emulator/Programmer
Adapter	Z86D9900100ZDH	48 SSOP Adapter
Evaluation Board	Z86L9900100ZCO	Evaluation Board

For fast results, contact your local ZiLOG sale offices for assistance in ordering part(s). Updated information can be found on the ZiLOG website: <u>HTTP://www.ZiLOG.com</u>

Precharacterization Product

The product represented by this document is newly introduced and ZiLOG has not completed the full characterization of the product. The document states what ZiLOG knows about this product at this time, but additional features or nonconformance with some aspects of the document might be found, either by ZiLOG or its customers in the course of further application and characterization work. In addition, ZiLOG cautions that delivery might be uncertain at times, due to start-up yield issues.

ZiLOG, Inc.

532 Race Street

San Jose, CA 95126-3432

Telephone: (408) 558-8500

FAX: 408 558-8300

Internet: <u>HTTP://WWW.ZILOG.COM</u>