Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Discontinued at Digi-Key | | Core Processor | CIP-51 8051 | | Core Size | 8-Bit | | Speed | 50MHz | | Connectivity | I ² C, SMBus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 29 | | Program Memory Size | 32KB (32K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 2.25K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.2V ~ 3.6V | | Data Converters | A/D 20x10/12b SAR; D/A 2x12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-UFQFN Exposed Pad | | Supplier Device Package | 32-QFN (4x4) | | Purchase URL | https://www.e-xfl.com/product-detail/silicon-labs/efm8bb31f32g-a-qfn32 | | Ordering Part Number | Flash Memory (kB) | RAM (Bytes) | Digital Port I/Os (Total) | Number of DACs | ADC0 Channels | Comparator 0 Inputs | Comparator 1 Inputs | Pb-free (RoHS Compliant) | Temperature Range | Package | |-----------------------|-------------------|-------------|---------------------------|----------------|---------------|---------------------|---------------------|--------------------------|-------------------|---------| | EFM8BB31F64G-A-QSOP24 | 64 | 4352 | 21 | 4 | 13 | 6 | 7 | Yes | -40 to +85 °C | QSOP24 | | EFM8BB31F32G-A-QFN32 | 32 | 2304 | 29 | 2 | 20 | 10 | 9 | Yes | -40 to +85 °C | QFN32 | | EFM8BB31F32G-A-QFP32 | 32 | 2304 | 28 | 2 | 20 | 10 | 9 | Yes | -40 to +85 °C | QFP32 | | EFM8BB31F32G-A-QFN24 | 32 | 2304 | 20 | 2 | 12 | 6 | 6 | Yes | -40 to +85 °C | QFN24 | | EFM8BB31F32G-A-QSOP24 | 32 | 2304 | 21 | 2 | 13 | 6 | 7 | Yes | -40 to +85 °C | QSOP24 | | EFM8BB31F16G-A-QFN32 | 16 | 2304 | 29 | 2 | 20 | 10 | 9 | Yes | -40 to +85 °C | QFN32 | | EFM8BB31F16G-A-QFP32 | 16 | 2304 | 28 | 2 | 20 | 10 | 9 | Yes | -40 to +85 °C | QFP32 | | EFM8BB31F16G-A-QSOP24 | 16 | 2304 | 21 | 2 | 13 | 6 | 7 | Yes | -40 to +85 °C | QSOP24 | ### Timers (Timer 0, Timer 1, Timer 2, Timer 3, Timer 4, and Timer 5) Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities. Timer 0 and Timer 1 include the following features: - Standard 8051 timers, supporting backwards-compatibility with firmware and hardware. - · Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin. - · 8-bit auto-reload counter/timer mode - · 13-bit counter/timer mode - · 16-bit counter/timer mode - Dual 8-bit counter/timer mode (Timer 0) Timer 2, Timer 3, Timer 4, and Timer 5 are 16-bit timers including the following features: - Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8 - LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes - Timer 4 is a low-power wake source, and can be chained together with Timer 3 - · 16-bit auto-reload timer mode - Dual 8-bit auto-reload timer mode - · External pin capture - · LFOSC0 capture - · Comparator 0 capture - · Configurable Logic output capture #### Watchdog Timer (WDT0) The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset. The Watchdog Timer has the following features: - Programmable timeout interval - · Runs from the low-frequency oscillator - · Lock-out feature to prevent any modification until a system reset ### 3.6 Communications and Other Digital Peripherals ### Universal Asynchronous Receiver/Transmitter (UART0) UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte. The UART module provides the following features: - · Asynchronous transmissions and receptions - · Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive) - 8- or 9-bit data - · Automatic start and stop generation - · Single-byte buffer on transmit and receive ### Universal Asynchronous Receiver/Transmitter (UART1) UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs. UART1 provides the following features: - Asynchronous transmissions and receptions - Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive) - 5, 6, 7, 8, or 9 bit data - · Automatic start and stop generation - · Automatic parity generation and checking - · Single-byte buffer on transmit and receive - · Auto-baud detection - · LIN break and sync field detection - · CTS / RTS hardware flow control ### Serial Peripheral Interface (SPI0) The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disabled to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode. - Supports 3- or 4-wire master or slave modes - · Supports external clock frequencies up to 12 Mbps in master or slave mode - · Support for all clock phase and polarity modes - 8-bit programmable clock rate (master) - Programmable receive timeout (slave) - · Two byte FIFO on transmit and receive - Can operate in suspend or snooze modes and wake the CPU on reception of a byte - Support for multiple masters on the same data lines ## System Management Bus / I2C (SMB0) The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus. The SMBus module includes the following features: - · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds - · Support for master, slave, and multi-master modes - · Hardware synchronization and arbitration for multi-master mode - · Clock low extending (clock stretching) to interface with faster masters - Hardware support for 7-bit slave and general call address recognition - · Firmware support for 10-bit slave address decoding - · Ability to inhibit all slave states - · Programmable data setup/hold times - Transmit and receive buffers to help increase throughput in faster applications ## 4. Electrical Specifications ### 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 13, unless stated otherwise. ## 4.1.1 Recommended Operating Conditions **Table 4.1. Recommended Operating Conditions** | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|---------------------|----------------|-----|-----|-----------------|------| | Operating Supply Voltage on VDD | V_{DD} | | 2.2 | _ | 3.6 | V | | Operating Supply Voltage on VIO ^{2,} | V _{IO} | | TBD | _ | V _{DD} | V | | System Clock Frequency | f _{SYSCLK} | | 0 | _ | 50 | MHz | | Operating Ambient Temperature | T _A | | -40 | _ | 85 | °C | ## Note: - 1. All voltages with respect to GND - 2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin. - 3. GPIO levels are undefined whenever VIO is less than 1 V. ### 4.1.4 Flash Memory Table 4.4. Flash Memory | Parameter | Symbol | Test Condition | Min | Тур | Max | Units | |---|--------------------|--------------------------------|-----|------|-----|--------| | Write Time ¹ , ² | t _{WRITE} | One Byte, | | 20 | 21 | μs | | | | F _{SYSCLK} = 24.5 MHz | | | | | | Erase Time ¹ , ² | t _{ERASE} | One Page, | 5.2 | 5.35 | 5.5 | ms | | | | F _{SYSCLK} = 24.5 MHz | | | | | | V _{DD} Voltage During Programming ³ | V _{PROG} | | 2.2 | _ | 3.6 | V | | Endurance (Write/Erase Cycles) | N _{WE} | | 20k | 100k | _ | Cycles | #### Note: - 1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles. - 2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash. - 3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}). - 4. Data Retention Information is published in the Quarterly Quality and Reliability Report. ### 4.1.5 Power Management Timing **Table 4.5. Power Management Timing** | Parameter | Symbol | Test Condition | Min | Тур | Max | Units | |---------------------------|-----------------------------|----------------------------------|-----|-----|-----|---------| | Idle Mode Wake-up Time | t _{IDLEWK} | | 2 | _ | 3 | SYSCLKs | | Suspend Mode Wake-up Time | t _{SUS-}
PENDWK | SYSCLK = HFOSC0
CLKDIV = 0x00 | _ | 170 | _ | ns | | Snooze Mode Wake-up Time | t _{SLEEPWK} | SYSCLK = HFOSC0
CLKDIV = 0x00 | _ | 12 | _ | μs | ## 4.1.6 Internal Oscillators **Table 4.6. Internal Oscillators** | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | | | | | |-------------------------------------|--|-----------------------------------|-------|------|-------|--------|--|--|--|--| | High Frequency Oscillator 0 (24.5 M | High Frequency Oscillator 0 (24.5 MHz) | | | | | | | | | | | Oscillator Frequency | f _{HFOSC0} | Full Temperature and Supply Range | 24 | 24.5 | 25 | MHz | | | | | | Power Supply Sensitivity | PSS _{HFOS} | T _A = 25 °C | _ | 0.5 | _ | %/V | | | | | | Temperature Sensitivity | TS _{HFOSC0} | V _{DD} = 3.0 V | _ | 40 | _ | ppm/°C | | | | | | High Frequency Oscillator 1 (49 MH | lz) | | I | | ı | 1 | | | | | | Oscillator Frequency | f _{HFOSC1} | Full Temperature and Supply Range | 48.25 | 49 | 49.75 | MHz | | | | | | Power Supply Sensitivity | PSS _{HFOS} | T _A = 25 °C | _ | TBD | _ | %/V | | | | | | Temperature Sensitivity | TS _{HFOSC1} | V _{DD} = 3.0 V | _ | TBD | _ | ppm/°C | | | | | | Low Frequency Oscillator (80 kHz) | | | I | | ı | 1 | | | | | | Oscillator Frequency | f _{LFOSC} | Full Temperature and Supply Range | 75 | 80 | 85 | kHz | | | | | | Power Supply Sensitivity | PSS _{LFOSC} | T _A = 25 °C | _ | 0.05 | _ | %/V | | | | | | Temperature Sensitivity | TS _{LFOSC} | V _{DD} = 3.0 V | _ | 65 | _ | ppm/°C | | | | | ## 4.1.7 External Clock Input Table 4.7. External Clock Input | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-------------------------------------|--------------------|----------------|-----|-----|-----|------| | External Input CMOS Clock | f _{CMOS} | | 0 | _ | 50 | MHz | | Frequency (at EXTCLK pin) | | | | | | | | External Input CMOS Clock High Time | tcmosh | | 9 | _ | _ | ns | | External Input CMOS Clock Low Time | t _{CMOSL} | | 9 | _ | _ | ns | | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |----------------------------------|-------------------|---------------------------------------|-------------|-------|-----|--------| | Offset Temperature Coefficient | TC _{OFF} | | _ | TBD | _ | LSB/°C | | Slope Error | E _M | 12 Bit Mode | _ | TBD | TBD | % | | | | 10 Bit Mode | _ | TBD | _ | % | | Dynamic Performance 10 kHz Sine | Wave Input | 1 dB below full scale, Max throughput | , using AGN | D pin | | | | Signal-to-Noise | SNR | 12 Bit Mode | _ | TBD | _ | dB | | | | 10 Bit Mode | _ | TBD | _ | dB | | Signal-to-Noise Plus Distortion | SNDR | 12 Bit Mode | TBD | TBD | _ | dB | | | | 10 Bit Mode | _ | TBD | _ | dB | | Total Harmonic Distortion (Up to | THD | 12 Bit Mode | _ | TBD | _ | dB | | 5th Harmonic) | | 10 Bit Mode | _ | TBD | _ | dB | | Spurious-Free Dynamic Range | SFDR | 12 Bit Mode | _ | TBD | _ | dB | | | | 10 Bit Mode | _ | TBD | _ | dB | ## Note: 1. Conversion Time does not include Tracking Time. Total Conversion Time is: Total Conversion Time = [RPT × (ADTK + NUMBITS + 1) × T(SARCLK)] + (T(ADCCLK) × 4) where RPT is the number of conversions represented by the ADRPT field and ADCCLK is the clock selected for the ADC. 2. Absolute input pin voltage is limited by the $V_{\mbox{\scriptsize IO}}$ supply. # 4.1.10 Voltage Reference Table 4.10. Voltage Reference | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-------------------------------------|----------------------|---|------|------|------|--------| | Internal Fast Settling Reference | | | | | | | | Output Voltage | V _{REFFS} | | 1.62 | 1.65 | 1.68 | V | | (Full Temperature and Supply Range) | | | | | | | | Temperature Coefficient | TC _{REFFS} | | _ | 50 | _ | ppm/°C | | Turn-on Time | t _{REFFS} | | _ | _ | 1.5 | μs | | Power Supply Rejection | PSRR _{REF} | | _ | 400 | _ | ppm/V | | On-chip Precision Reference | | | I | | | | | Valid Supply Range | V_{DD} | 1.2 V Output | 2.2 | _ | 3.6 | V | | | | 2.4 V Output | 2.7 | _ | 3.6 | V | | Output Voltage | V _{REFP} | 1.2 V Output, T = 25 °C | TBD | 1.2 | TBD | V | | | | 2.4 V Output, T = 25 °C | TBD | 2.4 | TBD | V | | Turn-on Time, settling to 0.5 LSB | t _{VREFP} | 4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin | _ | 3 | _ | ms | | | | 0.1 μF ceramic bypass on VREF pin | _ | 100 | _ | μs | | Load Regulation | LR _{VREFP} | Load = 0 to 200 µA to GND | _ | TBD | _ | μV/μΑ | | Load Capacitor | C _{VREFP} | Load = 0 to 200 µA to GND | 0.1 | _ | _ | μF | | Short-circuit current | ISC _{VREFP} | | _ | _ | 8 | mA | | Power Supply Rejection | PSRR _{VRE} | | _ | TBD | _ | ppm/V | | External Reference | | 1 | 1 | I | ı | | | Input Current | I _{EXTREF} | ADC Sample Rate = 800 ksps;
VREF = 3.0 V | _ | 5 | _ | μА | ## 4.1.12 DACs Table 4.12. DACs | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--------------------------------|--|--|------|------|----------|-------------------| | Resolution | N _{bits} | | | 12 | | Bits | | Throughput Rate | f _S | | _ | _ | 200 | ksps | | Integral Nonlinearity | INL | | TBD | ±0.5 | TBD | LSB | | Differential Nonlinearity | DNL | | TBD | ±5 | TBD | LSB | | Output Noise | VREF = 2.4 V
f _S = 0.1
Hz to 300
kHz | | _ | 110 | _ | μV _{RMS} | | Slew Rate | SLEW | | _ | ±1 | _ | V/µs | | Output Settling Time to 1 LSB | tsettle | V _{OUT} change between 25% and 75% Full Scale | _ | 2.6 | 5 | μs | | Power-on Time | t _{PWR} | | _ | _ | 10 | μs | | Voltage Reference Range | V _{REF} | | 1.15 | _ | V_{DD} | V | | Power Supply Rejection Ratio | PSRR | DC, V _{OUT} = 50% Full Scale | _ | 110 | _ | dB | | | | 1 kHz, V _{OUT} = 50% Full Scale | _ | 60 | _ | dB | | Total Harmonic Distortion | THD | V _{OUT} = 10 kHz sine wave, 10% to 90% | 60 | _ | _ | dB | | Offset Error | E _{OFF} | VREF = 2.4 V | TBD | ±0.5 | TBD | LSB | | Offset Temperature Coefficient | TC _{OFF} | | _ | TBD | _ | ppm/°C | | Full-Scale Error | E _{FS} | VREF = 2.4 V | TBD | ±5 | TBD | LSB | | Full-Scale Error Tempco | TC _{FS} | | _ | TBD | _ | ppm/°C | | External Load Impedance | R _{LOAD} | | 2 | _ | _ | kΩ | | External Load Capacitance | C _{LOAD} | | TBD | _ | 100 | pF | | Load Regulation | | V _{OUT} = 50% Full Scale | _ | 100 | TBD | μV/mA | # 5. Typical Connection Diagrams ### 5.1 Power Figure 5.1 Power Connection Diagram on page 28 shows a typical connection diagram for the power pins of the device. Figure 5.1. Power Connection Diagram Table 6.1. Pin Definitions for EFM8BB3x-QFN32 | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital
Functions | Analog Functions | |---------------|----------|------------------------|---------------------|---------------------------------|------------------| | 1 | P0.0 | Multifunction I/O | Yes | P0MAT.0 | VREF | | | | | | INT0.0 | | | | | | | INT1.0 | | | | | | | CLU0A.8 | | | | | | | CLU2A.8 | | | | | | | CLU3B.8 | | | 2 | VIO | I/O Supply Power Input | | | | | 3 | VDD | Supply Power Input | | | | | 4 | RSTb / | Active-low Reset / | | | | | | C2CK | C2 Debug Clock | | | | | 5 | P3.7 / | Multifunction I/O / | | | | | | C2D | C2 Debug Data | | | | | 6 | P3.4 | Multifunction I/O | | | | | 7 | P3.3 | Multifunction I/O | | | DAC3 | | 8 | P3.2 | Multifunction I/O | | | DAC2 | | 9 | P3.1 | Multifunction I/O | | | DAC1 | | 10 | P3.0 | Multifunction I/O | | | DAC0 | | 11 | P2.6 | Multifunction I/O | | | ADC0.19 | | | | | | | CMP1P.8 | | | | | | | CMP1N.8 | | 12 | P2.5 | Multifunction I/O | | CLU3OUT | ADC0.18 | | | | | | | CMP1P.7 | | | | | | | CMP1N.7 | | 13 | P2.4 | Multifunction I/O | | | ADC0.17 | | | | | | | CMP1P.6 | | | | | | | CMP1N.6 | | 14 | P2.3 | Multifunction I/O | Yes | P2MAT.3 | ADC0.16 | | | | | | CLU1B.15 | CMP1P.5 | | | | | | CLU2B.15 | CMP1N.5 | | | | | | CLU3A.15 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|---------------------|---------------------|------------------------------|------------------| | 6 | P3.7 / | Multifunction I/O / | | | | | | C2D | C2 Debug Data | | | | | 7 | P3.3 | Multifunction I/O | | | DAC3 | | 8 | P3.2 | Multifunction I/O | | | DAC2 | | 9 | P3.1 | Multifunction I/O | | | DAC1 | | 10 | P3.0 | Multifunction I/O | | | DAC0 | | 11 | P2.6 | Multifunction I/O | | | ADC0.19 | | | | | | | CMP1P.8 | | | | | | | CMP1N.8 | | 12 | P2.5 | Multifunction I/O | | CLU3OUT | ADC0.18 | | | | | | | CMP1P.7 | | | | | | | CMP1N.7 | | 13 | P2.4 | Multifunction I/O | | | ADC0.17 | | | | | | | CMP1P.6 | | | | | | | CMP1N.6 | | 14 | P2.3 | Multifunction I/O | Yes | P2MAT.3 | ADC0.16 | | | | | | CLU1B.15 | CMP1P.5 | | | | | | CLU2B.15 | CMP1N.5 | | | | | | CLU3A.15 | | | 15 | P2.2 | Multifunction I/O | Yes | P2MAT.2 | ADC0.15 | | | | | | CLU2OUT | CMP1P.4 | | | | | | CLU1A.15 | CMP1N.4 | | | | | | CLU2B.14 | | | | | | | CLU3A.14 | | | 16 | P2.1 | Multifunction I/O | Yes | P2MAT.1 | ADC0.14 | | | | | | I2C0_SCL | CMP1P.3 | | | | | | CLU1B.14 | CMP1N.3 | | | | | | CLU2A.15 | | | | | | | CLU3B.15 | | | 17 | P2.0 | Multifunction I/O | Yes | P2MAT.0 | CMP1P.2 | | | | | | I2C0_SDA | CMP1N.2 | | | | | | CLU1A.14 | | | | | | | CLU2A.14 | | | | | | | CLU3B.14 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|-------------------|---------------------|------------------------------|------------------| | 30 | P0.3 | Multifunction I/O | Yes | P0MAT.3 | XTAL2 | | | | | | EXTCLK | | | | | | | INT0.3 | | | | | | | INT1.3 | | | | | | | CLU0B.9 | | | | | | | CLU2B.10 | | | | | | | CLU3A.9 | | | 31 | P0.2 | Multifunction I/O | Yes | P0MAT.2 | XTAL1 | | | | | | INT0.2 | ADC0.1 | | | | | | INT1.2 | CMP0P.1 | | | | | | CLU0OUT | CMP0N.1 | | | | | | CLU0A.9 | | | | | | | CLU2B.8 | | | | | | | CLU3A.8 | | | 32 | P0.1 | Multifunction I/O | Yes | P0MAT.1 | ADC0.0 | | | | | | INT0.1 | CMP0P.0 | | | | | | INT1.1 | CMP0N.0 | | | | | | CLU0B.8 | AGND | | | | | | CLU2A.9 | | | | | | | CLU3B.9 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|-----------|---------------------|---------------------|------------------------------|------------------| | 2 | P0.0 | Multifunction I/O | Yes | P0MAT.0 | VREF | | | | | | INT0.0 | | | | | | | INT1.0 | | | | | | | CLU0A.8 | | | | | | | CLU2A.8 | | | | | | | CLU3B.8 | | | 3 | GND | Ground | | | | | 4 | VDD / VIO | Supply Power Input | | | | | 5 | RSTb / | Active-low Reset / | | | | | | C2CK | C2 Debug Clock | | | | | 6 | P3.0 / | Multifunction I/O / | | | | | | C2D | C2 Debug Data | | | | | 7 | P2.3 | Multifunction I/O | Yes | P2MAT.3 | DAC3 | | | | | | CLU1B.15 | | | | | | | CLU2B.15 | | | | | | | CLU3A.15 | | | 8 | P2.2 | Multifunction I/O | Yes | P2MAT.2 | DAC2 | | | | | | CLU1A.15 | | | | | | | CLU2B.14 | | | | | | | CLU3A.14 | | | 9 | P2.1 | Multifunction I/O | Yes | P2MAT.1 | DAC1 | | | | | | CLU1B.14 | | | | | | | CLU2A.15 | | | | | | | CLU3B.15 | | | 10 | P2.0 | Multifunction I/O | Yes | P2MAT.0 | DAC0 | | | | | | CLU1A.14 | | | | | | | CLU2A.14 | | | | | | | CLU3B.14 | | | 11 | P1.6 | Multifunction I/O | Yes | P1MAT.6 | ADC0.11 | | | | | | CLU3OUT | CMP1P.5 | | | | | | CLU0A.15 | CMP1N.5 | | | | | | CLU1B.12 | | | | | | | CLU2A.12 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital
Functions | Analog Functions | |---------------|----------|-------------------|---------------------|---------------------------------|------------------| | 24 | P0.4 | Multifunction I/O | Yes | P0MAT.4 | ADC0.2 | | | | | | INT0.4 | CMP0P.2 | | | | | | INT1.4 | CMP0N.2 | | | | | | UARTO_TX | | | | | | | CLU0A.10 | | | | | | | CLU1A.8 | | ## 7.2 QFN32 PCB Land Pattern Figure 7.2. QFN32 PCB Land Pattern Drawing Table 7.2. QFN32 PCB Land Pattern Dimensions | Dimension | Min | Max | |-----------|-----|------| | C1 | _ | 4.00 | | C2 | _ | 4.00 | | X1 | _ | 0.2 | | X2 | _ | 2.8 | | Y1 | _ | 0.75 | | Y2 | _ | 2.8 | | е | _ | 0.4 | Dimension Min Max #### Note: - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. - 3. This Land Pattern Design is based on the IPC-7351 guidelines. - 4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm. - 5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. - 6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. - 7. The stencil thickness should be 0.125 mm (5 mils). - 8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. - 9. A 2 x 2 array of 1.10 mm square openings on a 1.30 mm pitch should be used for the center pad. - 10. A No-Clean, Type-3 solder paste is recommended. - 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. ### 7.3 QFN32 Package Marking Figure 7.3. QFN32 Package Marking The package marking consists of: - PPPPPPP The part number designation. - TTTTTT A trace or manufacturing code. - YY The last 2 digits of the assembly year. - WW The 2-digit workweek when the device was assembled. - # The device revision (A, B, etc.). # 8. QFP32 Package Specifications ## 8.1 QFP32 Package Dimensions Figure 8.1. QFP32 Package Drawing Table 8.1. QFP32 Package Dimensions | Dimension | Min | Тур | Max | | |-----------|----------------|------|------|--| | Α | _ | _ | 1.20 | | | A1 | 0.05 | _ | 0.15 | | | A2 | 0.95 | 1.00 | 1.05 | | | b | 0.30 | 0.37 | 0.45 | | | С | 0.09 | _ | 0.20 | | | D | 9.00 BSC | | | | | D1 | 7.00 BSC | | | | | е | 0.80 BSC | | | | | Е | 9.00 BSC | | | | | E1 | 7.00 BSC | | | | | L | 0.50 0.60 0.70 | | | | Dimension Min Max #### Note: - 1. All dimensions shown are in millimeters (mm) unless otherwise noted. - 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. - 3. This Land Pattern Design is based on the IPC-SM-782 guidelines. - 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad. - 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. - 6. The stencil thickness should be 0.125 mm (5 mils). - 7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads. - 8. A 2 x 1 array of 1.20 mm x 0.95 mm openings on a 1.15 mm pitch should be used for the center pad. - 9. A No-Clean, Type-3 solder paste is recommended. - 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. ### 9.3 QFN24 Package Marking Figure 9.3. QFN24 Package Marking The package marking consists of: - PPPPPPP The part number designation. - TTTTTT A trace or manufacturing code. - YY The last 2 digits of the assembly year. - WW The 2-digit workweek when the device was assembled. - # The device revision (A, B, etc.). # 11. Revision History ## 11.1 Revision 0.1 Initial release. ## 11.2 Revision 0.2 Added information on the bootloader to 3.10 Bootloader. Updated some characterization TBD values.