Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Discontinued at Digi-Key | | Core Processor | CIP-51 8051 | | Core Size | 8-Bit | | Speed | 50MHz | | Connectivity | I ² C, SMBus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 20 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4.25K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.2V ~ 3.6V | | Data Converters | A/D 12x10/12b SAR; D/A 2x12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 24-VFQFN Exposed Pad | | Supplier Device Package | 24-QFN (3x3) | | Purchase URL | https://www.e-xfl.com/product-detail/silicon-labs/efm8bb31f64g-a-qfn24 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### 3.2 Power All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use. Table 3.1. Power Modes | Power Mode | Details | Mode Entry | Wake-Up Sources | |------------|--|--|---| | Normal | Core and all peripherals clocked and fully operational | | | | ldle | Core halted All peripherals clocked and fully operational Code resumes execution on wake event | Set IDLE bit in PCON0 | Any interrupt | | Suspend | Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event | 1. Switch SYSCLK to HFOSC0 2. Set SUSPEND bit in PCON1 | Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Rising Edge CLUn Interrupt-Enabled Event | | Stop | All internal power nets shut down Pins retain state Exit on any reset source | 1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0 | Any reset source | | Snooze | Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event | 1. Switch SYSCLK to HFOSC0 2. Set SNOOZE bit in PCON1 | Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Rising Edge CLUn Interrupt-Enabled Event | | Shutdown | All internal power nets shut down Pins retain state Exit on pin or power-on reset | 1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0 | RSTb pin reset Power-on reset | # 3.3 I/O Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.4 to P3.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 or P3.7, depending on the package option. The port control block offers the following features: - Up to 29 multi-functions I/O pins, supporting digital and analog functions. - · Flexible priority crossbar decoder for digital peripheral assignment. - · Two drive strength settings for each port. - State retention feature allows pins to retain configuration through most reset sources. - Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1). - · Up to 24 direct-pin interrupt sources with shared interrupt vector (Port Match). ### I2C Slave (I2CSLAVE0) The I2C Slave interface is a 2-wire, bidirectional serial bus that is compatible with the I2C Bus Specification 3.0. It is capable of transferring in high-speed mode (HS-mode) at speeds of up to 3.4 Mbps. Firmware can write to the I2C interface, and the I2C interface can autonomously control the serial transfer of data. The interface also supports clock stretching for cases where the core may be temporarily prohibited from transmitting a byte or processing a received byte during an I2C transaction. This module operates only as an I2C slave device. The I2C module includes the following features: - Standard (up to 100 kbps), Fast (400 kbps), Fast Plus (1 Mbps), and High-speed (3.4 Mbps) transfer speeds - · Support for slave mode only - · Clock low extending (clock stretching) to interface with faster masters - · Hardware support for 7-bit slave address recognition - Hardware support for multiple slave addresses with the option to save the matching address in the receive FIFO ## 16-bit CRC (CRC0) The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device. The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features: - · Support for CCITT-16 polynomial - · Byte-level bit reversal - · Automatic CRC of flash contents on one or more 256-byte blocks - · Initial seed selection of 0x0000 or 0xFFFF ## Configurable Logic Units (CLU0, CLU1, CLU2, and CLU3) The Configurable Logic block consists of multiple Configurable Logic Units (CLUs). CLUs are flexible logic functions which may be used for a variety of digital functions, such as replacing system glue logic, aiding in the generation of special waveforms, or synchronizing system event triggers. - Four configurable logic units (CLUs), with direct-pin and internal logic connections - Each unit supports 256 different combinatorial logic functions (AND, OR, XOR, muxing, etc.) and includes a clocked flip-flop for synchronous operations - · Units may be operated synchronously or asynchronously - · May be cascaded together to perform more complicated logic functions - Can operate in conjunction with serial peripherals such as UART and SPI or timing peripherals such as timers and PCA channels - · Can be used to synchronize and trigger multiple on-chip resources (ADC, DAC, Timers, etc.) - Asynchronous output may be used to wake from low-power states ### 3.7 Analog ### 12/10-Bit Analog-to-Digital Converter (ADC0) The ADC is a successive-approximation-register (SAR) ADC with 12- and 10-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources. - · Up to 20 external inputs - Single-ended 12-bit and 10-bit modes - Supports an output update rate of up to 400 ksps in 12-bit mode - Channel sequencer logic with direct-to-XDATA output transfers - · Operation in a low power mode at lower conversion speeds - Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources - · Output data window comparator allows automatic range checking - · Support for output data accumulation - Conversion complete and window compare interrupts supported - Flexible output data formatting - Includes a fully-internal fast-settling 1.65 V reference and an on-chip precision 2.4 / 1.2 V reference, with support for using the supply as the reference, an external reference and signal ground - · Integrated temperature sensor ## 12-Bit Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3) The DAC modules are 12-bit Digital-to-Analog Converters with the capability to synchronize multiple outputs together. The DACs are fully configurable under software control. The voltage reference for the DACs is selectable between internal and external reference sources. - · Voltage output with 12-bit performance - Supports an update rate of 200 ksps - · Hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources - · Outputs may be configured to persist through reset and maintain output state to avoid system disruption - · Multiple DAC outputs can be synchronized together - DAC pairs (DAC0 and 1 or DAC2 and 3) support complementary output waveform generation - Outputs may be switched between two levels according to state of configurable logic / PWM input trigger - · Flexible input data formatting - Supports references from internal supply, on-chip precision reference, or external VREF pin # 4.1.2 Power Consumption Table 4.2. Power Consumption | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--|---------------------|--|----------|-----|-----|------| | Digital Core Supply Current | | | <u> </u> | | | | | Normal Mode-Full speed with code | I _{DD} | F _{SYSCLK} = 49 MHz ² | _ | TBD | TBD | mA | | executing from flash | | F _{SYSCLK} = 24.5 MHz ² | _ | 4.5 | TBD | mA | | | | F _{SYSCLK} = 1.53 MHz ² | _ | 615 | TBD | μA | | | | F _{SYSCLK} = 80 kHz ³ | _ | 155 | TBD | μA | | dle Mode-Core halted with periph- | I _{DD} | F _{SYSCLK} = 49 MHz ² | _ | TBD | TBD | mA | | erals running | | F _{SYSCLK} = 24.5 MHz ² | _ | 2.8 | TBD | mA | | | | F _{SYSCLK} = 1.53 MHz ² | _ | 455 | TBD | μA | | | | F _{SYSCLK} = 80 kHz ³ | _ | 145 | TBD | μA | | Suspend Mode-Core halted and | I _{DD} | LFO Running | _ | 125 | TBD | μA | | nigh frequency clocks stopped,
Supply monitor off. | | LFO Stopped | _ | 120 | TBD | μA | | Snooze Mode-Core halted and | I _{DD} | LFO Running | _ | 26 | TBD | μA | | nigh frequency clocks stopped.
Regulator in low-power state, Sup-
oly monitor off. | | LFO Stopped | _ | 21 | TBD | μA | | Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off. | I _{DD} | | _ | 120 | TBD | μА | | Shutdown Mode—Core halted and all clocks stopped,Internal LDO Dff, Supply monitor off. | I _{DD} | | _ | 0.2 | _ | μА | | Analog Peripheral Supply Currents | | | | | | | | High-Frequency Oscillator 0 | I _{HFOSC0} | Operating at 24.5 MHz,
T _A = 25 °C | _ | 55 | _ | μА | | High-Frequency Oscillator 1 | I _{HFOSC1} | Operating at 49 MHz, | _ | TBD | _ | μA | | | | T _A = 25 °C | | | | | | ow-Frequency Oscillator | I _{LFOSC} | Operating at 80 kHz, | _ | 5 | _ | μA | | | | T _A = 25 °C | | | | | | ADC0 ⁴ | I _{ADC} | TBD | _ | TBD | TBD | μA | | nternal ADC0 Reference ⁵ | I _{VREFFS} | Normal Power Mode | _ | 680 | TBD | μA | | | | Low Power Mode | _ | 160 | TBD | μA | | On-chip Precision Reference | I _{VREFP} | | _ | 75 | _ | μA | | Геmperature Sensor | I _{TSENSE} | | _ | 75 | 120 | μA | | Digital-to-Analog Converters (DAC0, DAC1) ⁶ | I _{DAC} | | _ | 125 | _ | μA | # 4.1.10 Voltage Reference Table 4.10. Voltage Reference | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |-------------------------------------|----------------------|---|-----|------|------|--------| | Internal Fast Settling Reference | | | | | | | | Output Voltage | V _{REFFS} | -S | | 1.65 | 1.68 | V | | (Full Temperature and Supply Range) | | | | | | | | Temperature Coefficient | TC _{REFFS} | | _ | 50 | _ | ppm/°C | | Turn-on Time | t _{REFFS} | | _ | _ | 1.5 | μs | | Power Supply Rejection | PSRR _{REF} | | _ | 400 | _ | ppm/V | | On-chip Precision Reference | | | I | | | | | Valid Supply Range | V_{DD} | 1.2 V Output | 2.2 | _ | 3.6 | V | | | | 2.4 V Output | 2.7 | _ | 3.6 | V | | Output Voltage | V _{REFP} | 1.2 V Output, T = 25 °C | TBD | 1.2 | TBD | V | | | | 2.4 V Output, T = 25 °C | TBD | 2.4 | TBD | V | | Turn-on Time, settling to 0.5 LSB | t _{VREFP} | 4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin | _ | 3 | _ | ms | | | | 0.1 μF ceramic bypass on VREF pin | _ | 100 | _ | μs | | Load Regulation | LR _{VREFP} | Load = 0 to 200 µA to GND | _ | TBD | _ | μV/μΑ | | Load Capacitor | C _{VREFP} | Load = 0 to 200 µA to GND | 0.1 | _ | _ | μF | | Short-circuit current | ISC _{VREFP} | | _ | _ | 8 | mA | | Power Supply Rejection | PSRR _{VRE} | | _ | TBD | _ | ppm/V | | External Reference | | 1 | 1 | I | ı | | | Input Current | I _{EXTREF} | ADC Sample Rate = 800 ksps;
VREF = 3.0 V | _ | 5 | _ | μА | # 4.1.12 DACs Table 4.12. DACs | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--------------------------------|--|--|------|------|----------|-------------------| | Resolution | N _{bits} | | | 12 | | Bits | | Throughput Rate | f _S | | _ | _ | 200 | ksps | | Integral Nonlinearity | INL | | TBD | ±0.5 | TBD | LSB | | Differential Nonlinearity | DNL | | TBD | ±5 | TBD | LSB | | Output Noise | VREF = 2.4 V
f _S = 0.1
Hz to 300
kHz | | _ | 110 | _ | μV _{RMS} | | Slew Rate | SLEW | | _ | ±1 | _ | V/µs | | Output Settling Time to 1 LSB | tsettle | V _{OUT} change between 25% and 75% Full Scale | _ | 2.6 | 5 | μs | | Power-on Time | t _{PWR} | | _ | _ | 10 | μs | | Voltage Reference Range | V _{REF} | | 1.15 | _ | V_{DD} | V | | Power Supply Rejection Ratio | PSRR | DC, V _{OUT} = 50% Full Scale | _ | 110 | _ | dB | | | | 1 kHz, V _{OUT} = 50% Full Scale | _ | 60 | _ | dB | | Total Harmonic Distortion | THD | V _{OUT} = 10 kHz sine wave, 10% to 90% | 60 | _ | _ | dB | | Offset Error | E _{OFF} | VREF = 2.4 V | TBD | ±0.5 | TBD | LSB | | Offset Temperature Coefficient | TC _{OFF} | | _ | TBD | _ | ppm/°C | | Full-Scale Error | E _{FS} | VREF = 2.4 V | TBD | ±5 | TBD | LSB | | Full-Scale Error Tempco | TC _{FS} | | _ | TBD | _ | ppm/°C | | External Load Impedance | R _{LOAD} | | 2 | _ | _ | kΩ | | External Load Capacitance | C _{LOAD} | | TBD | _ | 100 | pF | | Load Regulation | | V _{OUT} = 50% Full Scale | _ | 100 | TBD | μV/mA | # 5.2 Debug The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted. For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio. Figure 5.2. Debug Connection Diagram ### 5.3 Other Connections Other components or connections may be required to meet the system-level requirements. Application Note AN203: "8-bit MCU Printed Circuit Board Design Notes" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes). | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital
Functions | Analog Functions | |---------------|----------|-------------------|---------------------|---------------------------------|------------------| | 22 | P1.3 | Multifunction I/O | Yes | P1MAT.3 | ADC0.9 | | | | | | CLU0B.13 | | | | | | | CLU1B.11 | | | | | | | CLU2B.11 | | | | | | | CLU3A.13 | | | 23 | P1.2 | Multifunction I/O | Yes | P1MAT.2 | ADC0.8 | | | | | | CLU0A.13 | CMP0P.8 | | | | | | CLU1A.11 | CMP0N.8 | | | | | | CLU2B.10 | | | | | | | CLU3A.12 | | | | | | | CLU3B.13 | | | 24 | P1.1 | Multifunction I/O | Yes | P1MAT.1 | ADC0.7 | | | | | | CLU0B.12 | CMP0P.7 | | | | | | CLU1B.10 | CMP0N.7 | | | | | | CLU2A.11 | | | | | | | CLU3B.12 | | | 25 | P1.0 | Multifunction I/O | Yes | P1MAT.0 | ADC0.6 | | | | | | CLU10UT | CMP0P.6 | | | | | | CLU0A.12 | CMP0N.6 | | | | | | CLU1A.10 | CMP1P.1 | | | | | | CLU2A.10 | CMP1N.1 | | 26 | P0.7 | Multifunction I/O | Yes | P0MAT.7 | ADC0.5 | | | | | | INT0.7 | CMP0P.5 | | | | | | INT1.7 | CMP0N.5 | | | | | | CLU0B.11 | CMP1P.0 | | | | | | CLU1B.9 | CMP1N.0 | | | | | | CLU3A.11 | | | 27 | P0.6 | Multifunction I/O | Yes | P0MAT.6 | ADC0.4 | | | | | | CNVSTR | CMP0P.4 | | | | | | INT0.6 | CMP0N.4 | | | | | | INT1.6 | | | | | | | CLU0A.11 | | | | | | | CLU1B.8 | | | | | | | CLU3A.10 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital
Functions | Analog Functions | |---------------|----------|-------------------|---------------------|---------------------------------|------------------| | 28 | P0.5 | Multifunction I/O | Yes | P0MAT.5 | ADC0.3 | | | | | | INT0.5 | CMP0P.3 | | | | | | INT1.5 | CMP0N.3 | | | | | | UART0_RX | | | | | | | CLU0B.10 | | | | | | | CLU1A.9 | | | 29 | P0.4 | Multifunction I/O | Yes | P0MAT.4 | ADC0.2 | | | | | | INT0.4 | CMP0P.2 | | | | | | INT1.4 | CMP0N.2 | | | | | | UART0_TX | | | | | | | CLU0A.10 | | | | | | | CLU1A.8 | | | 30 | P0.3 | Multifunction I/O | Yes | P0MAT.3 | XTAL2 | | | | | | EXTCLK | | | | | | | INT0.3 | | | | | | | INT1.3 | | | | | | | CLU0B.9 | | | | | | | CLU2B.10 | | | | | | | CLU3A.9 | | | 31 | P0.2 | Multifunction I/O | Yes | P0MAT.2 | XTAL1 | | | | | | INT0.2 | ADC0.1 | | | | | | INT1.2 | CMP0P.1 | | | | | | CLU0OUT | CMP0N.1 | | | | | | CLU0A.9 | | | | | | | CLU2B.8 | | | | | | | CLU3A.8 | | | 32 | P0.1 | Multifunction I/O | Yes | P0MAT.1 | ADC0.0 | | | | | | INT0.1 | CMP0P.0 | | | | | | INT1.1 | CMP0N.0 | | | | | | CLU0B.8 | AGND | | | | | | CLU2A.9 | | | | | | | CLU3B.9 | | | Center | GND | Ground | | | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|---------------------|---------------------|------------------------------|------------------| | 6 | P3.7 / | Multifunction I/O / | | | | | | C2D | C2 Debug Data | | | | | 7 | P3.3 | Multifunction I/O | | | DAC3 | | 8 | P3.2 | Multifunction I/O | | | DAC2 | | 9 | P3.1 | Multifunction I/O | | | DAC1 | | 10 | P3.0 | Multifunction I/O | | | DAC0 | | 11 | P2.6 | Multifunction I/O | | | ADC0.19 | | | | | | | CMP1P.8 | | | | | | | CMP1N.8 | | 12 | P2.5 | Multifunction I/O | | CLU3OUT | ADC0.18 | | | | | | | CMP1P.7 | | | | | | | CMP1N.7 | | 13 | P2.4 | Multifunction I/O | | | ADC0.17 | | | | | | | CMP1P.6 | | | | | | | CMP1N.6 | | 14 | P2.3 | Multifunction I/O | Yes | P2MAT.3 | ADC0.16 | | | | | | CLU1B.15 | CMP1P.5 | | | | | | CLU2B.15 | CMP1N.5 | | | | | | CLU3A.15 | | | 15 | P2.2 | Multifunction I/O | Yes | P2MAT.2 | ADC0.15 | | | | | | CLU2OUT | CMP1P.4 | | | | | | CLU1A.15 | CMP1N.4 | | | | | | CLU2B.14 | | | | | | | CLU3A.14 | | | 16 | P2.1 | Multifunction I/O | Yes | P2MAT.1 | ADC0.14 | | | | | | I2C0_SCL | CMP1P.3 | | | | | | CLU1B.14 | CMP1N.3 | | | | | | CLU2A.15 | | | | | | | CLU3B.15 | | | 17 | P2.0 | Multifunction I/O | Yes | P2MAT.0 | CMP1P.2 | | | | | | I2C0_SDA | CMP1N.2 | | | | | | CLU1A.14 | | | | | | | CLU2A.14 | | | | | | | CLU3B.14 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|-------------------|---------------------|------------------------------|------------------| | 18 | P1.7 | Multifunction I/O | Yes | P1MAT.7 | ADC0.13 | | | | | | CLU0B.15 | CMP0P.9 | | | | | | CLU1B.13 | CMP0N.9 | | | | | | CLU2A.13 | | | 19 | P1.6 | Multifunction I/O | Yes | P1MAT.6 | ADC0.12 | | | | | | CLU0A.15 | | | | | | | CLU1B.12 | | | | | | | CLU2A.12 | | | 20 | P1.5 | Multifunction I/O | Yes | P1MAT.5 | ADC0.11 | | | | | | CLU0B.14 | | | | | | | CLU1A.13 | | | | | | | CLU2B.13 | | | | | | | CLU3B.11 | | | 21 | P1.4 | Multifunction I/O | Yes | P1MAT.4 | ADC0.10 | | | | | | CLU0A.14 | | | | | | | CLU1A.12 | | | | | | | CLU2B.12 | | | | | | | CLU3B.10 | | | 22 | P1.3 | Multifunction I/O | Yes | P1MAT.3 | ADC0.9 | | | | | | CLU0B.13 | | | | | | | CLU1B.11 | | | | | | | CLU2B.11 | | | | | | | CLU3A.13 | | | 23 | P1.2 | Multifunction I/O | Yes | P1MAT.2 | ADC0.8 | | | | | | CLU0A.13 | CMP0P.8 | | | | | | CLU1A.11 | CMP0N.8 | | | | | | CLU2B.10 | | | | | | | CLU3A.12 | | | | | | | CLU3B.13 | | | 24 | P1.1 | Multifunction I/O | Yes | P1MAT.1 | ADC0.7 | | | | | | CLU0B.12 | CMP0P.7 | | | | | | CLU1B.10 | CMP0N.7 | | | | | | CLU2A.11 | | | | | | | CLU3B.12 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|-------------------|---------------------|------------------------------|------------------| | 30 | P0.3 | Multifunction I/O | Yes | P0MAT.3 | XTAL2 | | | | | | EXTCLK | | | | | | | INT0.3 | | | | | | | INT1.3 | | | | | | | CLU0B.9 | | | | | | | CLU2B.10 | | | | | | | CLU3A.9 | | | 31 | P0.2 | Multifunction I/O | Yes | P0MAT.2 | XTAL1 | | | | | | INT0.2 | ADC0.1 | | | | | | INT1.2 | CMP0P.1 | | | | | | CLU0OUT | CMP0N.1 | | | | | | CLU0A.9 | | | | | | | CLU2B.8 | | | | | | | CLU3A.8 | | | 32 | P0.1 | Multifunction I/O | Yes | P0MAT.1 | ADC0.0 | | | | | | INT0.1 | CMP0P.0 | | | | | | INT1.1 | CMP0N.0 | | | | | | CLU0B.8 | AGND | | | | | | CLU2A.9 | | | | | | | CLU3B.9 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|-------------------|---------------------|------------------------------|------------------| | 12 | P1.5 | Multifunction I/O | Yes | P1MAT.5 | ADC0.10 | | | | | | CLU2OUT | CMP1P.4 | | | | | | CLU0B.14 | CMP1N.4 | | | | | | CLU1A.13 | | | | | | | CLU2B.13 | | | | | | | CLU3B.11 | | | 13 | P1.4 | Multifunction I/O | Yes | P1MAT.4 | ADC0.9 | | | | | | I2C0_SCL | CMP1P.3 | | | | | | CLU0A.14 | CMP1N.3 | | | | | | CLU1A.12 | | | | | | | CLU2B.12 | | | | | | | CLU3B.10 | | | 14 | P1.3 | Multifunction I/O | Yes | P1MAT.3 | CMP1P.2 | | | | | | I2C0_SDA | CMP1N.2 | | | | | | CLU0B.13 | | | | | | | CLU1B.11 | | | | | | | CLU2B.11 | | | | | | | CLU3A.13 | | | 15 | GND | Ground | | | | | 16 | P1.2 | Multifunction I/O | Yes | P1MAT.2 | ADC0.8 | | | | | | CLU0A.13 | | | | | | | CLU1A.11 | | | | | | | CLU2B.10 | | | | | | | CLU3A.12 | | | | | | | CLU3B.13 | | | 17 | P1.1 | Multifunction I/O | Yes | P1MAT.1 | ADC0.7 | | | | | | CLU0B.12 | | | | | | | CLU1B.10 | | | | | | | CLU2A.11 | | | | | | | CLU3B.12 | | | 18 | P1.0 | Multifunction I/O | Yes | P1MAT.0 | ADC0.6 | | | | | | CLU0A.12 | | | | | | | CLU1A.10 | | | | | | | CLU2A.10 | | # 6.4 EFM8BB3x-QSOP24 Pin Definitions Figure 6.4. EFM8BB3x-QSOP24 Pinout Table 6.4. Pin Definitions for EFM8BB3x-QSOP24 | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|-------------------|---------------------|------------------------------|------------------| | 1 | P0.3 | Multifunction I/O | Yes | P0MAT.3 | XTAL2 | | | | | | EXTCLK | | | | | | | INT0.3 | | | | | | | INT1.3 | | | | | | | CLU0B.9 | | | | | | | CLU2B.10 | | | | | | | CLU3A.9 | | | Pin | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |--------|----------|-------------------|---------------------|------------------------------|------------------| | Number | | | | | | | 11 | P2.1 | Multifunction I/O | Yes | P2MAT.1 | DAC1 | | | | | | CLU1B.14 | | | | | | | CLU2A.15 | | | | | | | CLU3B.15 | | | 12 | P2.0 | Multifunction I/O | Yes | P2MAT.0 | DAC0 | | | | | | CLU1A.14 | | | | | | | CLU2A.14 | | | | | | | CLU3B.14 | | | 13 | P1.7 | Multifunction I/O | Yes | P1MAT.7 | ADC0.12 | | | | | | CLU0B.15 | CMP1P.6 | | | | | | CLU1B.13 | CMP1N.6 | | | | | | CLU2A.13 | | | 14 | P1.6 | Multifunction I/O | Yes | P1MAT.6 | ADC0.11 | | | | | | CLU3OUT | CMP1P.5 | | | | | | CLU0A.15 | CMP1N.5 | | | | | | CLU1B.12 | | | | | | | CLU2A.12 | | | 15 | P1.5 | Multifunction I/O | Yes | P1MAT.5 | ADC0.10 | | | | | | CLU2OUT | CMP1P.4 | | | | | | CLU0B.14 | CMP1N.4 | | | | | | CLU1A.13 | | | | | | | CLU2B.13 | | | | | | | CLU3B.11 | | | 16 | P1.4 | Multifunction I/O | Yes | P1MAT.4 | ADC0.9 | | | | | | 12C0_SCL | CMP1P.3 | | | | | | CLU0A.14 | CMP1N.3 | | | | | | CLU1A.12 | | | | | | | CLU2B.12 | | | | | | | CLU3B.10 | | | 17 | P1.3 | Multifunction I/O | Yes | P1MAT.3 | CMP1P.2 | | | | | | I2C0_SDA | CMP1N.2 | | | | | | CLU0B.13 | | | | | | | CLU1B.11 | | | | | | | CLU2B.11 | | | | | | | CLU3A.13 | | | Pin
Number | Pin Name | Description | Crossbar Capability | Additional Digital Functions | Analog Functions | |---------------|----------|-------------------|---------------------|------------------------------|------------------| | 18 | P1.2 | Multifunction I/O | Yes | P1MAT.2 | ADC0.8 | | | | | | CLU0A.13 | | | | | | | CLU1A.11 | | | | | | | CLU2B.10 | | | | | | | CLU3A.12 | | | | | | | CLU3B.13 | | | 19 | P1.1 | Multifunction I/O | Yes | P1MAT.1 | ADC0.7 | | | | | | CLU0B.12 | | | | | | | CLU1B.10 | | | | | | | CLU2A.11 | | | | | | | CLU3B.12 | | | 20 | P1.0 | Multifunction I/O | Yes | P1MAT.0 | ADC0.6 | | | | | | CLU0A.12 | | | | | | | CLU1A.10 | | | | | | | CLU2A.10 | | | 21 | P0.7 | Multifunction I/O | Yes | P0MAT.7 | ADC0.5 | | | | | | INT0.7 | CMP0P.5 | | | | | | INT1.7 | CMP0N.5 | | | | | | CLU1OUT | CMP1P.1 | | | | | | CLU0B.11 | CMP1N.1 | | | | | | CLU1B.9 | | | | | | | CLU3A.11 | | | 22 | P0.6 | Multifunction I/O | Yes | P0MAT.6 | ADC0.4 | | | | | | CNVSTR | CMP0P.4 | | | | | | INT0.6 | CMP0N.4 | | | | | | INT1.6 | CMP1P.0 | | | | | | CLU0A.11 | CMP1N.0 | | | | | | CLU1B.8 | | | | | | | CLU3A.10 | | | 23 | P0.5 | Multifunction I/O | Yes | P0MAT.5 | ADC0.3 | | | | | | INT0.5 | CMP0P.3 | | | | | | INT1.5 | CMP0N.3 | | | | | | UART0_RX | | | | | | | CLU0B.10 | | | | | | | CLU1A.9 | | # 9.2 QFN24 PCB Land Pattern Figure 9.2. QFN24 PCB Land Pattern Drawing Table 9.2. QFN24 PCB Land Pattern Dimensions | Dimension | Min | Мах | | | |-----------|----------|------|--|--| | C1 | 3.4 | 00 | | | | C2 | 3.0 | 3.00 | | | | е | 0.4 | REF | | | | X1 | 0.: | 20 | | | | X2 | 1.4 | 80 | | | | Y1 | 0. | 0.80 | | | | Y2 | 1.80 | | | | | Y3 | 0.4 | | | | | f | 2.50 REF | | | | | С | 0.25 | 0.35 | | | # **Table of Contents** | 1. | Feature List | . 1 | |----|--|-----| | 2. | Ordering Information | . 2 | | 3. | System Overview | . 4 | | | 3.1 Introduction | . 4 | | | 3.2 Power | . 5 | | | 3.3 I/O | . 5 | | | 3.4 Clocking | . 6 | | | 3.5 Counters/Timers and PWM | . 6 | | | 3.6 Communications and Other Digital Peripherals | . 7 | | | 3.7 Analog | .10 | | | 3.8 Reset Sources | | | | 3.9 Debugging | .11 | | | 3.10 Bootloader | .12 | | 4 | Electrical Specifications | 13 | | | 4.1 Electrical Characteristics | | | | 4.1.1 Recommended Operating Conditions | | | | 4.1.2 Power Consumption | | | | 4.1.3 Reset and Supply Monitor | | | | 4.1.4 Flash Memory | | | | 4.1.5 Power Management Timing | | | | 4.1.6 Internal Oscillators | | | | 4.1.8 Crystal Oscillator | | | | 4.1.9 ADC | | | | 4.1.10 Voltage Reference | .21 | | | 4.1.11 Temperature Sensor | | | | 4.1.12 DACs | | | | 4.1.13 Comparators | | | | 4.1.14 Configurable Logic | | | | 4.2 Thermal Conditions | | | | 4.3 Absolute Maximum Ratings | | | 5. | Typical Connection Diagrams | | | • | 5.1 Power | | | | 5.2 Debug | | | | 5.3 Other Connections | | | 6 | Pin Definitions | | | ٠. | | | | | 6.1 EFM8BB3x-QFN32 Pin Definitions | | | | 6.2 EFM8BB3x-QFP32 Pin Definitions | 35 | | | 6.3 EFM8BB3x-QFN24 Pin Definitions | .40 | |----|-------------------------------------|-----| | | 6.4 EFM8BB3x-QSOP24 Pin Definitions | .45 | | 7. | QFN32 Package Specifications | 50 | | | 7.1 QFN32 Package Dimensions | .50 | | | 7.2 QFN32 PCB Land Pattern | .52 | | | 7.3 QFN32 Package Marking | .53 | | 8. | QFP32 Package Specifications | 54 | | | 8.1 QFP32 Package Dimensions | .54 | | | 8.2 QFP32 PCB Land Pattern | .56 | | | 8.3 QFP32 Package Marking | .57 | | 9. | QFN24 Package Specifications | 58 | | | 9.1 QFN24 Package Dimensions | .58 | | | 9.2 QFN24 PCB Land Pattern | .60 | | | 9.3 QFN24 Package Marking | .61 | | 10 | . QSOP24 Package Specifications | 62 | | | 10.1 QSOP24 Package Dimensions | .62 | | | 10.2 QSOP24 PCB Land Pattern | .64 | | | 10.3 QSOP24 Package Marking | .65 | | 11 | . Revision History | 66 | | | 11.1 Revision 0.1 | .66 | | | 11.2 Revision 0.2 | .66 | | | | | Table of Contents 67 ### Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. ### **Trademark Information** Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA