

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1713-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB1/AN10/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS	General purpose I/O.
OPA2OUT	AN10	AN	_	ADC Channel 10 input.
	041110	A N I		O manufactor O for a section in sect

TABLE 1-2: PIC16(L)F1713/6 PINOUT DESCRIPTION (CONTINUED)

	C1IN3-	AN	_	Comparator C1 negative input.
	C2IN3-	AN	_	Comparator C2 negative input.
	OPA2OUT	—	AN	Operational Amplifier 2 output.
RB2/AN8/OPA2IN-	RB2	TTL/ST	CMOS	General purpose I/O.
	AN8	AN	—	ADC Channel 8 input.
	OPA2IN-	AN		Operational Amplifier 2 inverting input.
RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.
OPA2IN+	AN9	AN	_	ADC Channel 9 input.
	C1IN2-	AN	_	Comparator C1 negative input.
	C2IN2-	AN	_	Comparator C2 negative input.
	OPA2IN+	AN	_	Operational Amplifier 2 non-inverting input.
RB4/AN11	RB4	TTL/ST	CMOS	General purpose I/O.
	AN11	AN	_	ADC Channel 11 input.
RB5/AN13/T1G ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.
	AN13	AN	—	ADC Channel 13 input.
	T1G	TTL/ST	—	Timer1 gate input.
RB6/CLCIN2 ⁽¹⁾ /ICSPCLK	RB6	TTL/ST	CMOS	General purpose I/O.
	CLCIN2	TTL/ST	_	Configurable Logic Cell source input.
	ICSPCLK	ST	—	Serial Programming Clock.
RB7/DAC1OUT2/DAC2OUT2/	RB7	TTL/ST	CMOS	General purpose I/O.
CLCIN3'''/ICSPDAT	DAC1OUT2	_	AN	Digital-to-Analog Converter output.
	DAC2OUT2	_	AN	Digital-to-Analog Converter output.
	CLCIN3	TTL/ST		Configurable Logic Cell source input.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RC0/T1CKI ⁽¹⁾ /SOSCO	RC0	TTL/ST	CMOS	General purpose I/O.
	T1CKI	TTL/ST	_	Timer1 clock input.
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.
RC1/SOSCI/CCP2 ⁽¹⁾	RC1	TTL/ST	CMOS	General purpose I/O.
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.
	CCP2	TTL/ST	—	Capture input
RC2/AN14/CCP1 ⁽¹⁾	RC2	TTL/ST	CMOS	General purpose I/O.
	AN14	AN		ADC Channel 14 input.
	CCP1	TTL/ST	—	Capture input
RC3/AN15/SCL/SCK ⁽¹⁾	RC3	TTL/ST	CMOS	General purpose I/O.
	AN15	AN		ADC Channel 15 input.
	SCL/SCK	l ² C		I ² C/SPI clock input.
Legend: AN = Analog input or	output CMOS	= CMOS	compati	ble input or output OD = Open-Drain

 .egend: AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.
 All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants	
DW DATAO ;First constant	
DW DATA1 ;Second constant	
DW DATA2	
DW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_INDEX	
ADDLW LOW constants	
MOVWF FSR1L	
MOVLW HIGH constants;MSb sets	
automatically	
MOVWF FSR1H	
BTFSC STATUS, C ;carry from ADDLW?	
INCF FSR1H, f ;yes	
MOVIW 0[FSR1]	
;THE PROGRAM MEMORY IS IN W	

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.7** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

REGISTER 3-1:

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

3.4 **Register Definitions: Status**

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 33.0 "Instruction Set Summary").

Note:	The C and DC bits operate as Borrow an									
	Digit	Borrow	out	bits,	respectively,	in				
	subtra	action.								

	11.0	11.0	

STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u		
_	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾		
bit 7									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion			
bit 7-5	Unimplement	ted: Read as '	כ'						
bit 4	TO: Time-Out	bit							
	1 = After powe 0 = A WDT Ti	er-up, CLRWDT me-out occurre	instruction or	SLEEP instruc	tion				
bit 3	PD: Power-Do	own bit							
	1 = After powe 0 = By execut	er-up or by the ion of the SLE	CLRWDT instr	ruction					
bit 2	Z: Zero bit								
	1 = The result 0 = The result	of an arithmet of an arithmet	ic or logic ope ic or logic ope	eration is zero eration is not ze	ero				
bit 1	DC: Digit Car	ry/Digit Borrow	bit (ADDWF, A	DDLW, SUBLW,	SUBWF instruction	ons) ⁽¹⁾			
	1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result								
bit 0	C: Carry/Borro	ow bit ⁽¹⁾ (ADDW	F, ADDLW, SUI	BLW, SUBWF in	structions) ⁽¹⁾				
	1 = A carry-ou 0 = No carry-o	ut from the Mos out from the Mo	st Significant b ost Significant	oit of the result t bit of the resu	occurred It occurred				

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	« 4										
20Ch	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	1111 1111	11 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111
20Eh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh	_	Unimplement	ted							_	_
210h	WPUE	_	_	—	—	WPUE3	—	—	—	1	1
211h	SSP1BUF	Synchronous	Serial Port Re	eceive Buffer/1	ransmit Regis	ster		•		XXXX XXXX	uuuu uuuu
212h	SSP1ADD				ADD)<7:0>				XXXX XXXX	0000 0000
213h	SSP1MSK				MSK	<7:0>				XXXX XXXX	1111 1111
214h	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPI	M<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h 21Fh	_	Unimplement	ted							-	_
Banl	< 5										
28Ch	ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000 0000	00 -000
28Dh	ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000 000-	0000
28Eh	ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000 0000	0000 0000
28Fh	_	Unimplement	ted							_	_
290h	_	Unimplement	ted							_	_
291h	CCPR1L	Capture/Com	pare/PWM Re	gister 1 (LSB))					XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Com	pare/PWM Re	egister 1 (MSB	5)					XXXX XXXX	uuuu uuuu
293h	CCP1CON	—	_	DC1B	<1:0>		CCP1	M<3:0>		00 0000	00 0000
294h 297h	_	Unimplement	ted							_	_
298h	CCPR2L	Capture/Com	pare/PWM Re	egister 2 (LSB))					XXXX XXXX	uuuu uuuu
299h	CCPR2H	Capture/Com	pare/PWM Re	egister 2 (MSB	5)					XXXX XXXX	uuuu uuuu
29Ah	CCP2CON	_	—	DC2B	<1:0>		CCP2	M<3:0>		00 0000	00 0000
29Bh 29Dh	_	Unimplement	ted							-	_
29Eh	CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	L<1:0>	C1TS	EL<1:0>	0000 0000	0000 0000
29Fh	—	Unimplement	ted							—	—
Banl	x 6										
30Ch	SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	00 -000
30Dh	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	1111 1111	0000
30Eh	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	0000 0000
30Fh 31Fh	_	Unimplement	ted							_	_

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 14-27										
x0Ch/ x8Ch 	_	Unimplement	ted							_	_
Banl	k 28										
E0Ch											
 E0Eh	—	Unimplement	ted							—	-
E0Fh	PPSLOCK	—	—	—	—	—	—	—	PPSLOCKED	0	0
E10h	INTPPS	—	_	_			INTPPS<4:0	>		0 1000	u uuuu
E11h	T0CKIPPS	—	—	—			T0CKIPPS<4:	0>		0 0100	u uuuu
E12h	T1CKIPPS	—	—	—			T1CKIPPS<4:	0>		1 0000	u uuuu
E13h	T1GPPS	—	—	_			T1GPPS<4:0	>		0 1101	u uuuu
E14h	CCP1PPS	—	—	—			CCP1PPS<4:)>		1 0010	u uuuu
E15h	CCP2PPS	—	—	_			CCP2PPS<4:)>		1 0001	u uuuu
E16h	_	Unimplement	ted								—
E17h	COGINPPS	—	—	_		(COGINPPS<4	:0>		0 1000	u uuuu
E18h	—	Unimplement	ted								_
E19h	—	Unimplement	ted							—	—
E1Ah E1FH	_	Unimplement	ted							_	-
E20h	SSPCLKPPS	_	—	—		S	SPCLKPPS<4	4:0>		1 0011	u uuuu
E21h	SSPDATPPS	_	—	_		S	SPDATPPS<4	1:0>		1 0100	u uuuu
E22h	SSPSSPPS	—	—	-		5	SSPSSPPS<4	:0>		0 0101	u uuuu
E23h	_	Unimplement	ted							_	—
E24h	RXPPS	—	—	—			RXPPS<4:0	>		1 0111	u uuuu
E25h	CKPPS	—	—	—			CKPPS<4:0	>		1 0110	u uuuu
E26h		Unimplement	ted							_	
E27h	—	Unimplement	ted							_	—
E28h	CLCIN0PPS	—	—	_		(CLCIN0PPS<4	:0>		0 0000	u uuuu
E29h	CLCIN1PPS	—	—	—		(CLCIN1PPS<4	:0>		0 0001	u uuuu
E2Ah	CLCIN2PPS	-	—	_		(CLCIN2PPS<4	:0>		0 1110	u uuuu
E2Bh	CLCIN3PPS	_	—	-		(CLCIN3PPS<4	:0>		0 1111	u uuuu
E2Ch to E6Fh	_	Unimplement	ted							_	_

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

3.7.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

5.1 Power-On Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

5.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words.

The Power-up Timer starts after the release of the POR and BOR.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS00607).

5.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- BOR is always on
- BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 5-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 5-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	х	Х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
1.0	37	Awake	Active	Whether for POP ready (POPPDY = 1)
10	X	Sleep	Disabled	Walls for BOR ready (BORRD $f = 1$)
0.1	1	х	Active	Waits for BOR ready ⁽¹⁾ (BORRDY = 1)
UI	0	х	Disabled	Regins immediately (RODRDV =)
00	Х	х	Disabled	BORRDY = x)

TABLE 5-1: BOR OPERATING MODES

Note 1: In these specific cases, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

5.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

5.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

5.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set	t	'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits				
	100000 = N	linimum frequer	ncy				
	•						
	•						
	•						
	111111 =						
	0000000 = O	scillator module	e is running at	the factory-call	brated frequen	су	
	000001 =						
	•						
	011110 =						
	011111 = N	laximum freque	ncv				

REGISTER 6-3: OSCTUNE: OSCILLATOR TUNING REGISTER

TABLE 6-2:	SUMMARY OF REGISTERS	ASSOCIATED WITH CLOCK SOURCES	;
------------	----------------------	-------------------------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			_	SCS	<1:0>	75
OSCSTAT	SOSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	76
OSCTUNE	_	-			TUN	<5:0>			77
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF	88
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	TMR6IE	TMR4IE	CCP2IE	85
T1CON	TMR1C	:S<1:0>	T1CKPS<1:0>		T10SCEN	T1SYNC		TMR10N	265

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	—	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		—	47
	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		47

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
- ; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVWF MOVF BCF BSF BSF	INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

10.3 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

MEMORY MODIFY FLOWCHART Start Modify Operation **Read Operation** Figure 10-1 An image of the entire row read must be stored in RAM Modify Image The words to be modified are changed in the RAM image Erase Operation Figure 10-4 Write Operation use RAM image Figure 10-6 End Modify Operation

FLASH PROGRAM

FIGURE 10-7:

REGISTER 11-12:	ANSELB: PORTB	ANALOG SE	LECT REGISTER
-----------------	---------------	-----------	---------------

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSB<5:0>**: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled
- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

17.1 **PWMx Pin Configuration**

All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRIS bits.

17.1.1 FUNDAMENTAL OPERATION

The PWM module produces a 10-bit resolution output. Timer2 and PR2 set the period of the PWM. The PWMxDCL and PWMxDCH registers configure the duty cycle. The period is common to all PWM modules, whereas the duty cycle is independently controlled.

Note: The Timer2 postscaler is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

All PWM outputs associated with Timer2 are set when TMR2 is cleared. Each PWMx is cleared when TMR2 is equal to the value specified in the corresponding PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb) registers. When the value is greater than or equal to PR2, the PWM output is never cleared (100% duty cycle).

Note: The PWMxDCH and PWMxDCL registers are double buffered. The buffers are updated when Timer2 matches PR2. Care should be taken to update both registers before the timer match occurs.

17.1.2 PWM OUTPUT POLARITY

The output polarity is inverted by setting the PWMxPOL bit of the PWMxCON register.

17.1.3 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 17-1.

EQUATION 17-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$

(TMR2 Prescale Value)

```
Note: Tosc = 1/Fosc
```

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWM output is active. (Exception: When the PWM duty cycle = 0%, the PWM output will remain inactive.)
- The PWMxDCH and PWMxDCL register values are latched into the buffers.

Note:	The Timer2 postscaler has no effect on the
	PWM operation.

17.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDCH and PWMxDCL register pair. The PWMxDCH register contains the eight MSbs and the PWMxDCL<7:6>, the two LSbs. The PWMxDCH and PWMxDCL registers can be written to at any time.

Equation 17-2 is used to calculate the PWM pulse width.

Equation 17-3 is used to calculate the PWM duty cycle ratio.

EQUATION 17-2: PULSE WIDTH

 $Pulse Width = (PWMxDCH:PWMxDCL<7:6>) \bullet$

Tosc • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 17-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(PWMxDCH:PWMxDCL<7:6>)}{4(PR2+1)}$$

The 8-bit timer TMR2 register is concatenated with the two Least Significant bits of 1/FOSC, adjusted by the Timer2 prescaler to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

20.8 Register Definitions: NCOx Control Registers

REGISTER 20-1: NCOxCON: NCOx CONTROL REGISTER

R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
NxEN	—	NxOUT	NxPOL	—	—	—	NxPFM
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimpleme	ented bit, read as	· 'O'	
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	NXEN: NCOX E	Enable bit					
	1 = NCOx mod	ule is enabled					
bit 6	Unimplemente	ed: Read as '0'					
bit 5	NxOUT: NCOx	Output bit					
	1 = NCOx outp 0 = NCOx outp	ut is high					
bit 4							
DIL 4	1 = NCOx potanty bit 1 = NCOx output signal is active low (inverted)						
0 = NCOx output signal is active high (non-inverted)							
bit 3-1	3-1 Unimplemented: Read as '0'						
bit 0	NxPFM: NCOx	Pulse Frequenc	y Mode bit				
	1 = NCOx oper	ates in Pulse Fre	equency mode				
	0 = NCOx oper	ates in Fixed Du	ty Cycle mode				

REGISTER 20-2: NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
	NxPWS<2:0> ^(1, 2)		—	—	_	NxCK	S<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 NxPWS<2:0>: NCOx Output Pulse Width Select bits^(1, 2)

	111 = 128 NCOx clock periods
	110 = 64 NCOx clock periods
	101 = 32 NCOx clock periods
	100 = 16 NCOx clock periods
	011 = 8 NCOx clock periods
	010 = 4 NCOx clock periods
	001 = 2 NCOx clock periods
	000 = 1 NCOx clock periods
bit 4-2	Unimplemented: Read as '0'
bit 1-0	NxCKS<1:0>: NCOx Clock Source Select bits
	11 = Reserved
	$10 = LC3_{out}$
	01 = Fosc
	00 = HFINTOSC (16 MHz)

Note 1: NxPWS applies only when operating in Pulse Frequency mode.

2: If NCOx pulse width is greater than NCO_overflow period, operation is undeterminate.

25.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

25.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

25.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Table 34-12: Timer0 and Timer1 External Clock Requirements.

25.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

TABLE 31-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	_	SCKP	SCKP BRG16 — WUE ABDEN			349	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	83
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	84
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	87
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	348
RxyPPS	—	_	_		F	RxyPPS<4:0	>		137
SP1BRGL				SP1BR0	G<7:0>				350*
SP1BRGH	SP1BRG<15:8>								350*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	125
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	130
TX1REG	EUSART Transmit Data Register								
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	347

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission. * Page provides register information.

TABLE 34-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Operati	ng Temperatu	re -40°C ≤ Ta	≤ +125°C						
Param No.	Sym.		Characteristi	c	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescaler			0.5 Tcy + 20	—	—	ns	
				With Prescaler	10	—	—	ns	
41*	T⊤0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	TT0P	T0CKI Period	d		Greater of: 20 or <u>Tcy + 40</u> *N	_	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	—	ns	
			Synchronous, with Prescaler		15	—	—	ns	
			Asynchronous		30	—	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> *N	-	_	ns	N = prescale value
			Asynchronous		60	—	—	ns	
48	F⊤1	Secondary O (oscillator en	Scillator Input Frequency Range abled by setting bit T10SCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ed	dge to Timer	2 Tosc	—	7 Tosc	_	Timers in Sync mode
* These parameters are characterized but not tested									

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 34-22: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard	d Operating C					
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \le V\text{DD} \le 5.5V$
		Clock high to data-out valid	—	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	_	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)	_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	Data-out rise time and fall time	_	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 34-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 34-23: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-setup before CK \downarrow (DT hold time)	10		ns				
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns				

TABLE 34-25: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Symbol	Charact	Min.	Тур	Max.	Units	Conditions		
SP90*	Tsu:sta	Start condition	100 kHz mode	4700		—	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	—	—		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first	
		Hold time	400 kHz mode	600	_	—		clock pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		—	ns		
		Setup time	400 kHz mode	600		—			
SP93	THD:STO	Stop condition	100 kHz mode	4000		_	ns		
		Hold time	400 kHz mode	600		_			

* These parameters are characterized but not tested.

FIGURE 34-22: I²C BUS DATA TIMING

