

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1713-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-9:PIC16(L)F1713/6 MEMORY
MAP, BANK 31

	Bank 31	
F8Ch		
	Unimplemented Read as '0'	
FE3h		
FE4h	STATUS_SHAD	
FE5h	WREG_SHAD	
FE6h	BSR_SHAD	
FE7h	PCLATH_SHAD	
FE8h	FSR0L_SHAD	
FE9h	FSR0H_SHAD	
FEAh	FSR1L_SHAD	
FEBh	FSR1H_SHAD	
FECh	—	
FEDh	STKPTR	
FEEh	TOSL	
FEFh	TOSH	
FF0h	_	
FFFh		
Legend:	= Unimplemented da read as '0',	ta memory locations,

PIC16(L)F1713/6

TABLE 3-11: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 2		•	•			•	•	•	•	•
10Ch	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX XXXX	uu -uuu
10Dh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	uuuu
10Eh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	—	Unimplement	ted							_	_
110h	—	Unimplement	ted							_	_
111h	CM1CON0	C10N	C10UT	_	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	00-0 0100	00-0 0100
112h	CM1CON1	C1INTP	C1INTN		C1PCH<2:0>			C1NCH<2:0>	>	0000 0000	0000 0000
113h	CM2CON0	C2ON	C2OUT	_	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	00-0 0100	00-0 0100
114h	CM2CON1	C2INTP	C2INTN		C2PCH<2:0>			C2NCH<2:0>	>	0000 0000	0000 0000
115h	CMOUT	_	_	_	_	_	_	MC2OUT	MC10UT	00	00
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	'R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1P	SS<1:0>		DAC1NSS	0-00 00-0	0-00 00-0
119h	DAC1CON1				DAC1	R<7:0>				0000 0000	0000 0000
11Ah	DAC2CON0	DAC2EN	—	DAC2OE1	DAC2OE2	DAC2PS	SS<1:0>	—	DAC2NSS	0-00 00-0	0-00 00-0
11Bh	DAC2CON1	_					DAC2R<4:0	>		0 0000	0 0000
11Ch	ZCD1CON	ZCD1EN	_	ZCD10UT	ZCD1POL	_	_	ZCD1INTP	ZCD1INTN	0-x000	0-0000
11Dh	—	Unimplement	ted	•			•	•	•	_	_
11Eh	—	Unimplement	ted							_	_
11Fh	—	Unimplement	ted							_	_
Banl	k 3										
18Ch	ANSELA	—	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	1 1111
18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11
18Eh	ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	1111 11	1111 1111
18Fh	—	Unimplement	ted							—	_
190h	—	Unimplement	ted							—	_
191h	PMADRL	Program Mer	mory Address	Register Low	Byte					0000 0000	0000 0000
192h	PMADRH	—	Program Mer	mory Address	Register High	Byte				1000 0000	1000 0000
193h	PMDATL	Program Mer	mory Read Da	ta Register Lo	w Byte					xxxx xxxx	uuuu uuuu
194h	PMDATH	—	_	Program Mer	nory Read Da	ta Register Hi	gh Byte			xx xxxx	uu uuuu
195h	PMCON1	_	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	-000 x000	-000 q000
196h	PMCON2	Program Mer	mory Control F	Register 2			•	•	•	0000 0000	0000 0000
197h	VREGCON	—	_	_	_	_	—	VREGPM	Reserved	01	01
198h	—	Unimplement	ted	•			•	•	•	_	_
199h	RC1REG	USART Rece	eive Data Regi	ster						0000 0000	0000 0000
19Ah	TX1REG	USART Tran	smit Data Reg	ister						0000 0000	0000 0000
19Bh	SP1BRGL				SP1BF	RG<7:0>				0000 0000	0000 0000
19Ch	SP1BRGH				SP1BR	G<15:8>				0000 0000	0000 0000
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
19Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-00

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented, read as '1'.

2: Unimplemented on PIC16(L)F1713/6.

5.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition	
0	0	1	1	1	0	x	1	1	Power-on Reset	
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR	
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR	
0	0	u	1	1	u	0	1	1	Brown-out Reset	
u	u	0	u	u	u	u	0	u	WDT Reset	
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep	
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep	
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation	
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep	
u	u	u	u	0	u	u	u	u	RESET Instruction Executed	
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)	
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)	

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

ODB7 bit 7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0 bit 0
bit 7							bit (

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

ODB<7:0>: PORTB Open-Drain Enable bits

For RB<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 11-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRB7 | SLRB6 | SLRB5 | SLRB4 | SLRB3 | SLRB2 | SLRB1 | SLRB0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits

For RB<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 11-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
_	—	—			RxyPPS<4:0>		
pit 7							bi
Legend:							
R = Readab	ole bit	W = Writable	e bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unchanged		x = Bit is unl	known	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cl	eared				
	l lus incur la un	antadi Daad aa	(o)				
bit 7-5	-	ented: Read as		laction bita	DODTA		DODTO
bit 4-0	11xxx = R	I:0>: Pin Rxy Ou	ilput Source Se	ection bits	PORTA	PORTB	PORTC
		xy source is C2			х		Х
		xy source is C2			X		X
		xy source is DT				Х	Х
		xy source is TX				Х	Х
	10100 = R		OR				
	10011 = R						
		xy source is SD	(1) مחא			N/	V
		xy source is SC				X X	X X
	10000 - 10		NOOL			~	~
	01111 = R	xy source is PW	/M4OUT			х	Х
		xy source is PW				Х	Х
		xy source is CC				Х	Х
		xy source is CC				Х	Х
		xy source is CO				Х	Х
		xy source is CO				Х	Х
		xy source is CO				X	Х
		xy source is CO				Х	Х
	00111 - D		1 out				X
		xy source is LC	_			X X	X
		xy source is LC	_		×	X	X
		xy source is LC	_		X X		X X
		xy source is LC			×		X
		xy source is NC	O1_out		X		χ
	00010 = R						
	00001 = R				Х	х	Х
	00000 = R	xy source is LA	іху				
	Example: F	RC3PPS = 0x0D	outputs CCP2	on RC3			
	Outputs are	e available only	on those ports	indicated with			
			-				

REGISTER 12-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

a check.

Note 1: TRIS control is overridden by the peripheral as required.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
PPSLOCK	—	—	—	—	_	—	—	PPSLOCKED	138		
INTPPS	_	_	_			INTPPS<4	:0>		137		
TOCKIPPS	_	_	_			T0CKIPPS<	4:0>		137		
T1CKIPPS	_	_	_			T1CKIPPS<	4:0>		137		
T1GPPS	_	_	_			T1GPPS<4	:0>		137		
CCP1PPS	_	_	_			CCP1PPS<	4:0>		137		
CCP2PPS	_	_	_			CCP2PPS<	4:0>		137		
COGINPPS	_	_	_		(COGINPPS	<4:0>		137		
SSPCLKPPS	_	_	_		S	SPCLKPPS	<4:0>		137		
SSPDATPPS	_	_	_		S	SPDATPPS	<4:0>		137		
SSPSSPPS	_	_	_		5	SSPSSPPS	<4:0>		137		
RXPPS	_	_	_			RXPPS<4	:0>		137		
CKPPS	_	_	_			CKPPS<4	:0>		137		
CLCIN0PPS	_	_	_		(CLCIN0PPS	<4:0>		137		
CLCIN1PPS	_	_	_		(CLCIN1PPS	<4:0>		137		
CLCIN2PPS	_	_			CLCIN2PPS<4:0>						
CLCIN3PPS	_	_	_	CLCIN3PPS<4:0>							
RA0PPS	_	_		RA0PPS<4:0>							
RA1PPS	_	_	_	RA1PPS<4:0>							
RA2PPS	_	_	_	RA2PPS<4:0>							
RA4PPS	_	_	_	RA4PPS<4:0>							
RA5PPS	_	_	_			RA5PPS<4	:0>		137		
RA6PPS	_	_	_			RA6PPS<4	:0>		137		
RA7PPS	_	_	_			RA7PPS<4	:0>		137		
RB0PPS	_	_	_			RB0PPS<4	:0>		137		
RB1PPS	_	_	_			RB1PPS<4	:0>		137		
RB2PPS	_	_	_			RB2PPS<4	:0>		137		
RB3PPS	_	_	_			RB3PPS<4	:0>		137		
RB4PPS	_	_	_			RB4PPS<4	:0>		137		
RB5PPS	_	_	_			RB5PPS<4	:0>		137		
RB6PPS	_	_	_	RB6PPS<4:0>							
RB7PPS	_	_	_	RB7PPS<4:0>							
RC0PPS	_	_	_	RC0PPS<4:0>							
RC1PPS	_	_				RC1PPS<4	:0>		137		
RC2PPS		—	—			RC2PPS<4	:0>		137		
RC3PPS	_	—	_			RC3PPS<4	:0>		137		
RC4PPS	_	_	_			RC4PPS<4	:0>		137		
RC5PPS	_	_	_			RC5PPS<4	:0>		137		
RC6PPS	_	_	_			RC6PPS<4	:0>		137		
RC7PPS	_	_	_			RC7PPS<4	:0>		137		

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the DAC module.

REGISTER 13-11: IOCEN: INTERRUPT-ON-CHANGE PORTE NEGATIVE EDGE REGISTER

- - - IOCEN3 - <th>U-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th> <th>R/W-0/0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th>	U-0	U-0	U-0	U-0	R/W-0/0	U-0	U-0	U-0
bit 7 bit 0	—			—	IOCEN3			—
	bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	 IOCEN: Interrupt-on-Change PORTE Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin
bit 2-0	Unimplemented: Read as '0'
bit 2-0	 be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—			IOCEF3			—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0'
bit 3	IOCEF: Interrupt-on-Change PORTE Flag bits 1 = An enabled change was detected on the associated pin. Set when IOCEPx = 1 and a rising edge was detected on REx, or when IOCENx = 1 and a falling edge
	 was detected on REx. 0 = No change was detected, or the user cleared the detected change.
bit 2-0	Unimplemented: Read as '0'

14.3 Register Definitions: FVR Control

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVI	R<1:0>
bit 7	· · · · · ·						bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is un	ichanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is s	et	'0' = Bit is cleared	q = Value depends on condition				
bit 7	1 = Fixed	ixed Voltage Reference Ena Voltage Reference is enable Voltage Reference is disable	ed				
bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽¹⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled							
bit 5	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled						
bit 4	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range)						
bit 3-2	11 = Com 10 = Com 01 = Com	parator FVR Buffer Gain is 2	er Gain Selection bits x, with output VCDAFVR = 4x VFVR ⁽²⁾ x, with output VCDAFVR = 2x VFVR ⁽²⁾ x, with output VCDAFVR = 1x VFVR				
bit 1-0	ADFVR<1:0>: ADC FVR Buffer Gain Selection bit11 = ADC FVR Buffer Gain is 4x, with output VADFVR = 4x VFVR ⁽²⁾ 10 = ADC FVR Buffer Gain is 2x, with output VADFVR = 2x VFVR ⁽²⁾ 01 = ADC FVR Buffer Gain is 1x, with output VADFVR = 1x VFVR00 = ADC FVR Buffer is off						
		ays '1' on PIC16(L)F1713/6	•				

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		0> ADFVR<1:0>		151

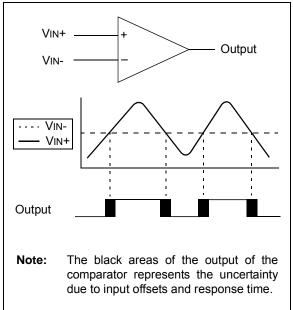
Legend: Shaded cells are not used with the Fixed Voltage Reference.

16.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference

16.1 Comparator Overview


A single comparator is shown in Figure 16-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are located in Table 16-1.

	TABLE 16-1:	AVAILABLE COMPARATORS
--	-------------	-----------------------

Device	C1	C2
PIC16(L)F1713/6	•	•

FIGURE 16-1: SINGLE COMPARATOR

19.1.5 CLCx SETUP STEPS

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 19-1).
- · Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- · Clear all TRIS bits associated with outputs.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxPOLy bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the associated PIE registers.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

19.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR registers will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · LCxON bit of the CLCxCON register
- · CLCxIE bit of the associated PIE registers
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the associated PIR registers, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

19.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the CLCxOUT bits in the individual CLCxCON registers.

19.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

19.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

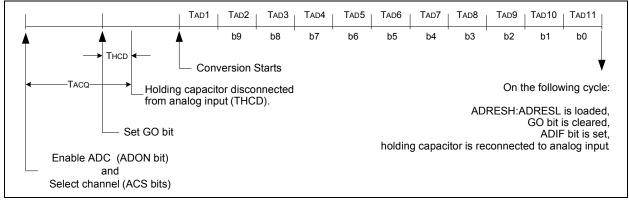
In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

TABLE 21-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽²⁾	64.0 μs ⁽²⁾
FRC	x11	1.0-6.0 μs ^(1,4)					

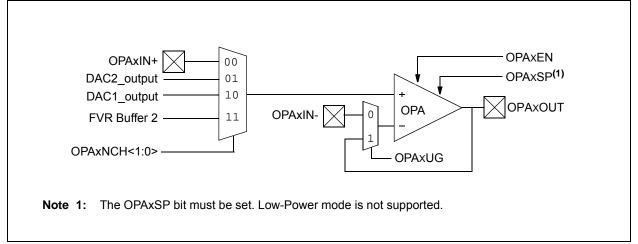
Legend: Shaded cells are outside of recommended range.


Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.



22.0 OPERATIONAL AMPLIFIER (OPA) MODULES

The Operational Amplifier (OPA) is a standard three-terminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- Low leakage inputs
- Factory Calibrated Input Offset Voltage

29.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- Use the desired output pin RxyPPS control to select CCPx as the source and disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register and the DCxBx bits of the CCPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIRx register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer prescale value.
 - Enable the Timer by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMR2IF bit of the PIR1 register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
 - **Note:** In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

29.3.3 TIMER2 TIMER RESOURCE

The PWM standard mode makes use of the 8-bit Timer2 timer resources to specify the PWM period.

29.3.4 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 29-1.

EQUATION 29-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The Timer postscaler (see Section 27.1 "Timer2 Operation") is not used in the determination of the PWM frequency.

29.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPRxL register and DCxB<1:0> bits of the CCPxCON register. The CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the CCPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> bits of the CCPxCON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 29-2 is used to calculate the PWM pulse width.

Equation 29-3 is used to calculate the PWM duty cycle ratio.

EQUATION 29-2: PULSE WIDTH

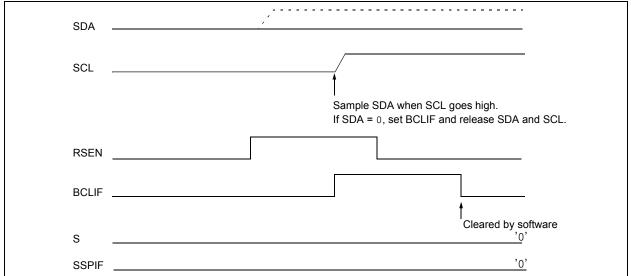
Pulse Width = (CCPRxL:CCPxCON < 5:4>) •

TOSC • (TMR2 Prescale Value)

EQUATION 29-3: DUTY CYCLE RATIO

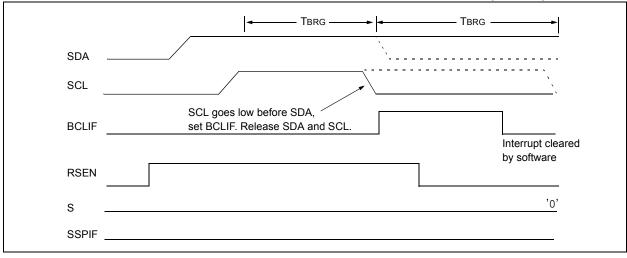
Duty Cycle Ratio = $\frac{(CCPRxL:CCPxCON < 5:4>)}{4(PR2 + 1)}$

30.6.13.2 Bus Collision During a Repeated Start Condition


During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 30-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 30-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 30-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 30-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

33.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 33-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

33.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 33-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 33-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

TABLE 34-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS⁽²⁾

Standa	Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2	—	_	μS			
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	V _{DD} = 3.3V-5V 1:512 Prescaler used		
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	_	Tosc			
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms			
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS			
35	VBOR	Brown-out Reset Voltage	2.55	2.70	2.85	V	BORV = 0		
			2.30 1.80	2.45 1.90	2.60 2.10	V V	BORV = 1 (PIC16F1713/6) BORV = 1 (PIC16LF1713/6)		
35A	VLPBOR	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1		
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	$-40^\circ C \le TA \le +85^\circ C$		
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

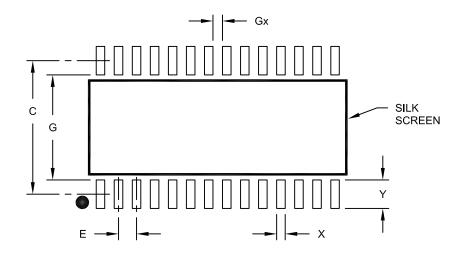
Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

PIC16(L)F1713/6

TABLE 34-26: I²C BUS DATA REQUIREMENTS

Param. No.	Symbol	Characteristic		ymbol Characteristic Min.		Min.	Max.	Units	Conditions	
SP100* Thigh		Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz			
			SSP module	1.5Tcy						
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz			
			SSP module	1.5Tcy						
SP102*	P102* TR SDA and SCL rise time	SDA and SCL rise	100 kHz mode	_	1000	ns				
		400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF				
SP103*	03* TF SDA and SCL	SDA and SCL fall	100 kHz mode	—	250	ns				
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF			
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns				
			400 kHz mode	0	0.9	μS				
SP107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)			
		time	400 kHz mode	100	_	ns				
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)			
		clock	400 kHz mode	—	_	ns				
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free			
			400 kHz mode	1.3		μS	before a new transmission can start			
SP111	Св	Bus capacitive loadir	ng		400	pF				


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TSU:DAT \geq 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

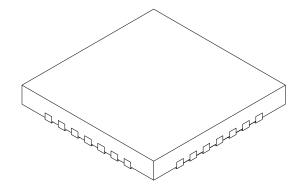
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S	
Dimension	Dimension Limits			MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

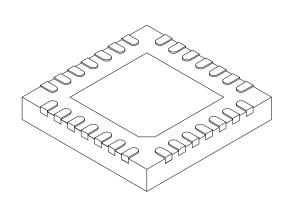
	MILLIMETERS			
Dimens	MIN	NOM	MAX	
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.55 2.65 2.75		
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30 0.40 0.50		
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2 Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	ILLIMETERS	6			
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	Z		28				
Pitch	е		0.65 BSC				
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.20 REF					
Overall Width	Ш	6.00 BSC					
Exposed Pad Width	E2	3.65	3.70	4.20			
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2	3.65	3.70	4.20			
Terminal Width	b	0.23	0.30	0.35			
Terminal Length	L	0.50	0.55	0.70			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2